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Outsourced Similarity Search on
Metric Data Assets

Man Lung Yiu, Ira Assent, Christian S. Jensen, and Panos Kalnis

Abstract—This paper considers a cloud computing setting in which similarity querying of metric data is outsourced to a service
provider. The data is to be revealed only to trusted users, not to the service provider or anyone else. Users query the server for the
most similar data objects to a query example. Outsourcing offers the data owner scalability and a low initial investment. The need for
privacy may be due to the data being sensitive (e.g., in medicine), valuable (e.g., in astronomy), or otherwise confidential. Given this
setting, the paper presents techniques that transform the data prior to supplying it to the service provider for similarity queries on the
transformed data. Our techniques provide interesting trade-offs between query cost and accuracy. They are then further extended to
offer an intuitive privacy guarantee. Empirical studies with real data demonstrate that the techniques are capable of offering privacy
while enabling efficient and accurate processing of similarity queries.

Index Terms—H.2.4.h Query processing; H.2.7.d Security, integrity, and protection
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1 INTRODUCTION

Advances in digital measurement and engineering technologies
enable the capture of massive amounts of data in fields such
as astronomy, medicine, and seismology. The effort for data
collection and processing, as well as its potential utility for re-
search or business, create value for the data owner. He wishes
to store them and allow access by himself, colleagues, and
other (trusted) scientists or customers. This can be supported
by outsourced servers that offer low storage costs for large
databases. For instance, outsourcing based on cloud computing
is becoming increasingly attractive, as it promises pay-as-you-
go, low storage costs as well as easy data access. However,
care needs to be taken to safeguard data that is valuable
or sensitive against unauthorized access. In this context, we
call any item in a data collection an object, individuals with
authorized access query users, and the entity offering the
storage service the service provider.

We illustrate the sensitivity issues with several scenarios.
First, consider space programs such as the NASA Apollo
program on the Earth’s Moon1 or the ESA Mars Express2 that
collect scientifically valuable and rare data. The NASA data
is known to be private before it is released to the public. For
example, time series data is collected from sensors to study
the atmosphere’s density. Such data is usually analyzed by the
scientists involved in setting up the instruments, prior to being
made available to the general community. At the early stage,
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Fig. 1. Application examples of valuable data

access is restricted to authorized scientists for first analysis,
because of the substantial efforts invested in building, testing,
and deploying instruments, and in refining the data prior to
use. Such valuable data needs protection when outsourced, to
ensure that the investments by scientific groups are decently
rewarded.

To analyze the data, authorized scientists may search for
similar patterns in collected time series, such as certain daily
or hourly sub-sequences that indicate interesting phenomena.
In this scenario, time series can be represented as vectors of
values in chronological order (see Fig. 1a). At query time, a
user specifies an example time series q and wishes to obtain
those time series most similar to q; the system then retrieves
the time series p in the database with the minimum distance
to q.

As a second scenario, consider biologists analyzing DNA
microarray data to understand the functioning of genes or gene
groups, for instance from the Stanford Microarray Database3.
A DNA microarray is a matrix obtained by subjecting gene
samples (rows in the matrix) to different experimental con-
ditions (columns in the matrix). Genes that follow the same
expression pattern on all or a subset of the experiments might
be part of a common control mechanism. For a given gene,
its expression values form a query vector. Biologists query the
database of experiments to identify those genes that are most
similar to this specific expression pattern and that are therefore

3. http://genome-www5.stanford.edu
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most likely to be linked to this gene. Generating DNA data is
very costly due to the material and time invested. Hence, as
in the first scenario, the data are costly and rare, making them
very valuable to their owners.

Many applications in science and business rely on similarity
search of metric data other than time series and vector data.
Computer-aided gene sequencing uses the similarity between
an unknown sequence from one species and a known sequence
from a closely related species to predict the former’s function4

(see Fig. 1b). In drug design, pharmacists search for the most
similar graph structures to their quest for a suitable molecule,
which can be represented as a labeled graph5, as shown in
Fig. 1c.

In general, the above diverse scenarios have the following
common characteristics: valuable data in a metric space are
searched based on a similarity measure. When these data are
outsourced, they must be secured against leaks or attacks.

Shortcomings of existing methods.
In the literature, a number of concepts for securing databases
have been studied. Private information retrieval techniques
[15] hide the user’s query, e.g., the data item searched for, but
not the data being queried. To outsource valuable data to an
insecure server, such techniques are clearly not appropriate.
Digital watermarking [2] establishes the data owner’s identity
on the data. Additional information stored in the data helps
prove ownership, but it cannot prevent an attacker from
illegally copying the dataset. Anonymization techniques [25]
secure data by releasing only a generalized version. Aggregate
statistical analysis is still possible on the generalized data, but
the result of a specific query is not guaranteed to be accurate.

Traditional encryption methods are capable of protecting the
confidentiality of the data. However, this also prevents users
from querying the data on the untrusted server. Obviously,
transferring all the encrypted data to the query user for
searching takes outsourcing ad absurdum. Moreover, when
services are made available to users on a pay-as-you-go basis,
the service providers are not interested in such a brute force
data transfer.

Note that certain applications may involve large numbers
of query users from scientific institutions, hospitals, or branch
offices globally. For example, consider a query load of 10,000
queries/s. If a brute force solution transfers 10 MBytes for a
single query, the server needs a network bandwidth of 100,000
MBytes/s, which is far beyond the available bandwidth of
Fast Ethernet (100 Mbits/s). Also, from the user point of
view, it is better to have most of the processing done in
the cloud. For example, a user with a smart phone may
not have enough resources (bandwidth, CPU, battery power)
to download and query a large dataset locally. Therefore,
the design of communication-efficient solutions is of critical
importance to the success of cloud computing applications,
allowing these to be operated at low cost.

Typically, cloud computing providers (e.g., Amazon, HP,
and Microsoft) attempt to solve the problem by offering
contractual agreement that promise not to release outsourced

4. E.g., BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi
5. E.g., molecule data available at http://dtp.nci.nih.gov

data to third parties. Nevertheless, even if the provider respects
the contractual agreement, the data are not guaranteed to be
safe. Unintended leaks of data are reported regularly, and
hackers may still exploit vulnerabilities to gain access to data.
Therefore, we believe that data owners will find it attractive
to outsource encrypted rather than plain data.

Closest to our work are the recent outsourcing propos-
als [31], [28] on searching problems in the spatial domain
and multidimensional space, respectively. Unfortunately, their
techniques rely on specific properties of those spaces and they
cannot be extended to solve our problem, which considers
arbitrary metric data spaces (e.g., strings, graphs, time-series).

Objective.
The goal of this research is to develop a transformation method
t() for converting an original object p in a metric space into
another metric space object p′ = t(p). First, the data owner
specifies a key value CK in order to define the instance of t()
to be used. In a pre-processing phase, the data owner computes
p′ for each object p and uploads it to the server (i.e., service
provider). At query time, the query user specifies his query
object q and then submits the transformed query object q′ to
the server for similarity search. The transformation method
must satisfy these requirements:
• Even in the worst case that the attacker knows the inverse

of t(), he can only estimate the original object p from the
transformed object t(p) with bounded precision.

• It enables high query accuracy.
• It enables efficient query processing in terms of commu-

nication cost.
• It supports insertion and deletion of objects.
Our contributions are as follows. We present three transfor-

mation techniques that satisfy the above requirements. They
represent various trade-offs among data privacy and query cost
and accuracy.
• In our first solution, we propose an encrypted index-based

technique with perfect privacy, but multiple communica-
tion rounds. This technique flexibly reduces round trip
latency at the expense of data transfer.

• For our second solution, our private anchor-based index-
ing guarantees the correct answer within only 2 rounds
of communication. Retrieval is accelerated by bounding
the range of potential nearest neighbors in the first phase.

• Our third solution limits communication to a single
round, and also returns a constant-sized candidate set by
computing a close approximation of the query result.

• We extend our solutions in order to meet an intuitive
privacy guarantee requirement.

The rest of the paper is organized as follows. Section 2
reviews related work. We define the problem and introduce
an intuitive privacy guarantee in Section 3, before presenting
our solutions in Section 4. Thorough experimental evaluation
is discussed in Section 5, before we conclude in Section 6.

2 RELATED WORK
We first introduce existing work on indexing and nearest
neighbor search techniques for metric data. Then we will cover
work on privacy and security of outsourced data.
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2.1 Indexing and NN Search in Metric Space

We review metric indexing because our proposed methods
provide metric indexing on the server for efficient processing.

The R*-tree [7] and the X-tree [8] are well-known disk-
based indexes for multi-dimensional objects, where each ob-
ject is modeled as a vector of coordinate values. Complex
data objects (e.g., DNA sequence, time series) cannot be ef-
fectively represented by coordinate values. Instead, we model
them in metric space, where a (black-box) distance function
dist(pi, pj) is used to compute the dissimilarity between
objects pi and pj . The distance function dist(·) is said to be a
metric if it satisfies symmetry, non-negativity, and the triangle
inequality. Interested readers are referred to two excellent
surveys [10], [20] on metric space indexing. In this section,
we only describe three representative indexing methods for a
set P of metric space objects. They are the vantage-point tree
(VP-tree) [29], the multi-vantage-point (MVP-tree) [9], and
the M-tree [11].

The VP-tree is a binary tree built on P by utilizing the
mutual distances among the objects in P [29]. First, we
choose an arbitrary object a ∈ P as the root object, and
then we determine the median distance r among the distances
dist(a, p) from a to the objects p ∈ P . Each object p ∈ P
satisfying dist(a, p) ≤ r is inserted into the left subtree of
a, whereas the others are inserted into the right subtree of
a. The tree is built in a top-down manner by applying the
above construction procedure recursively to the subtrees of a.
The MVP-tree [9] is an extension of the VP-tree, so that each
index node stores two anchor objects and has m2 subtrees
(m being a parameter). The VP-tree (and MVP-tree) supports
insertion/deletion of objects at the risk of an unbalanced tree.

The most popular metric space index is the M-tree [11] (and
its variant [22]) due to its efficient support of object inser-
tion/deletion. Each index entry e stores a minimum bounding
sphere consisting of (i) an anchor object e.a as the sphere
center, (ii) a covering radius e.r = max{dist(e.a, p) | p ∈
sub(e)} as the maximum distance from e.a to any object in
the subtree of e. In addition, the entry stores (iii) a pointer
to its child node, and (iv) a pre-computed distance from e.a
to the parent entry of e. In contrast, a leaf entry only stores
the actual object p, and its pre-computed distance to its parent
entry.

Given a query object q and a set P of objects, the nearest
neighbor (NN) query retrieves the object p ∈ P such that
dist(q, p) is minimized. The best-first paradigm [26], [20] is
the state-of-the art method for performing NN search on a hi-
erarchical metric space index (e.g., the M-tree). Given a query
object q and an index entry e, the function mindist(q, e) is
used to compute the (conservative) minimum distance between
q and any object indexed by the subtree of e. The best-first
search employs a min-heap H for organizing its encountered
entries in ascending order of mindist(q, e). Initially, the
entries in the root node of the tree are inserted into H . When
an index entry e is deheaped from H , we access its child node
and insert all entries of the node into H . The first object p
that is deheaped from H , is guaranteed to be the NN of q.

Hashing techniques [16], [6] have also been proposed to

answer the NN query efficiently. These techniques do not
guarantee exact NN retrieval, but they return objects close
enough to the NN in practice. The locality-sensitive hashing
technique (LSH) [16] is specifically designed for the Lx norm
in the multidimensional space Rd; it is inapplicable to arbitrary
metric spaces (e.g., edit distance over the domain of strings).

The distance-based hashing technique (DBH) [6] is an
extension of LSH for metric spaces. It takes as input two
parameters: (i) the number A of bits, and (ii) the number C
of hash tables. Let HT j be the j-th hash table, for indexing
objects p ∈ P based on their A-length bitmaps BMj(p). To
compute the i-th bit of the bitmap BMj(p), we pick two
anchor objects ai, bi ∈ P , and define the projection function
[14] as:

PJFai,bi
(p) =

dist2(p, ai) + dist2(ai, bi)− dist2(p, bi)
2 · dist(ai, bi)

Then, we determine the value ri as the median value
of PJFai,bi(p). The i-th bit of BMj(p) is set to 0 if
PJFai,bi(p) ≤ ri; otherwise, the bit is set to 1.

During the construction phase, we insert each object p ∈ P
into the hash table HT j according to the bitmap BMj(p).
This step is repeated for all C hash tables. At query time, the
user requests the hash table HT j to return all objects having
the same bitmap as the bitmap BMj(q) of the query object q.
Again, this step is repeated for all hash tables and eventually
the closest of them (to q) is reported as the result.

Nevertheless, DBH has two limitations. First, it is possible
that no hash table HT j contains any object with the same
bitmap as the query bitmap BMj(q), leading to an empty
result. Secondly, once the DBH structure is built (i.e., values of
A and C are fixed), its query accuracy cannot be dynamically
optimized by the user. We will address the above problems by
developing a flexible hashing technique in Section 4.3 that (i)
prevents empty results, and (ii) allows the user to boost the
query accuracy online by trading off communication cost.

2.2 Privacy and Security
The idea of outsourcing database services to a service provider
was introduced by Hacigümüs et al. [18]. Since then, various
techniques have been developed to maintain the confidentiality
of outsourced data. Given a relational table, Hacigümüs et
al. [17] map the tuples of the table into buckets and then
store the encrypted tuples of those buckets at the server. At
query time, the user compares the query object against the
description of those buckets, and then determines the necessary
buckets that need to be retrieved from the server. In another
proposal [12], the data owner applies the encryption function
on each node separately and then stores all encrypted tuples at
the server. The method of Agrawal et al. [3] employs an order-
preserving function on 1D data values such that the distribution
of output values is different from that of input values.

The two works most related to ours are proposed by Yiu et
al. [31] and Wong et al. [28]. Yiu et al. [31] present several
transformation-based techniques for outsourcing spatial data to
the (untrusted) server, such that the server is able to perform
spatial range search correctly for trusted users on those trans-
formed points, without knowing their actual coordinates. They
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propose spatial transformations in 2D space based on scaling,
shifting, and noise injection. Also, they develop a solution
using an encrypted R-tree. Those solutions operate on explicit
2D coordinates, rendering them inapplicable in our setting,
where the distance function is a generic distance metric.

Wong et al. [28] propose to outsource multi-dimensional
points to the (untrusted) server, by using a secure scalar prod-
uct encryption technique. Methods are then provided for kNN
search at the server, without the server learning the distances
among the points. However, the secure scalar product relies
on specific properties of the Euclidean distance in the multi-
dimensional space. It is not applicable to other Lp norms,
e.g., the L1 norm (the Manhattan distance). Obviously, it also
cannot be applied to our problem setting which considers
arbitrary metric space objects (e.g., strings, graphs, time-
series). Another drawback of this proposal is that no indexing
scheme can be built on the encrypted tuples, forcing the server
to perform a linear scan over the dataset. This affects severely
the scalability of the system.

In the field of privacy-preserving data mining, perturbation
techniques [4], [23] have been developed for introducing noise
into the data, before sending them to the service provider.
However, such an approach does not guarantee the exact
retrieval of results.

The k-anonymity model [27] has been applied extensively
for the privacy-preserving publication of datasets. The idea is
to generalize the tuples in a table such that each generalized
representation is shared by at least k tuples. This way, each
object cannot be distinguished from at least k − 1 other
objects. It is often used to generalize the medical records of
patients so that the adversary cannot link a specific patient
to a medical record. Except for some person-related data like
DNA data, most of the metric data that we consider (e.g.,
astronomy data, time series) is collected from nature rather
than from persons. Therefore, k-anonymity is of relatively low
relevance to the intended applications of the paper’s proposals.
Nevertheless, we still view this k-anonymity approach as a
competitor solution in Section 3.3.

3 PROBLEM SETTING
We start by introducing our scenario and our problem setting
in Section 3.1. Then, we propose an intuitive privacy guarantee
for metric data in Section 3.2. Next, we describe straightfor-
ward solutions to our problem and discuss their drawbacks in
Section 3.3.

3.1 Problem Definition
We first discuss our scenario and then define our problem.

Scenario.
Fig. 2 depicts our scenario for outsourcing data. It consists
of three entities: a data owner, a trusted query user, and an
untrusted server. On the one hand, the data owner wishes to
upload his data to the server so that users are able to execute
queries on those data. On the other hand, the data owner trusts
only the users, and nobody else (including the server).

The data owner has a set P of (original) objects (e.g.,
actual time series, graphs, strings), and a key to be used for

transformation. First, the data owner applies a transformation
function (with a key) to convert P into a set P ′ of transformed
objects, and uploads the set P ′ to the server (see step A1 in the
figure). The server builds an index structure on the set P ′ in
order to facilitate efficient search. In addition, the data owner
applies a standard encryption method (e.g., AES) on the set
of original objects; the resulting encrypted objects (with their
IDs) are uploaded to the server and stored in a relational table
(or in the file system).

Next, the data owner informs every user of the transforma-
tion key (see step A2). In the future, the data owner is allowed
to perform incremental insertion/deletion of objects (see step
A3).

Server 
(untrusted)

Data owner

Trusted client

Transformed 

objects (indexed)

Encrypted objects

(DB or file system)

Key

Query

Key

Original objects A1. Initial upload 
of data

A3. Incremental 
update (if any)

B1. Issue query

B3. Report results

B2. Process query

A2. Inform 
the key

Fig. 2. Scenario overview

At query time, a trusted user applies the transformation
function (with a key) to the query and then sends the trans-
formed query to the server (see step B1). Then, the server
processes the query (see step B2), and reports the results back
to the user (see step B3). Eventually, the user decodes the
retrieved results back into the actual results. Observe that these
results contain only the IDs of the actual objects. The user may
optionally request the server to return the actual objects that
correspond to the above result set.

Table 1 summarizes the notations used throughout the paper.

TABLE 1
List of Notations

Notation Meaning
P the set of original objects
P ′ the set of transformed objects
p.id the ID of the object p

dist(pi, pj) the distance between objects pi and pj

CK encryption key
ECR(X, CK) encrypt the object X using the key CK
DCR(X, CK) decrypt the object X using the key CK
OPE(v) order-preserving encryption on a data value v

hamming(B,B′) Hamming distance between bitmaps B and B′
δ the value used in the δ-gap guarantee

Problem Definition.
We will use the term object for the metric data of interest to
the data owner. A transformed object then refers to an object
obtained from a transformation.

Let dist(pi, pj) denote the distance between two objects pi
and pj . We focus on nearest neighbor queries, for simplicity.
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The extension to the case of k nearest neighbors is straight-
forward. We first give the definition of the nearest neighbor
(NN) query as follows.

Definition 1: Nearest Neighbor Query.
Given a query object q and a set P of objects, the nearest
neighbor query retrieves the object pnn ∈ P such that
dist(q, pnn) ≤ dist(q, p) for all p ∈ P .

Recall from Fig. 2 that both steps A1 and B1 require the
data owner and the user to apply a transformation function.
Our research objective is to design a transformation method
that meets the following requirements:
• Even in the worst case where the attacker knows the

inverse of the transformation function, the attacker can
only estimate the original object p from the transformed
object p′ with bounded precision.

• It enables high query accuracy.
• It enables efficient query processing in terms of commu-

nication cost.
• It supports the insertion and deletion of objects.

3.2 Privacy Guarantee
In this section, we employ an intuitive obfuscation-based
privacy guarantee that can be adapted for metric data.

In the two-dimensional space, obfuscation [5] has been
used to represent an object’s location by a superset region
called the obfuscated region. An adversary without apriori
knowledge is unable to distinguish the object’s actual location
from other locations in the obfuscated region. The privacy
value is typically expressed as the area of the obfuscated
region in the two-dimensional space. However, for generic
metric space, there is only the concept of distance but not area.
Privacy thus means avoiding small distance between an object
and its obfuscated representation. We propose to obfuscate
an object p by using a ring (a, dist(a, p)) whose center is a
reference object a and radius is dist(a, p). This way, the object
cannot be distinguished from any other possible object (not
necessarily from the dataset) that have the same obfuscated
ring representation. We formally define this privacy guarantee
as:

Definition 2: δ-gap guarantee.
Let p be an object of the dataset P . The ring (a, dist(a, p))
satisfies the δ-gap guarantee if dist(a, p) ≥ δ.

The data owner is able to tune the value of δ such that it
describes exactly the required degree of obfuscation. In the
example of Fig. 3a, the object p is represented by the ring
(a, r) where a is a reference object and r = dist(a, p). Since
r ≥ δ, the ring satisfies the δ-gap guarantee. Observe that any
possible object (e.g., object p∗) having distance r from object
a also has the same representation as (a, r).

The reference object a could be either an object picked from
the dataset P or a randomly generated object that satisfies
dist(a, p) = δ. Regarding the choice of δ, we suggest to set
δ to the average c-th nearest neighbor distance, where c is a
small constant. This value causes the objects to be displaced in
the vicinity of their neighbors, without significantly affecting
most of the distances between pairs of objects.

For certain data related to individuals (e.g., DNA data), a
more appropriate privacy guarantee may be k-anonymity [27].

a

r

δδδδ

p*

p

r

Fig. 3. Distance guarantee: δ-gap

Its adaptation to this paper’s problem setting and the exten-
sions to the paper’s proposals necessary to support it are
available in a technical report [30].

3.3 Straightforward Solutions
We describe two straightforward solutions to our problem and
discuss why they are inefficient.

Brute-force Secure Solution (BRUTE).
This brute-force solution is the one we mentioned in the
Introduction. In the offline construction phase, the data owner
applies conventional encryption (e.g., AES) on each object
and then uploads those encrypted objects to the server. At
query time, the user needs to download all encrypted objects
from the server, decrypt them and then compute the actual
result. As mentioned, it is perfectly secure, but its query and
communication cost are both prohibitively high, and pay-as-
you-go is not supported.

Anonymization-based Solution (ANONY).
This anonymization-based solution achieves data privacy by
means of k-anonymity — the objects are generalized in such a
way that each generalized object cannot be distinguished from
k − 1 other generalized objects. In the context of similarity
search, it is able to confuse the ranking of transformed objects
because k− 1 of them have the same rank as the transformed
object of the actual nearest neighbor. Thus, we still consider
this solution as a competitor, even though k-anonymity is
not a suitable privacy guarantee for our applications (see
Section 2.2).

In the offline construction phase, the data owner applies a
K-D tree partitioning technique [25] on the dataset to obtain
disjoint buckets such that each bucket contains at least k
objects. For each bucket e, the data owner uploads to the
server: (i) e.MBR, the minimum bounding rectangle (MBR)
of all objects inside the bucket and (ii) encrypted strings of
the tuples assigned to that bucket.

Let mindist(q, e.MBR) and maxdist(q, e.MBR) represent
the minimum and maximum distance from the query object q
to e.MBR (the MBR of the bucket e).

At query time, the query user first obtains the MBRs of all
buckets from the server, then computes the maximum distance
from q to each bucket, and determines the smallest maximum
distance (say, γ = minemaxdist(q, e)). Next, the query user
requests from the server all encrypted tuples from buckets e
that satisfy mindist(q, e) ≤ γ. Eventually, the query user
decrypts those tuples in order to obtain the actual result.

Observe that the anonymization technique of LeFevre et
al. [25] is applicable only to multi-dimensional data. For ar-
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bitrary metric space data, the clustering-based anonymization
technique of Aggarwal et al. [1] can be applied. It represents
each bucket as a minimum bounding sphere (MBS) consisting
of an anchor object and a covering radius, similar to M-tree
index entry as described in Section 2.1.

The above anonymization-based solution has two limita-
tions. First, the MBRs/MBSs of the buckets contain substantial
empty space, due to the curse of dimensionality. Thus, the
derived upper NN distance bound γ can be loose, triggering a
large number of buckets to be retrieved. Second, the solution
still allows the server to know the MBRs/MBSs of the buckets,
which are located in the same space as the original objects.
In contrast, our proposed methods in Sections 4.2 and 4.3
do not permit the server to know any information in the
original space; the anchors are converted to IDs and distance
information is transformed to numbers or bitmaps.

4 PROPOSED SOLUTIONS

In this section, we present the transformation methods, and
the corresponding query processing techniques. We propose
three transformation methods (EHI, MPT, FDH) in Sections
4.1, 4.2, and 4.3 respectively. They capture various trade-offs
among data privacy and query cost and accuracy. We present
extensions of MPT and FDH in Section 4.4, in order to comply
with the δ-gap guarantee. We emphasize that, all the above
methods view the distance function dist() as a black-box; they
only require the distance function to be a metric (i.e., with the
triangle inequality).

4.1 Encrypted Hierarchical Index Search (EHI)
This section presents a client algorithm, called encrypted
hierarchical index (EHI), for performing NN search on an
encrypted hierarchical index stored at the server. This method
offers perfect data privacy for the data owner, but it incurs
multiple communication round trips during query processing.

In the literature, algorithms have been developed for pro-
cessing range queries on encrypted B+-tree [12] and encrypted
R-tree [31]; however, no solutions were proposed for the NN
query on those encrypted indexes.

Transformation Key.
The transformation key of EHI is simply an encryption key
CK for standard encryption algorithm (e.g., AES).

Data Transformation.
An index entry e consists of its anchor object e.a and its
covering radius e.r. Given a query object q and an index
entry e, their minimum distance and maximum distance are
defined as mindist(q, e) = max{0, dist(q, e.a) − e.r} and
maxdist(q, e) = dist(q, e.a)+e.r, respectively [11]. In Fig. 4,
the anchor object of each entry is shown as a gray dot. For the
index entry e9, we can compute mindist(q, e9) = 6− 1 = 5
and maxdist(q, e9) = 6 + 1 = 7.

Our EHI method supports any disk-based hierarchical index
(e.g., the M-tree [11]), provided that they permit the com-
putation of mindist(q, e) and maxdist(q, e). Please refer to
Section 2 for the discussion on M-tree. To construct the EHI
structure, we first build a disk-based tree index TRP on the

dataset P (e.g., the example M-tree in Fig. 4). Then, for each
tree node, we encrypt its content, and send the encrypted node
with its disk block ID to the server. At the end, we send the
disk block ID of the root node to the server.
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Fig. 4. Example of Query Processing in EHI

Query Processing.
Since the tree index stored at the server is encrypted, the
server cannot process the NN query by itself. An algorithm
for communication between the client and the server needs to
be developed in order to answer the NN query correctly.

The total response time of the algorithm consists of the
round trip latency and the data transfer time. These two
measures are analogous to the seek time and transfer time
in hard disks. Traditional best-first NN search algorithms
[26], [20] guarantee that the data transfer time is minimized.
However, in the above context, they need to send a message
to the server each time a node is requested. This would incur
very high round trip latency.

This motivates us to enhance the best-first NN search algo-
rithm in the context of a client-server architecture. Algorithm 1
is the pseudo-code for the user to search the encrypted index
stored at the server side. It has two new features: (i) a
parameter λ is used to reduce the number of communication
messages and round trip latency (see Lines 7–8), and (ii) non-
leaf entries are exploited to derive an upper bound of NN
distance for pruning unqualified entries (see Lines 3 and 13).

Algorithm 1 EHI Searching Algorithm for Client
Algorithm EHI-Search ( Query object q, Encryption Key CK,
Integer λ )

1: request the server for the (encrypted) root node Lroot;
2: H:=new min-heap; pnn:=NULL;
3: γ:=mine∈Lroot maxdist(q, e); . derive NN distance bound
4: for each entry e ∈ Lroot such that mindist(q, e) ≤ γ do
5: insert the entry 〈e,mindist(q, e)〉 into H;
6: while H is not empty and its top entry’s key ≤ γ do
7: pop next λ entries from H and insert them into a set S;
8: request the server for each (encrypted) child node of S;
9: for each retrieved node Lcur do

10: if Lcur is a leaf node then . check for closer objects
11: update γ and pnn by using objects in Lcur;
12: else . expand the entries of Lcur

13: γ:=min{γ,mine∈Lcur maxdist(q, e)};
14: for each e ∈ Lcur such that mindist(q, e)≤γ do
15: insert the entry 〈e,mindist(q, e)〉 into H;
16: return pnn as the result;

Table 2 illustrates our algorithm on the example in Fig. 4,
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for different values of λ. Interestingly, our algorithm represents
a generalization of different search paradigms on a disk-based
tree index. When λ equals 1, our algorithm degenerates to the
traditional best-first search. It has the optimal data transfer cost
(5 nodes), but incurs a large number of round trips (5 rounds).
When λ is set to ∞, our algorithm behaves as breadth-first
search. It has the optimal number of round trips (i.e., the tree
height, 3), but it may lead to a high data transfer cost (7 nodes).
Observe that after the first round, the distance maxdist(q, e2)
is used as the upper bound of the NN distance so the entry e3
is pruned before the second round.

When λ is set to 2, the algorithm accesses only 5 nodes in a
total of 3 rounds. Thus, it has the lowest response time when
compared to other values of λ. In general, when the value of
λ is large, the number of round trips is small, but the data
transfer cost may be high.

TABLE 2
Requested Nodes in EHI for Communication Rounds

Round Requested Nodes
λ = 1 λ = 2 λ =∞

(best-first) (breadth-first)
1 root node root node root node
2 e2 e2, e1 e2, e1
3 e6 e6, e5 e6, e5, e7, e4
4 e1 — —
5 e5 — —

As a guideline, we recommend to set the value of λ =
d τrtl

τnode
e, where τnode is the transfer time of a node, and τrtl

is the round trip latency. This scheme ensures that the data
transfer time of λ nodes equals the round trip latency.

Incremental Data Update.
The data owner is able to insert and delete objects from the
encrypted tree, similar to the way of using the underlying index
(e.g., M-tree).

4.2 Metric Preserving Transformation (MPT)
In this section, we develop a method, called metric preserving
transformation (MPT), for evaluating the NN query. Unlike
the EHI method, MPT incurs only 2 rounds of communication
during the query phase.

The basic idea behind MPT is to pick a small subset of the
dataset P as the set of anchor objects [11] and then assign
each object of P to its nearest anchor. For each object p, we
compute its distance dist(ai, p) from its anchor ai and then
apply an order-preserving encryption function OPE [3] on
the distance value. These order-preserving encrypted distances
will be stored in the server and utilized for processing NN
queries.6

A function OPE : R→ R is said to be order preserving if
it guarantees that OPE(x) > OPE(x′) for any values x, x′

that satisfy x > x′.

Transformation Key.
The transformation key consists of an encryption Key CK,

6. In fact, the transformation of MPT is different from iDistance [21]
because iDistance is specifically designed for indexing points in a multi-
dimensional space rather than in a generic metric space. Our MPT solution is
applicable to arbitrary metric data (e.g., graphs, strings), but iDistance is not.

an integer A, and A pairs of the form (ai, ri), where ai is
an (anchor) object and ri is a distance value. We will soon
elaborate on how to generate the transformation key.

Data Transformation.
Algorithm 2 is the pseudo-code for constructing MPT from
the input dataset P . Integer A denotes the number of anchor
objects. We apply a heuristic from the M-tree [11] to select
a set of A anchor objects from P . Such a heuristic aims at
optimizing the “indexing quality” of the anchors, but we do
not cover the details here. In Line 2, we compute the value
B, i.e., the maximum number of objects that can be assigned
to the same anchor. Next, we apply a heuristic [11] to assign
each object to its anchor object. For example, each object is
assigned to its nearest anchor object (having fewer than B
assigned objects).

Next, we examine each anchor object. Let ai denote the i-
th anchor object and the set ai.S represent its assigned set of
objects. We compute the anchor’s covering radius ri, which
denotes the maximum distance from ai to any object in its
set ai.S [11]. The anchor distance plays an important role in
query processing, as we will discuss shortly. For each object
p in the set ai.S, we compute its distance dist(ai, p) from
its anchor, and we then apply an order-preserving encryp-
tion function OPE [3] on dist(ai, p). A tuple consisting of
the object ID p.id, the order-preserving encrypted distance
OPE(dist(ai, p)), and the encrypted object ECR(p, CK) will
be sent to the server. The benefit of using OPE is that it hides
the original distance values and yet allows comparisons to be
correctly evaluated at the server side.

Algorithm 2 MPT Building Algorithm for Data Owner
Algorithm MPT-Build ( Dataset P , Encryption Key CK, Integer
A )

1: use a heuristic of Ref. [11] to select a set of A anchor objects
from P ;

2: Integer B:=d|P |/Ae;
3: use a heuristic of Ref. [11] to assign each data object of P to an

anchor object, subject to the capacity constraint B;
4: for i:=1 to A do
5: let ai be the i-th anchor object;
6: let ai.S be the set of objects assigned to the anchor ai;
7: ri:=maxp∈ai.S dist(ai, p); . compute covering radius
8: for each object p ∈ ai.S do
9: send the tuple 〈p.id,OPE(dist(ai, p)), ECR(p, CK)〉 to

the server;

Fig. 5a shows an example with eight objects. Suppose
that A = 2 and that the objects p1 and p2 are selected as
the anchors a1 and a2, respectively. Fig. 5c illustrates the
transformed dataset stored in the server. Observe that objects
p1, p3, p4, and p5 are assigned to anchor a1, whereas the
others are assigned to anchor a2. The transformed dataset
also stores the order-preserving encrypted anchor distance and
encrypted object for each tuple. For instance, p5 has distance
dist(a1, p5) = 0.32 from the anchor a1. To prevent the
server from knowing such an actual distance value, the order-
preserving function OPE is applied on the distance and the
distance value 0.8 is stored instead.

As a remark, the transformed dataset (at the server side)
can be indexed by an R∗-tree using a composite key on the
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anchor ID and the anchor distance.
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(a) construction (b) query processing

ID Anchor ID Anchor distance Encrypted object
1 1 OPE(0.00) = 0.00 ENC(p1) = E249C5F3
2 2 OPE(0.00) = 0.00 ENC(p2) = 27E90563
3 1 OPE(0.35) = 1.00 ENC(p3) = A6231D25
4 1 OPE(0.20) = 0.60 ENC(p4) = 90B23F52
5 1 OPE(0.32) = 0.80 ENC(p5) = A796437C
6 2 OPE(0.10) = 0.20 ENC(p6) = 627D3935
7 2 OPE(0.18) = 0.40 ENC(p7) = 35B690D3
8 2 OPE(0.34) = 0.90 ENC(p8) = 2F076723

(c) transformed dataset stored at the server

Fig. 5. Example of MPT

Query Processing.
The client has the transformation key, which contains an
encryption key CK, the value of A, the set of anchor objects
{ai}, and the corresponding distance values {ri}.

We first establish the foundation of NN search on MPT.
Let q be the query object and γ be an upper bound of the NN
distance (derived by the client). The client is able to compute
the values dist(q, ai)− γ and dist(q, ai) + γ and their order
preserving encrypted values using OPE(). With these en-
crypted distances, the following lemma states when an object
p cannot become the NN of q. In order to guarantee exact NN
retrieval, the client needs to issue a distance range request to
the server so that any object p satisfying OPE(dist(ai, p)) ∈
[OPE(dist(q, ai)− γ),OPE(dist(q, ai) + γ)] is retrieved.

Lemma 1: Let γ be an upper bound of the NN distance.
Let q be the query object and ai be an anchor object, where
vq = dist(q, ai). An object p cannot be the NN of q if
OPE(dist(ai, p)) does not fall in the range [OPE(vq −
γ),OPE(vq + γ)].

Proof: Since function OPE is order-preserving, we de-
rive: dist(ai, p) /∈ [vq − γ, vq + γ]. This is equivalent to the
condition: dist(ai, p) < vq − γ or dist(ai, p) > vq + γ.
By rearranging the terms, we obtain: γ < vq − dist(ai, p)
or dist(ai, p) − vq > γ. Thus, we have |dist(q, ai) −
dist(ai, p)| > γ. According to the triangle inequality, we have:
dist(q, p) ≥ |dist(q, ai)− dist(ai, p)|. By combining the last
two inequalities, we derive dist(q, p) > γ; thus p cannot be
the NN of q.

Algorithm 3 is the pseudo-code for answering the NN
query on MPT. In addition to the parameters used in the
transformation key, the client specifies an additional parameter
θ used for accelerating the NN retrieval process. The algorithm
consists of two phases: the distance bounding phase, and the
candidate retrieval phase. Each phase incurs exactly one round
trip of communication.

The objective of the distance bounding phase (Lines 1–6) is
to derive a tight upper bound γ of the NN distance, in order to
reduce the cost of the candidate retrieval phase substantially.
In Line 1, the anchor objects are used to derive an upper bound
of the NN distance γ. In Lines 2–5, the closest anchor anear
to q is selected and the client requests the server to return θ
random objects associated with that anchor. These objects are
then used to further tighten the NN distance bound γ.

The goal of the candidate retrieval phase (Lines 7–11) is
to retrieve the set of potential candidates that can become the
NN of q. The minimum distance between q and any object
indexed by anchor ai (with covering radius ri) is given by
[11]:

mindist(q, (ai, ri)) = max{dist(q, ai)− ri, 0}

Obviously, we only need to consider the anchors satisfying
mindist(q, (ai, ri)) ≤ γ. In Line 9, we apply Lemma 1 and
issue the corresponding distance range query to retrieve the
potential candidates indexed by anchor ai. Eventually, we
obtain the candidate set Scand and return the object p ∈ Scand
with the minimum dist(q, p) value as the result.

Algorithm 3 MPT Searching Algorithm for Client
Algorithm MPT-Search ( Query object q, Encryption Key CK,
Integer θ, Integer A, Pairs {(ai, ri)} )
/* Distance bounding phase */

1: γ:=mini∈[1,A] dist(q, ai); . initial bound of NN distance
2: let anear be the anchor leading to the γ value;
3: request the server for θ random tuples whose anchor ID equals

to that of anear;
4: let Ssamp be the set of decrypted objects from the received tuples;
5: for each p ∈ Ssamp do
6: γ:=min{γ, dist(q, p)}; . refined bound of NN distance

/* Candidate retrieval phase */
7: for i:=1 to A do
8: if mindist(q, (ai, ri)) ≤ γ then
9: request the server for all tuples (with anchor ID as

ai) whose OPE(dist(ai, p)) falls into the range
[OPE(dist(q, ai)− γ),OPE(dist(q, ai) + γ)];

10: let Scand be the set of decrypted objects from the received tuples
(of the above request);

11: return the object p ∈ Scand with the minimum dist(q, p) value
as the final result;

Fig. 5b illustrates NN query processing on MPT. The query
object q is shown as a white dot. Suppose that dist(q, a1) =
0.13 and dist(q, a2) = 0.34. First, the client uses the anchor
objects to derive the upper distance bound γ = dist(q, a1) =
0.13. For simplicity, we skip the steps of using θ additional
objects to tighten γ (see Lines 2–6 of the algorithm). We then
proceed to the candidate retrieval phase. We derive the distance
range query [0.13 − 0.13, 0.13 + 0.13] = [0, 0.26] for anchor
a1, and the distance range query [0.34− 0.13, 0.34 + 0.13] =
[0.21, 0.47] for anchor a2. We then apply the OPE function
on those distance ranges and send the transformed queries to
the server. The search space is depicted by the gray region
in Fig. 5b. Thus, the server searches the transformed dataset
of Fig. 5c and returns the encrypted tuples corresponding to
objects p1, p4, p8. Eventually, the client decrypts those objects
and obtains object p4 as its NN.
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Incremental Data Update.
The data owner inserts or deletes an object p, for the corre-
sponding bucket having the anchor object of p.

If the data distribution in the dataset changes gradually over
time so that most of the objects in a partition become far away
from their anchor. To recover the indexing quality of MPT, the
data owner can perform the following periodic (say, weekly)
maintenance procedure: (i) split the largest partition into two
equal-sized partitions (with new anchors), and (ii) merge the
smallest partition with its nearest partition. The maintenance
overhead is small because it involves only three partitions.

4.3 Flexible Distance-based Hashing (FDH)

In this section, we propose a hashing-based technique, called
flexible distance-based hashing (FDH), for processing the NN
query. The main advantage of this technique is that the server
always returns a constant-sized candidate set (in one commu-
nication round). The client then refines the candidate set to
obtain the final result. Even though FDH is not guaranteed
to return the exact result, the final result is very close to the
actual NN in practice.

During query processing, FDH allows the client to specify
an integer parameter θ for increasing the accuracy of a query
result, without rebuilding the transformed data stored at the
server. This is a significant enhancement over earlier work [6],
in which query accuracy cannot be adjusted once the index
structure is built.

In addition, our FDH method employs a novel technique
for conceptually linking similar hash buckets, in order to
maximize the utility of the transformed data for answering
queries.

In the literature, the Hilbert curve transformation has been
employed for approximate NN search in 2D space [24]. How-
ever, its performance degrades rapidly for high dimensional
space and it is inapplicable to the metric space. In contrast,
our FDH method can be applied for any black-box distance
function dist().

Transformation Key.
The transformation key consists of an encryption Key CK,
an integer A, and A pairs of the form (ai, ri), where ai is
an object and ri is a distance value. The generation of the
transformation key will be discussed shortly.

Data Transformation.
The data owner specifies a parameter A for the data trans-
formation step. A typical value of A is in the range of tens
to hundreds. This parameter provides a trade-off between the
cost of transformation and the query accuracy, e.g., a higher
value of A leads to better query accuracy, but also high
transformation cost.

Let P be the original dataset of objects. In the data
transformation phase, we choose A random objects from
the set P as anchor objects. Let these anchor objects be
a1, a2, · · · , ai, · · · , aA. For each anchor object ai, we need
to pick a distance value ri (which will be determined shortly).

Given an object p ∈ P , we convert it into an A-length
bitmap where the i-th bit of the bitmap is defined as:

BM(p)[i] =
{

0 if dist(ai, p) ≤ ri
1 otherwise (1)

Our transformation is cheap to compute because the dist(·)
function is called exactly once for computing a bit value. In
contrast, the transformation function of Athitsos et al. [6] is
more expensive to evaluate as it calls the dist() function three
times (for computing a bit value).

Fig. 6a shows a set of objects P = {p1, p2, p3, p4, p5, p6}.
Suppose that p1 is chosen as the anchor object a1. We illustrate
how to derive the distance value r1 for the anchor a1. Observe
that each object within the circle (i.e., p1, p4, p6) has a bit
value 0, whereas any other object (i.e., p2, p3, p5) has a bit
value 1. If the distance value ri is too large, then most of
the objects will be assigned the bit value 0, implying that we
cannot distinguish pairs of objects (e.g., the pair (p4, p5)) that
are far apart. A similar problem arises when ri is set to a
small value. To balance the number of objects on both sides,
we choose the distance value ri as the median value among
the distances dist(ai, p) (of objects from the anchor ai).
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ID Bitmap Encrypted object
1 011 ENC(p1) = A23692F0
2 101 ENC(p2) = 967990B2
3 110 ENC(p3) = 6723A623
4 010 ENC(p4) = 835223B6
5 101 ENC(p5) = D257623E
6 000 ENC(p6) = 3023C790

(c) transformed dataset stored at the server

Fig. 6. Example of FDH

Fig. 6b shows an example with A = 3 anchors a1, a2, a3

(which are p1, p2, p3, respectively). The domain space is
conceptually partitioned into 8 regions, each of which can be
represented by a bitmap as defined in Equation 1. For example,
the region ‘010’ contains objects that are close to a1 and a3,
but far from a2.

It is worth noticing that the above regions may not be
continuous for arbitrary anchor objects in arbitrary space. This
subtle issue does not lead to any problem since we do not need
to describe the extents of the regions explicitly. We only define
those regions implicitly by using Equation 1.

Algorithm 4 is the pseudo-code of the construction algo-
rithm for FDH. We first choose the anchors ai and distance
values ri as described before. Then, for each object p ∈ P ,
we apply Equation 1 to obtain an A-length bitmap BM(p),
and we apply a standard encryption (e.g., AES) on p to obtain
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an encrypted object ECR(p, CK). A tuple consisting of the
object ID, transformed bitmap BM(p), and the encrypted
object ECR(p, CK) is uploaded to the server.

Fig. 6c shows the content of the transformed dataset (stored
at the server), obtained from the configuration of Fig. 6b.
We introduce an appropriate indexing method for the above
bitmaps shortly.

Algorithm 4 FDH Building Algorithm for Data Owner
Algorithm FDH-Build ( Dataset P , Encryption Key CK, Integer
A )

1: for i:=1 to A do . key generation
2: choose an object randomly from P as an anchor object ai;
3: find the distance value ri such that half of objects p ∈ P

satisfy dist(ai, p) ≤ ri;
4: for each object p ∈ P do
5: compute the encryption ECR(p, CK);
6: compute BM(p);
7: send the tuple 〈p.id,BM(p), ECR(p, CK)〉 to the server;

Query Processing.
Note that the client has the transformation key, which contains
the value of A, the set of anchor objects {ai}, and the
corresponding distance values {ri}. At query time, the user
specifies a query object q and then applies Equation 1 to obtain
the bitmap BM(q). The user then requests the server to return
an encrypted object ENC(p, CK) such that its bitmap BM(p)
is identical to BM(q).

A closer look reveals that the above query method has
two potential problems. In Fig. 6b, different regions contain
different numbers of objects. In case the query object q
falls into the region ‘111’, none of the data objects can be
retrieved. On the other hand, if the query bitmap is ‘101’, the
corresponding region contains multiple objects, and the server
cannot decide which of them is closer to q solely based on
the bitmap.

These two important problems have not been considered
in earlier work [6]. Intuitively, if the query bitmap falls in a
region (say, ‘111’) without objects, we need to expand the
search space to neighborhood regions (e.g., regions ‘110’,
‘100’, ‘101’). In case the query object q falls into a region
(say, ‘101’) with multiple objects, we need to gather extra
information to decide which of them is closer to q.

Is there any elegant solution for realizing the above ideas?
It turns out that the answer is positive. First, we define the
Hamming distance between two bitmaps B and B′ as follows:

hamming(B,B′) = | {B[i] 6= B′[i] | i ∈ [1, A]} | (2)

It is well known that the Hamming distance is an intuitive
function for capturing the distances among bitmaps. In our
context, two regions close together are expected to have a low
Hamming distance between their corresponding bitmaps.

At the server side, we employ a metric space index (e.g., the
M-tree [11]) for indexing the bitmaps based on the Hamming
distance function hamming(). In other words, hash buckets
(for the regions) are no longer explicitly maintained in the
system. This eliminates the problems raised by empty hash
buckets or buckets with many objects. As we will see later,

the query processing strategy is to apply a similarity search
on the above metric space index.

Algorithm 5 is the pseudo-code of the searching algorithm
for FDH. The client specifies an additional integer parameter θ,
and requests the server to retrieve the θ tuples whose bitmaps
are the closest to the query bitmap BM(q). After receiving
the result tuples from the server, the client decodes them into
original objects and computes their distances from q. Among
those objects, the one closest to q is reported as the result.

The advantage of the above algorithm is that it provides
the clients the flexibility of choosing different values of θ at
query time. In our experimental study, we will show that a
small value of θ is sufficient to achieve a reasonable accuracy
for the reported result.

Algorithm 5 FDH Searching Algorithm for Client
Algorithm FDH-Search ( Query object q, Encryption Key CK,
Integer θ, Integer A, Pairs {(ai, ri)} )

1: compute the query bitmap BM(q);
2: request the θ tuples 〈p.id,BM(p), ECR(p, CK)〉 with the lowest

Hamming distance from q from the server (ties are resolved
arbitrarily);

3: let S be the set of decrypted objects from the received tuples;
4: return the object p ∈ S with the minimum dist(q, p) value as

the final result;

Incremental Data Update.
The data owner efficiently computes the bitmap of an object
and then requests the server to insert or delete that object (with
a particular object ID).

We need a mechanism to cope with the scenario that the
data distribution in the dataset changes gradually over time.
We suggest that the data owner pre-computes a bitmap (for
each object) such that its length equals, e.g., 10|A|. The data
owner then performs a periodic (say, weekly) procedure as
follows: (i) asks the server to find |A| bit positions (out of
all 10|A| positions) such that the ratio of 0/1 bits is the most
balanced, and (ii) publishes to the users a new key with those
A bit positions only. This maintenance task is very efficient
as the server needs not ship any bitmaps or encrypted data
objects to the data owner.

4.4 Enforcing δ-gap in Original Space
We now discuss how the δ-gap guarantee (in Definition 2) can
be achieved by adapting our transformation methods MPT and
FDH. Recall that this guarantee is used to define privacy in the
original space, and it requires that: each original object p ∈ P
must be represented by a tuple (p, dist(a, p)) such that a is
a reference object and dist(a, p) ≥ δ. This requirement has
to be fulfilled in the original space before applying our trans-
formation method. We call these extended solutions δ-MPT
and δ-FDH, respectively. Only their construction algorithms
are modified; the query algorithms of MPT and FDH can be
directly reused for processing queries as the schema used for
the transformed data remains unchanged.

δ-gap variant of MPT.
In order to provide the δ-gap guarantee in MPT, we modify
Line 3 of Algorithm 2 as follows, by restricting how a data
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object p can be assigned to an anchor object of the set
A. Specifically, we define the set Aδ(p) = {ai ∈ A |
dist(ai, p) ≥ δ} for object p. Every anchor in Aδ(p) always
satisfies the δ-gap guarantee with p. Then, we assign p to an
anchor from Aδ(p), by using a heuristic [11] (e.g., finding
nearest anchor).

Suppose we now use the above variant to assign objects
to anchors in the example of Fig. 7a, where objects p1 and
p2 are anchors a1 and a2 respectively. Each dotted circle has
its center at anchor ai and its radius as δ. To meet the δ-gap
requirement, an object located within a dotted circle cannot be
assigned to the anchor of that circle. For instance, object p1

can only be assigned to anchor a2. Similarly, objects p2 and
p6 are assigned to anchor a1. Each remaining object can be
simply assigned to its nearest anchor.

Observe that a small δ value only forces a small number of
objects to be assigned to farther anchors.
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(a) δ-MPT (b) δ-FDH

Fig. 7. δ-gap variants of transformation methods

δ-gap variant of FDH.
To offer the δ-gap guarantee in FDH, we displace each
original object p ∈ P by the distance δ. This is performed
before Equation 1 is used to convert p into a bitmap in the
transformed space.

Fig. 7b shows how this variant works. In this example,
locations within the solid circle are mapped to the bit value 0,
whereas other locations are mapped to the bit value 1. Each
dotted circle represents the possible location of an object pi
after the displacement. Observe that objects p1 and p4 are
mapped to the bit value 0, regardless of how they are displaced.
Similarly, p3 and p5 are always mapped to the bit value 1. Each
remaining object (e.g., p2, p6) can be mapped to the bit value
0 or 1, depending on its displaced location.

Observe that a small δ value only affects a small number
of bit values to be flipped.

5 EXPERIMENTAL EVALUATION
We first describe our experimental setting, including real
datasets, methods, parameters, and measurements. Then we
study the effect of various factors on the performance and
quality of different methods.

5.1 Experimental Setting
In this section we evaluate our proposed techniques on four
real-world datasets, whose properties are summarized in Ta-
ble 3. For each tuple in a dataset, its ID takes 4 bytes,

and each attribute takes 4 bytes to store. YEAST7 is a gene
expression data matrix obtained from a Microarray experiment
on yeast. Each entry indicates the expression level of a specific
gene (row/tuple) at a specific condition (column/attribute).
Both MUSH and SHUTL are obtained from the UCI Ma-
chine Learning Repository8. MUSH contains a wide variety
of categorical attributes for describing the characteristics of
North American mushrooms. SHUTL contains the log records
describing the states of shuttles from NASA. The dataset GFC,
obtained from the Georgia Forestry Commission Fire Weather
System9, consists of temperature time series measured by
weather stations gathering agrarian meteorological data. It is
worth noticing that, all these real datasets have been valuable
and/or protected data once in the past. For instance, gene
expression matrices (YEAST) and data from space programs
(SHUTL) are both expensive and time-consuming to collect,
as elaborated upon in the introduction.

It is known that the L1 norm (i.e., the Manhattan distance)
is better than other Lp norms at retrieving meaningful nearest
neighbors in high dimensional spaces [19]. Thus, we use the
L1 norm as the distance metric for numeric datasets. The
Jaccard distance [13] is used as the distance metric for the
categorical dataset (MUSH).

TABLE 3
Summary of Real Datasets

Name Attributes Number of tuples Distance
YEAST 17, numeric 2,882 L1 norm
MUSH 22, categorical 8,124 Jaccard dist.
SHUTL 9, numeric 43,500 L1 norm

GFC 16, numeric 86,984 L1 norm

Table 4 provides an overview over the compared algorithms.
BRUTE and ANONY are the straightforward solutions de-
scribed in Section 3.3. EHI, MPT, and FDH are our solutions
as presented in Section 4. Finally, δ-MPT and δ-FDH denote
the δ-gap variants from Section 4.4. The distance-based hash-
ing method (DBH) [6] was reviewed in Section 2.

TABLE 4
Summary of Algorithms

Algorithm Name Presented in
BRUTE Brute-force Secure Solution Sec. 3.3
ANONY Anonymization-based Solution Sec. 3.3

EHI Encrypted Hierarchical Index Search Sec. 4.1
MPT Metric Preserving Transformation Sec. 4.2
FDH Flexible Distance-based Hashing Sec. 4.3
DBH Distance-based Hashing Ref. [6]

δ-MPT / δ-FDH δ-gap variants of MPT and FDH Sec. 4.4

For the construction phase and the query phase, we use
the following default parameter values: A = 100, θ = 500,
λ = 10, and k = 32. Experiments on queries are run with
a query workload of 100 query objects. We measure the
communication cost (in KBytes), server CPU cost, the distance
ratio (of the result NN distance to the actual NN distance), and
the rank (of the result NN on the dataset); and we report their

7. http://arep.med.harvard.edu/biclustering/
8. http://archive.ics.uci.edu/ml/
9. http://weather.gfc.state.ga.us
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average values for the query workload. We also measure the
time taken in the construction phase.

5.2 Experimental Results

Experiment on default parameter values.
Before evaluating the effects of the parameters, we give an
overview of the general performance of the studied algorithms.

Table 5 shows the query communication cost of the solu-
tions on all the datasets. The general tendency is the same
for all datasets. The straightforward approaches BRUTE and
ANONY have very high communication cost when compared
to the others. EHI has a moderate communication cost because
the client performs the actual search procedure. Observe that
MPT and FDH greatly reduce the communication cost by
outsourcing search functionality to the server. MPT obtains
its reduction in the communication cost by providing the
server with information on the relative distances of objects
(i.e., order preserving encryption). The best performance in
terms of communication cost is achieved by the FDH method.
Compact bitmap representatives allow efficient search with
very low communication cost. As shown in Table 6, both the
construction time and server CPU time (per query) of all our
proposed solutions are reasonable.

TABLE 5
Communication cost on real datasets, at default setting

Communication cost (KBytes)
Dataset BRUTE ANONY EHI MPT FDH
YEAST 202.64 144.60 148.95 66.15 35.15
MUSH 729.89 648.38 655.90 109.34 44.92
SHUTL 1699.21 1235.30 815.40 170.11 19.53
GFC 5776.28 1309.52 533.96 315.94 33.20

TABLE 6
Construction time and server time on real datasets, at

default setting

Construction time (s) Server CPU time (s)
Dataset EHI MPT FDH EHI MPT FDH
YEAST 0.016 0.094 0.313 0.001 0.001 0.049
MUSH 0.234 0.531 1.344 0.006 0.002 0.083
SHUTL 2.438 1.187 4.672 0.010 0.006 0.097
GFC 12.141 3.063 10.078 0.007 0.005 0.141

Due to the high cost of ANONY, it is omitted from the
subsequent experiments.

Comparison between DBH and FDH.
To facilitate a fair comparison between DBH and FDH, we
allocate the same amount of disk storage space to them. Both
DBH and FDH use the same parameter value of A. However,
for DBH, its number C of hash tables is fixed to 1, so that its
storage space is comparable to that of FDH.

Table 7 shows the percentage of empty results, average NN
distance, and average communication cost on the GFC dataset
when varying the parameter A. It is worth noticing that DBH
may often return empty results when A is above 100 (see the
highlighted cells). This is because each hash bucket contains

very few objects in those cases. On the other hand, FDH
does not return empty result in any case, thanks to its search
strategy based on Hamming distances among the bitmaps. The
NN distances returned by DBH and FDH are similar, but the
communication cost of FDH is much lower than that of DBH.

TABLE 7
Quality of DBH and FDH, on GFC, as a function of A

Empty result Avg. NN distance Comm. cost (KBytes)
A DBH FDH DBH FDH DBH FDH
20 0% 0% 0.0855 0.1059 1051.27 33.20
50 3% 0% 0.0864 0.0935 736.94 33.20
100 7% 0% 0.0879 0.0906 382.68 33.20
200 12% 0% 0.0950 0.0870 198.25 33.20
500 21% 0% 0.0874 0.0854 122.06 33.20

Next, we study the rank of result NN for individual queries
(from default query workload) on all real datastes, whereas
other parameters are set to their default values. For an empty
result (e.g., obtained in DBH), its rank is set to the cardinality
of the dataset. Fig. 8a shows the rank of result NN on the
datasets YEAST and MUSH, and Fig. 8b shows the rank of
the result NN on the datasets SHUTL and GFC. For ease
of visualization, the ranks are plotted in descending order.
Observe that the result rank of FDH outperforms that of
DBH on the datasets YEAST, MUSH, and SHUTL. For the
dataset GFC, the 10% of the query instances with that largest
ranks favor FDH much more than DBH, but the next 30%
of the query instances favor DBH slightly more than FDH.
Interestingly, a certain query object has a large rank (3135)
on the dataset SHUTL. According to our log for FDH, the
result NN distance of that query object is 0.014379, which is
much higher than the average NN distance of the workload
(0.000498). This query object is an outlier whose NN resides
in a dense “cluster” located far away. Even with a small error
in the result NN distance, the rank of the result NN can become
large. A similar behavior is observed in DBH, and it performs
worse than FDH.

In the remaining experiments, we report the average distance
ratio (of the result NN distance to the actual NN distance) and
the average rank (of the result NN) for the query workload,
rather than result measures of individual queries. Also, we
omit DBH from further studies due to its inferior performance
and result quality.
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Fig. 8. Rank of result NN for individual queries on real
datasets

Scalability experiment.
To analyze the scalability, we generate large synthetic datasets
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of cardinality N between 50,000 and 200,000. SYN consists
of 32 dimensional feature vectors, distributed into 10 different
clusters. As we can see in Fig. 9, the relative performance
of all methods is stable across different data sizes. The
communication cost of the BRUTE method corresponds to the
size of the dataset. EHI and MPT achieve the same reduction
in communication cost. Unlike MPT, however, EHI cannot
be further improved by tuning parameter values (A, θ). The
best method in terms of communication cost is once again
the FDH approach which scales extremely well. The distance
ratio of FDH is insensitive to N . Due to the fixed number of
clusters, the number of objects within a cluster increases as
N proportionally, and thus the result rank of FDH increases.
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Fig. 9. Effect of data size N , on synthetic data SYN

Effect of the selection parameter θ.
We now turn to the parameter θ in the MPT and FDH
techniques to determine a good value that optimizes commu-
nication cost. Fig. 10 depicts the results: increasing θ means
that the client requests more tuples/bitmaps from the server.
In MPT, θ is used in the initial communication round. Hence,
it influences only the quality of the initial approximation. The
better this initial approximation, the lower the communication
cost is in subsequent rounds. This is reflected in the experi-
mental results where increasing θ lowers the communication
cost of MPT. Consequently, in FDH with only one round of
communication, we observe the opposite effect. In this single
round, the communication cost increases proportionally to the
number of objects requested, and the approximation quality
improves.
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Fig. 10. Effect of θ, on GFC data

Effect of the number of anchors A.
We then study the effect of varying the number of anchors
A that are used in the MPT and FDH techniques. Fig. 11
exhibits the effects on both the communication cost and the

nearest neighbor result. We observe a gradual improvement in
communication cost with increasing numbers of anchors. This
is due to the fact that more anchors provide more detailed
information on the locations of objects. This is also reflected
in the approximation quality of FDH, which improves with
increasing number of anchors. With only 100 anchors, we
achieve a low communication cost and a good approximation
of the nearest neighbor.
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Fig. 11. Effect of anchors A, on GFC data

Effect of the order c on the δ-gap solutions.
We now examine the performance and accuracy of the ex-
tended solutions that satisfy the δ-gap guarantee: δ-MPT and
δ-FDH. Recall from Section 3.2 that we recommend setting
δ to the average c-th nearest neighbor distance in the dataset.
Fig. 12 shows the communication cost and result measure with
respect to c. The cost of EHI is independent of c and it is
shown as a reference for comparison. The communication cost
of δ-MPT rises with c, and it can be higher than that of EHI at
large values of c. Regarding δ-FDH, its communication cost is
insensitive to c but its result distance ratio and rank increase
with c. Note that the performance and accuracy of MPT and
FDH are close to δ-MPT and δ-FDH at a small c (e.g., 1).

In summary, δ-FDH is preferred when the user has very
limited communication bandwidth and δ-MPT is preferred
when the user requires exact answers. EHI is an appropriate
solution when the data owner specifies a large δ (and c) for
privacy guarantee and the user requires exact answers.
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Fig. 12. Effect of order c, on GFC data

6 CONCLUSIONS

We proposed similarity search techniques for sensitive metric
data, e.g., bioinformatics data, that enable outsourcing of such
search. Existing solutions either offer query efficiency at no
privacy, or they offer complete data privacy while sacrificing
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query efficiency. We introduce approaches that shift search
functionality to the server. The proposed Metric Preserving
Transformation (MPT) stores relative distance information at
the server with respect to a private set of anchor objects. This
method guarantees correctness of the final search result, but
at the cost of two rounds of communication. The proposed
Flexible Distance-based Hashing (FDH) methods finishes in
just a single round of communication, but does not guarantee
retrieval of the exact result. The experimental evaluation shows
that the approximation is very close to the exact result. Both
MPT and FDH are extended to satisfy the δ-gap privacy
guarantee. We demonstrate their efficiency and privacy on
synthetic and real-world data.
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[18] H. Hacigümüs, S. Mehrotra, and B. R. Iyer. Providing Database as a
Service. In ICDE, pages 29–40, 2002.

[19] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What Is the Nearest
Neighbor in High Dimensional Spaces? In VLDB, pages 506–515, 2000.

[20] G. R. Hjaltason and H. Samet. Index-Driven Similarity Search in Metric
Spaces. TODS, 28(4):517–580, 2003.

[21] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Z. 0003. iDistance:
An Adaptive B+-Tree Based Indexing Method for Nearest Neighbor
Search. TODS, 30(2):364–397, 2005.

[22] C. T. Jr., A. J. M. Traina, B. Seeger, and C. Faloutsos. Slim-Trees:
High Performance Metric Trees Minimizing Overlap Between Nodes.
In EDBT, pages 51–65, 2000.

[23] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the Privacy
Preserving Properties of Random Data Perturbation Techniques. In
ICDM, pages 99–106, 2003.

[24] A. Khoshgozaran and C. Shahabi. Blind Evaluation of Nearest Neighbor
Queries Using Space Transformation to Preserve Location Privacy. In
SSTD, pages 239–257, 2007.

[25] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian Multidi-
mensional K-Anonymity. In ICDE, page 25, 2006.

[26] T. Seidl and H. P. Kriegel. Optimal Multi-step k-Nearest Neighbor
Search. In SIGMOD, pages 154–165, 1998.

[27] L. Sweeney. k-Anonymity: A Model for Protecting Privacy. IJUFKS,
10(5):557–570, 2002.

[28] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis. Secure k-NN
Computation on Encrypted Databases. In SIGMOD, pages 139–152,
2009.

[29] P. Yianilos. Data Structures and Algorithms for Nearest Neighbor Search
in General Metric Spaces. In SODA, pages 311–321, 1993.

[30] M. L. Yiu, I. Assent, C. S. Jensen, and P. Kalnis. Outsourced Similarity
Search on Metric Data Assets. DB Technical Report TR-28, Aalborg
University, 2010.

[31] M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis. Outsourcing Search
Services on Private Spatial Data. In ICDE, pages 1140–1143, 2009.



15

Man Lung Yiu received the bachelors degree
in computer engineering and the PhD degree in
computer science from the University of Hong
Kong in 2002 and 2006, respectively. Prior to his
current post, he worked at Aalborg University for
three years starting in the Fall of 2006. He is
now an assistant professor in the Department
of Computing, Hong Kong Polytechnic Univer-
sity. His research focuses on the management
of complex data, in particular query processing
topics on spatiotemporal data and multidimen-

sional data.

Ira Assent received her Master’s degree and
her PhD (with distinction) in computer science
from RWTH Aachen University, Germany, in
2003 and 2008, respectively. In 2009, she was
awarded the BTW Dissertationspreis for her dis-
sertation by the database section of the German
computer society. She is currently an assistant
professor in the department of computer sci-
ence at Aarhus University, Denmark. Prior to
joining Aarhus University, she was an assistant
professor at Aalborg University, Denmark. Her

research interests are in databases with a special focus on efficient
algorithms for similarity search and data mining.

Christian S. Jensen, Ph.D., Dr.Techn., is a
Professor of Computer Science at Aarhus Uni-
versity, Denmark, and a part-time Professor at
Aalborg University, Denmark. From September
2008 to August 2009, he was on sabbatical at
Google Inc., Mountain View. He has previously
been on several sabbaticals at University of Ari-
zona. His research concerns data management
and spans semantics, modeling, indexing, and
query and update processing. During the past
decade, his focus has been on spatio-temporal

data management. He is an IEEE Fellow, a member of Royal Danish
Academy of Sciences and Letters, the Danish Danish Academy of
Technical Sciences and the EDBT Endowment, and a trustee emeritus
of the VLDB Endowment. In 2001 and 2002, he received Ib Henriksen’s
Research Award for his research in mainly temporal data management
and Telenor’s Nordic Research Award for his research in mobile services
and data management. He is vice president of ACM SIGMOD. He is
an editor-in-chief of the VLDB Journal and has served on the editorial
boards of ACM TODS, IEEE TKDE, and the IEEE Data Engineering
Bulletin. He was PC chair or co-chair for STDM 1999, SSTD 2001, EDBT
2002, VLDB 2005, MobiDE 2006, MDM 2007, TIME 2008, and DMSN
2008. He will be PC chair of ACM SIGSPATIAL GIS 2011.

Panos Kalnis is associate professor in the Di-
vision of Mathematical and Computer Sciences
and Engineering at the King Abdullah Univer-
sity of Science and Technology (KAUST). Prior
to joining KAUST, he was assistant professor
in the Department of Computer Science, Na-
tional University of Singapore (NUS). In the
past he was involved in the designing and test-
ing of VLSI chips at the Computer Technology
Institute, Greece. He also worked in several
companies on database designing, e-commerce

projects and web applications. Panos received his Diploma in Computer
Engineering from the Computer Engineering and Informatics Dept.,
University of Patras, Greece, and his PhD from the Computer Science
Dept., Hong Kong UST. In 2009 he was on sabbatical in Stanford
University. His research interests include Database Outsourcing and
Cloud Computing, Mobile Computing, Peer-to-Peer systems, OLAP,
Data Warehouses, Spatial-Temporal and High-dimensional Databases,
GIS, Security - Privacy - Anonymity.


