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Table 1. GPU-based hash table category

Solution GPU-based Lookup probe Lookup
category hash table guarantee throughput

Separate chaining SlabList [14] no low

Open addressing WarpCore [40] no medium

Cuckoo hashing DyCuckoo [46] O(1) medium

Perfect hashing Our GPH 1 high

1 Introduction

A hash table is a fundamental data structure in many data-intensive applications. In particular, it is
widely used in key-value stores, e.g., Redis [10], Memcached [31], and MegaKV [55]. Besides, hash
tables are core components of hash join algorithms [12, 25, 35] in relational database management
systems (RDBMS).

In general, the hash table supports lookup, insert, and delete operations on key-value pairs. The
workloads of the hash tables in the data-intensive applications are typically read-intensive [22–24],
i.e., these workloads have a large proportion of lookup requests. Hence, many prior studies [24, 27,
32, 45, 50, 54] accelerate the lookup performance of hash tables by utilizing various techniques,
e.g., guaranteeing the number of probes for each lookup operation, in CPUs. However, the data
access pattern of different lookup operations in a hash table is random as the lookup keys are quite
different. As a result, the lookup throughput of the hash table is limited by the memory bandwidth
of the CPUs [55].

Consequently, exploiting the high memory bandwidth and large parallelism degree of Graphics
Processing Units (GPUs) to accelerate the performance of hash tables has been studied [11, 22, 39, 43,
46, 55] in the literature. However, with the well-known GPU characteristics, the lookup performance
of these GPU-based hash tables still varies significantly as their hash collision resolutionmechanisms
are different. In particular, the hash collision resolution mechanism of these GPU-based hash tables
can be classified into 4 categories. We summarize each category with its representative approach
in Table 1.

(I) Separate Chaining. The GPU-based hash tables [14, 47] in this category employ linked lists
to store the values with the same hash key. Thus, they can dynamically allocate space for the
key-value pairs to resolve hash collisions. SlabList [14] is a representative approach in this category.
Obviously, it does not offer 𝑂 (1) probe guarantee as the length of the linked list can be arbitrarily
large, which could result in a low lookup throughput.

(II) Open Addressing. It uses alternative entries to store the values when the hash collision
occurs [39, 40, 42]. WarpCore [40] is the state-of-art GPU-based hash table in this category. It also
does not guarantee 𝑂 (1) probes for every lookup operation as it may access a series of alternative
entries. In general, its lookup throughput is slightly better, but could still suffer from a large number
of probes on a series of alternative entries.

(III) Cuckoo Hashing. It is a special type of GPU-based hash table in the open addressing
category as it employs eviction chain insert algorithm to guarantee 𝑂 (1) probes for every lookup
operation. CUDPP [11] and DyCuckoo [46] are widely used approaches in this category. Their
lookup throughput is generally better as they guarantee 𝑂 (1) probes for each lookup operation.

(IV) Perfect Hashing. It guarantees that each lookup operation requires only 1 probe due to the
carefully designed hash function, which is widely used on CPUs [24, 27, 32, 54]. However, to the
best of our knowledge, there is no GPU-based implementation for workloads with dynamic updates
(e.g., a small proportion of insert and delete operations on GPU).
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Even though existing GPU-based hash tables could be qualitatively classified based on the lookup
throughput as these mechanisms offer different lookup probe guarantees, it is challenging to
compare the existing GPU-based hash tables quantitatively as the actual lookup performance is
determined by: (i) the practical probing cost of each GPU-based hash table and (ii) the utilization of
the characteristics of GPU architecture in each of them. Thus, it motivates us to propose an efficient
and general lookup performance analysis model for GPU-based hash tables, which takes both (i)
and (ii) into account w.r.t. the end-to-end lookup throughput. There is still a lack of a GPU-based
hash table lookup performance model in the existing research that meets the above criteria.
In this work, we devise an effective-and-generic lookup performance analysis model for GPU-

based hash tables. It effectively quantifies the characteristics of GPU architectures (e.g., parallelism
degree, memory coalescing) and the lookup probing cost of various GPU-based hash tables by the
measurable metrics on GPU. Our proposed model not only can accurately and uniformly analyze
the practical lookup performance of GPU-based hash tables, but also can be used to guide the
design of novel GPU-based hash tables.

Hence, we further analyze existing GPU-based hash tables with our proposed model. Inspired by
the observations and conclusions from the analyzed results, we devise GPH, which consists of the
lookup kernel and the insert kernel, and achieves the highest lookup throughput among all these
GPU-based hash tables. In particular, ourGPH follows the perfect hashing scheme, which guarantees
exactly one probe for each lookup operation (see the last row in Table 1). Since it is not trivial
to adapt the CPU perfect hashing tables to GPU as they lack optimized GPU resource utilization
and dynamic updates, we propose a new GPU-based perfect hashing schema in GPH to address
these challenges. It maximizes the active warps in GPU for parallel lookup operation execution.
In addition, we introduce Bucket Requester, a module in GPH lookup kernel, which utilizes the
vectorization and instruction-level parallelism techniques to efficiently request buckets in global
memory. GPH also devises the insert kernel to insert key-value pairs and resolve bucket overflow
in parallel on GPU to support dynamic updates, which cannot be done by existing GPU-based
perfect hashing approaches.
In summary, the technical contributions of this work are:

• We propose an effective-and-generic lookup performance analysis model with insightful obser-
vations on the results of micro-benchmark experiments, which reveals the lookup performance
bottleneck of existing GPU-based hash tables and sheds light on improving them by devising
novel GPU-based hash tables.

• We proposeGPH, a novel GPU-based hash table, to improve the lookup performance by adapting
the perfect hashing scheme. We also devise the insert kernel to enable parallel insertions in
GPH. To the best of our knowledge, this is the first time such functionality has been supported
by GPU-based hash tables in the perfect hashing category.

• We conduct extensive experiments on both synthetic and real-world datasets to demonstrate
the superiority of GPH. GPH outperforms existing GPU-based hash tables in various cases and
achieves 1.70× to 2.78× faster in lookup throughput w.r.t. the state-of-the-art GPU-based hash
tables.

The rest of this paper is organized as follows. Section 2 provides the preliminaries of hash
tables and elaborates on the representatives of GPU-based hash tables. Section 3 conducts the
micro-benchmark on three GPU-based hash tables and proposes the lookup performance analysis
model. Section 4 provides the overview of our proposed GPU-based hash table GPH. Section 5
elaborates on the design of GPH lookup kernel and highlights its key techniques to improve the
performance. Section 6 discusses the GPH insert kernel. Section 7 verifies the efficiency of our
proposed method, GPH, by extensive experiments, and Section 8 concludes this work.
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2 Preliminaries

In this section, we first introduce the definition of hash table in Section 2.1, and then elaborate on
the lookup schemes of different GPU-based hash table variants in Section 2.2.

2.1 Hash Table

A hash table is a fundamental data structure to store key-value pairs. For every key-value pair
(𝑘 , 𝑣), 𝑘 is the key and 𝑣 is the corresponding value or a reference to the value. Typically, the hash
table is implemented as an array of entries. Each entry could be a slot or bucket. Specifically, a slot
can store a (𝑘 , 𝑣) pair, and a bucket contains multiple consecutive slots. If the table has𝑚 entries, it
employs a hash function H : 𝐾 → {0, . . . ,𝑚 − 1} to map each key 𝑘 from the key domain 𝐾 to an
entry. When two keys map to the same entry, i.e., H(𝑘1) = H(𝑘2), the hash collision occurs as the
underlying entry is unable to store both. The hash collision resolution mechanisms are different
in different hash tables, which we will present shortly. In general, the hash table 𝑇 supports the
following fundamental operations:

• lookup(𝑘): the lookup operation searches the given key 𝑘 in the hash table and returns 𝑣 if the
pair (𝑘 , 𝑣) is in 𝑇 , or ∅ otherwise.

• insert(𝑘 , 𝑣): the insert operation inserts a key-value pair (𝑘 , 𝑣) into the hash table 𝑇 .

• delete(𝑘): the delete operation removes the key-value pair (𝑘 , 𝑣) associated with the given key
𝑘 from the hash table 𝑇 .

Typically, hash tables are widely used to offer fast lookup operations [15, 22], e.g., in key-value
stores [10, 30, 31, 55]. In the corresponding workload of these applications, the proportion of lookup
operations is significantly higher than insert/delete operations. For example, the workload for
the Facebook Social Graph [23] consists of 99.8% read requests and 0.2% update requests. These
read requests are the lookup operations to find the objects and associations in the graph. In this
work, we focus on the read-intensive workloads on hash tables, i.e., each workload includes a large
proportion of lookup operations and a small proportion of insert/delete operations.

2.2 GPU-based Hash Table

For hash tables on CPUs, the lookup performance is limited. For example, it is almost impossible to
support a key-value store system with a throughput of 1000 MOPS (i.e., million lookup operations
per second) on modern CPUs as each lookup operation in CPU-based hash tables triggers several
memory accesses, and each memory access takes 50 to 100 nanoseconds [55] in modern commodity
CPUs, which is obviously higher than 1 nanosecond for the targeted 1000 MOPS throughput.

Fortunately, GPUs enjoy high memory bandwidth and parallelism degree. Many studies [11, 14,
39, 40, 46] have exploited these characteristics of GPUs to accelerate the lookup performance of
hash tables in recent years. The key differences between GPU-based hash tables are underlying hash
collision resolution mechanisms. Regarding the performance of lookup operations, the number of
hash table probes for each lookup operation is determined by the utilized hash collision resolution
mechanisms. The existing GPU-based hash tables could be classified into 4 categories by considering
their underlying hash collision resolution mechanisms [44]. We employ the example in Figure 1 to
illustrate the effect of different hash tables on the number of triggered probes by lookup(5).

Separate Chaining. Separate chaining stores (𝑘 , 𝑣) at entry H(𝑘), as shown in Figure 1(a). To
resolve the hash collision, each entry points to the head of a linked list. Each node of the linked list
stores all the key-value pairs sharing the same H(𝑘). SlabList [14] is a representative GPU-based
hash table in this category. Figures 1(a) (i) and (ii) show the positive and negative lookup in this
category, respectively. Moreover, separate chaining is well-suited for dynamic resizing of the hash
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Fig. 1. Lookup probes of GPU-based hash tables

table as the size of the linked list can be extended. However, it does not provide an upper limit to
the length of each list, thus the lookup probes cannot be guaranteed to be 𝑂 (1).

Open Addressing. Instead of allocating (𝑘 , 𝑣) in the linked list, open addressing uses alternative
entries to resolve hash collisions. For lookup(k) operation, the entry H(𝑘) is initially probed. If
entry H(𝑘) is full, a series of alternative entries that store (𝑘 , 𝑣) will be probed. For example,
the linear probing method [20, 51] will probe the alternative entriesH(𝑘) + 1,H(𝑘) + 2, . . . until
either (𝑘 , 𝑣) is found (a.k.a., positive lookup) or a vacant entry is found (a.k.a., negative lookup),
see the corresponding examples in Figures 1(b) (i) and (ii), respectively. Stadium Hashing [42]
utilizes the double hashing method. When the entryH(𝑘) is full, the alternative entriesH(𝑘) + 1 ·
H′(𝑘),H(𝑘) + 2 · H′(𝑘), . . . will be probed. H′ is an additional hash function. WarpCore [39, 40]
employs a combination of linear probing and double hashing. Obviously, these hash tables do not
guarantee 𝑂 (1) probes for every lookup operation since it may access other alternative entries.

Cuckoo Hashing. Cuckoo hashing is a special case of open addressing that guarantees the number
of alternative entries is 𝑂 (1). In particular, it employs an eviction chain insert algorithm to resolve
hash collisions and ensures that (𝑘 , 𝑣) can only reside within a configuration number of alternative
entries. As shown in the examples in both Figures 1(c) (i) and (ii), lookup(k) only probes 2 entries,
i.e., H(𝑘) and H′(𝑘). It is guaranteed that no other entries will be probed. Cuckoo hashing has
become a widely used hash table variant. It has gained considerable attention in GPU-based hash
tables [11, 22, 46, 55] as it offers a strong guarantee on the number of the lookup probes, i.e., 𝑂 (1).
However, the number of lookup probes could be more than 1, e.g., the negative lookup operation in
Figure 1(c)(ii) probed 2 entries.

Perfect Hashing. It ensures that only one entry H(𝑘) can store (𝑘 , 𝑣) with a carefully designed
hash function H . Hence, every lookup operation (both positive and negative) probes exactly 1
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entry, as illustrated in Figures 1(d) (i) and (ii). Generally, perfect hashing boosts lookup speed
but costs more to update. It has been widely studied on CPUs [18, 21, 24, 27, 29, 32]. For example,
DPH [29] is a variant of the CPU-based hash table with perfect hashing scheme, which supports
dynamic data updates via a two-level hash scheme to guarantee exactly one lookup probe. Recently,
MapEmbed and EEPH [24, 54] attempt to support dynamic perfect hashing by maintaining small
auxiliary structures in fast memory to update the perfect hash function for accessing data in slow
memory. However, none of these techniques on CPUs can be directly adapted to GPUs and take
full utilization of the high memory bandwidth and parallelism degree. PHOBIC [37] contributes
a GPU implementation to accelerate the minimal perfect hash function construction and uses it
only on the CPU side. PSH [43] is an implementation of perfect hashing scheme on GPU, and
its hash function H is pre-computed for the given static dataset to guarantee there is no hash
collision. However, it only supports lookup operations on GPU and does not support insert and
delete operations on GPU. It needs to reconstruct the PSH hash table on CPU to handle updates.

2.3 Other Relevant Studies

There are also many other techniques [35, 42, 55, 56] that have been proposed in the literature
for various applications, using hash tables as building blocks (e.g., building key-value stores and
hash join algorithms). To support string keys on GPU-based hash tables, MegaKV [55] offloads the
variable-length string keys to CPUs and uses a signature algorithm, the cyclic redundancy check
(CRC32), to obtain short fixed-size signatures of string keys. The key signatures will be loaded to
GPU memory over PCIe. The polynomial rolling hash function, introduced in [34], is well-suited for
GPUs as each character in the string can be processed independently. GPH focuses on hash table
operations with fixed-size key-value pairs (e.g., 8 bytes) on the GPU side and leaves the support for
other data types (e.g., strings, objects) as future work.

3 Performance Modelling

In this section, we first introduce the hash table lookup processing procedure on GPU in Section 3.1,
then conduct a micro-benchmark to evaluate the performance of different GPU-based hash ta-
bles in Section 3.2, next conclude the insightful observations from the measured metrics of the
micro-benchmark experiments in Section 3.3, and last propose an effective-and-generic lookup
performance analysis model of GPU-based hash tables in Section 3.4.

3.1 Lookup Processing on GPU

As elaborated in Section 2, the GPU-based hash tables utilize different hash collision resolution
mechanisms. However, the lookup operation processing procedure of them is similar as the key idea
is exploiting the high memory bandwidth and large parallelism degree of GPU. Figure 2 depicts the
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hash table lookup operation processing procedure on GPU. The hash table entries (i.e., buckets) are
stored in the global memory of the GPU, and the bucket capacity (i.e., number of slots in a bucket) of
different GPU-based hash tables are different. The thread blocks on all streaming multi-processors
(SMs) process a subset of lookup operations in a batch. For example, all 80 SMs on NVIDIA V100S
GPU will be used to process a batch of lookup operations. Each SM of a GPU contains on-chip
shared memory and a fixed number of warps (e.g., it is 64 in NVIDIA V100S). All these warps in
the same SM process lookup operations in parallel. Warp is the basic execution unit of GPU. Each
warp has 32 threads and threads in the same warp execute the same instruction simultaneously,
i.e., single-instruction multiple-threads (SIMT) microarchitecture of GPUs. To further improve
the utilization of GPU by exploiting its memory coalescing feature, existing GPU-based hash
tables [40, 46, 55] group several neighboring threads in the same warp into a cooperative group (see
the middle of Figure 2) as the adjacent threads in the same cooperative group access contiguous
locations in global memory, which is more efficient than performing random access. The threads
in a cooperative group process the same lookup operation and access the different slots of the
target hash table buckets in global memory. All the above GPU-based hash tables allocate different
numbers of threads in their cooperative group to achieve good performance.

3.2 Micro-benchmark of GPU-based Hash Table

Until now, we distinguish the GPU-based hash tables by considering their underlying hash collision
resolution mechanisms and highlighting their different settings (e.g., cooperative group size) during
lookup operations. However, it is still unable to analyze the end-to-end lookup performance of
different GPU-based hash tables. In other words, it does not have a fair performance comparison
among these alternatives. In order to analyze the advantages and disadvantages of each GPU-based
hash table, we conduct a micro-benchmark on them.

Micro-benchmark Setting. All experiments are conducted on the same machine with Intel(R)
Xeon(R) Gold 6230R CPU @ 2.10GHz and an NVIDIA Tesla V100S GPU. The CUDA version is 12.5.
Each table is built with 1.5 GB of global memory, and we insert 100 million randomly generated
8-byte packed key-value pairs. We perform 200 million lookup operations on each table, and the
ratio of both positive and negative lookups is 50%. We use NVIDIA Nsight Compute CLI [9] to
collect kernel execution metrics on GPU. The evaluated GPU-based hash tables use the default
settings in their papers or codes.

Evaluated GPU-based Hash Tables.We evaluate three representative GPU-based hash tables:
WarpCore [40], DyCuckoo [46] and CUDPP [11]. In particular,WarpCore resolves hash collision
by the open addressing method. It is the state-of-the-art GPU-based hash table in this category [36].
Its cooperative group has 8 threads and accesses a bucket of 8 slots. Both DyCuckoo and CUDPP

utilize cuckoo hashing method to address the hash collision. The cooperative group of DyCuckoo
has 16 threads and accesses a bucket of 16 slots. CUDPP is the most widely used GPU-based hash
table. Each thread independently accesses hash table entries with a single slot. In other words, each
cooperative group of CUDPP only has 1 thread. Since separate chaining [14, 47] is designed to
support efficient dynamic update operations rather than fast lookup operations (e.g., it works well
for write-intensive workloads), its lookup performance is worse than WarpCore and DyCuckoo, as
evaluated in [40] and [46]. We omit it in this work. We omit PSH [43] from the perfect hashing
category as it only works on static data. We include our proposal GPH, a GPU-based dynamic
perfect hashing table, in the micro-benchmark. We will introduce the technical details of our GPH
shortly. The cooperative group of GPH has 4 threads and accesses a bucket of 16 slots.

Measured ExecutionMetrics.During the experiments, we collect the following execution metrics
for analysis.
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Table 2. Measured metrics of the GPU-based hash tables

Category
AO EI CPI Time
(%) (109 inst.) (cycles/inst.) (ms)

WarpCore Open Addressing 70.89 9.36 22.58 45.31

DyCuckoo Cuckoo Hashing 86.87 18.69 24.78 88.10

CUDPP Cuckoo Hashing 92.37 0.73 445.38 55.18

Our GPH Perfect Hashing 98.24 6.43 23.16 22.93

• Achieved Occupancy (𝐴𝑂) [3]: it measures the percentage of active warps in each SM.

• Executed Instructions (𝐸𝐼 ) [8]: it is the total number of executed warp instructions.

• Cycles Per Instruction (𝐶𝑃𝐼 ) [7]: it shows the average cycles to execute a warp instruction.

3.3 Insightful Observations

The measured metrics and execution time cost are shown in Table 2. In this section, we summarize
the insightful observations from the table.

Observation I: 𝐴𝑂 of WarpCore is obviously lower than that of DyCuckoo and CUDPP.

As shown in Table 2, 𝐴𝑂 of WarpCore, DyCuckoo and CUDPP are 70.89%, 86.87%, and 92.37%,
respectively. Moreover, the measured 𝐴𝑂 metric confirms that not all warps are active in these
existing GPU-based hash tables when it is processing lookup operations.

Analysis of Observation I. The core reason for low 𝐴𝑂 is that some of the warps will be inactive
after they complete their workload and wait for others. It is known as the tail effect [3]. In the
evaluated existing GPU-based hash tables, each lookup operation can probe a different number of
hash table entries. For example, the open addressing method WarpCore does not guarantee 𝑂 (1)
probes. Thus, someWarpCore warps will probe many more entries than others. As a result, 𝐴𝑂
of WarpCore is the lowest (i.e., 70.89%) among the evaluated GPU-based hash tables. The cuckoo
hashing methods DyCuckoo and CUDPP provide 𝑂 (1) guarantee on the number of lookup probes.
Hence,𝐴𝑂 of them are relatively high. Nevertheless, both DyCuckoo and CUDPP do not guarantee
a consistent number of probes, e.g., DyCuckoo needs one or two lookup probes for each lookup
operation.
Takeaway: 𝐴𝑂 can be improved by guaranteeing the consistent number of lookup probes in the

GPU-based hash table.

Observation II: 𝐸𝐼 of existing GPU-based hash tables are quite different, but the processed

lookup operations are the same. Specifically, the tested micro-benchmark provides the same
workload for these three existing GPU-based hash tables, i.e., 200 million lookup operations.
However, 𝐸𝐼 of existing GPU-based hash tables ranges from 0.73 billion to 18.69 billion instructions.

Analysis of Observation II. For a given lookup workload, the total number of lookup probes is
fixed for each GPU-based hash table. As explained in Section 3.1, every lookup operation in the
batch is processed by a cooperative group. With the single instruction multiple threads (SIMT)
characteristic of GPU, 𝐸𝐼 is determined by the number of cooperative groups in a warp, i.e., the
more groups in a warp, the less 𝐸𝐼 . For example, DyCuckoo has 2 cooperative groups in a warp, and
it executes 18.69 billion instructions (i.e., 𝐸𝐼 ) for the workload in the micro-benchmark. However,
CUDPP only executes 0.73 billion instructions for the same workload as it has 32 cooperative
groups in a warp, e.g., each thread in a warp is working independently.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 165. Publication date: June 2025.



GPH: An Efficient and Effective Perfect Hashing Scheme for GPU Architectures 165:9

Takeaway: 𝐸𝐼 of the GPU-based hash table for a given workload is determined by the number of

cooperative groups in a warp. The more groups in a warp, the less 𝐸𝐼 .

Observation III: 𝐶𝑃𝐼 of CUDPP is significantly larger than that of WarpCore and Dy-

Cuckoo. In the GPU-based hash table,𝐶𝑃𝐼 is a metric that reflects the memory access latency [16].
As shown in Table 2, 𝐶𝑃𝐼 of CUDPP is high, i.e., 445.38 cycles per instruction. However, 𝐶𝑃𝐼 of
WarpCore and DyCuckoo are only 22.58 and 24.78 cycles per instruction, respectively.

Analysis of Observation III. The memory access latency of different GPU-based hash tables
relies on the utilization degree of memory coalescing characteristic of GPU. The latency of CUDPP
is the largest (i.e., the highest measured 𝐶𝑃𝐼 ) as the hash table entries in it are accessed in a
random manner. However,WarpCore and DyCuckoo exploit memory coalescing techniques by
using threads in cooperative groups to access the entries in consecutive memory. Thus, 𝐶𝑃𝐼 of
WarpCore and DyCuckoo is significantly smaller than that of CUDPP.
Takeaway: Exploiting memory coalescing techniques reduces 𝐶𝑃𝐼 of GPU-based hash tables.

3.4 Lookup Performance Analysis Model

Even though we have three insightful observations about the micro-benchmark experiments on
existing GPU-based hash tables, they cannot directly guide us to design a better GPU-based hash
table. The core reason is that there is still a lack of a performance model between these measured
metrics and end-to-end time cost. For example, 𝐴𝑂 of WarpCore is the lowest, but its end-to-end
time cost is the best. Moreover, 𝐸𝐼 of CUDPP is the smallest, but 𝐶𝑃𝐼 of CUDPP is the largest.
Inspired by previous GPU performance analysis work [38], we propose the lookup performance
analysis model of GPU-based hash table, see Equation (1), with these measured metrics, i.e., 𝐴𝑂 , 𝐸𝐼 ,
and 𝐶𝑃𝐼 . It is an effective-and-generic model to (i) analyze the lookup performance bottleneck of
GPU-based hash tables, and (ii) shed light on how researchers can improve GPU-based hash table
performance by devising advanced techniques.

𝑇𝑖𝑚𝑒 ∝
𝐸𝐼 ·𝐶𝑃𝐼

𝐴𝑂
(1)

We next elaborate on the correctness of our proposed performance analysis model in Equation (1).
The time cost of lookup operations is negatively correlated with 𝐴𝑂 as 𝐴𝑂 is a warp parallelism
degree indicator, which means the number of active warps during the lookup batch processing.
Moreover, 𝐸𝐼 · 𝐶𝑃𝐼 is the total cycles we need to process the workload, which is correlated to
the end-to-end time cost. Thus, calculating the exact time cost requires considering both 𝐸𝐼 · 𝐶𝑃𝐼
(i.e., the total cycles) and 𝐴𝑂 (i.e., the warp parallelism degree) together. To further verify this
conclusion, we compute the Pearson correlation coefficient [49] between 𝑇𝑖𝑚𝑒 · 𝐴𝑂 and 𝐸𝐼 · 𝐶𝑃𝐼
via the measured metrics in Table 2. The result is 0.9993, which shows there is a strong linear
relationship between these two values. As depicted in Figure 3, the plotted existing GPU-based
hash tables lie around the linear line, which confirms the correctness of our proposed lookup
performance analysis model in Equation (1).

In this work, we propose a novel GPU-based hash table GPH, which (i) improves 𝐴𝑂 by guaran-
teeing a consistent lookup probe for each lookup operation and (ii) reduces 𝐸𝐼 · 𝐶𝑃𝐼 by proposing
vectorization and instruction-level parallelism techniques. We will introduce the detailed technical
contributions of GPH shortly. As shown in the last row of Table 2, 𝐴𝑂 of our GPH is the highest
(98.24%) among all alternative approaches. Its 𝐸𝐼 · 𝐶𝑃𝐼 is 148.91 billion, which is smaller than
the 211.24 billion, 463.13 billion, and 325.91 billion values of WarpCore, DyCuckoo, and CUDPP,
respectively. Thus, our proposal GPH has the smallest time cost (22.93ms) among all GPU-based
hash tables in the micro-benchmark.
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Fig. 3. The measured metrics and time cost regression

4 Our Proposal GPH

In this section, we introduce the architecture overview of GPH in Section 4.1, then present the
data structure of GPH in Section 4.2.

4.1 GPH Architecture Overview

The first design choice of GPH is to choose a proper hash collision resolution mechanism. With
Takeaway of Observation I and the lookup performance analysis model in Section 3, there is no
doubt that the perfect hashing will be the answer. The key reason is that it guarantees exactly 1
probe for each lookup operation, thus resulting in high 𝐴𝑂 . However, it is not trivial to design a
GPU-based hash table with perfect hashing scheme as (i) the state-of-the-art GPU-based hash table
in perfect hashing category (e.g., PSH [43]) does not support dynamic updates; and (ii) adapting
the existing CPU-based perfect hash tables [29, 32] to GPU is also challenging as they were not
designed to fully utilize the characteristics (e.g., massive parallelism, memory hierarchy) of GPU.
In this work, we propose GPH. To the best of our knowledge, it is the first GPU-based perfect hash
table that supports both lookup and insert operations.
Figure 4 depicts the architecture overview of GPH, which consists of two major kernels: the

lookup kernel and the insert kernel. Specifically, the lookup kernel of GPH processes batched
lookup operations via Lookup Groups. Conceptually, it is equivalent to the cooperative groups
in Figure 2. The memory access in each lookup operation consists of (i) reading the Cell Index in
the shared memory of SM, and (ii) probing a hash table bucket in global memory. To improve the
performance of the lookup kernel, we introduce a Bucket Requestermodule using vectorization and
instruction-level parallelism techniques. Supporting dynamic updates in GPH is one of the major
technical contributions of this work, as none of the existing GPU-based perfect hash tables support
it. Specifically, we devise the insert kernel in GPH, which organizes threads into Insert Groups

as basic units for insertion of key-value (𝑘 , 𝑣) pairs. The insert kernel of GPH divides the insert
operations into two phases: (i) the Saturation Fill Phase, which uses a lock-free method to insert
key-value pairs into GPH if it does not incur bucket overflow; (ii) the Refinement Phase, which
introduces Extended Move to handle the bucket overflow caused by key-value pair insertions. In
addition, we create aWorkspace in shared memory to cache hash table buckets, reducing expensive
global memory probes.
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4.2 GPH Data Structure

As depicted in Figure 5, the data structure of GPH consists of (i) Cell Index and (ii) Hash Table

Buckets. Cell Index is a cell array of size 𝐿, which is stored in GPU shared memory. Each cell in
it stores a (Mapping Φ, Offset Δ) pair, which is the core of perfect hashing scheme. Hash Table

Buckets are stored in GPU global memory, and GPH guarantees each lookup only incurs exactly 1
probe, i.e., accesses the global memory once. In particular, GPH has 𝑁 Hash Table Buckets, each of
which has𝑀 key-value slots. For each key or key-value pair to be looked up or inserted in GPH,
it first maps to the cell 𝑖 with (Φ𝑖 , Δ𝑖 ) in Cell Index via the hash function H𝑐 (𝑘). Next, the hash
function H𝑣 takes the searched key 𝑘 and Mapping Φ𝑖 as input to compute the Virtual Bucket id 𝑗 .
The value range of 𝑗 and Δ𝑖 is in [0,𝑅 − 1], which means there are 𝑅 Virtual Buckets in a cell. Last,

the Hash Table Bucket id 𝑉 𝑗
𝑖 of key 𝑘 is computed via the hash functionH𝑏 with Cell id 𝑖 , Virtual

Bucket id 𝑗 ,Mapping Φ𝑖 , and Offset Δ𝑖 .
GPH is the first perfect hash table on GPU that supports both insert and lookup operations. The

novel techniques and the advantages of GPH can be summarized in three key aspects: (i) it utilizes
the fast shared memory for Cell Index and slow global memory for Hash Table Buckets on GPU
to improve the lookup performance of GPH; (ii) it first proposes the (Mapping Φ, Offset Δ) pair
in Cell Index to guarantee exactly 1 probe for each lookup and support dynamic updates in GPH;
(iii) it introduces Virtual Buckets to handle the bucket overflow during key-value pair insertion.
In particular, each cell maps to 𝑅 Virtual Buckets, and it only needs to relocate the key-value
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pairs within the 𝑅 Virtual Buckets whenever bucket overflow occurs. In the following sections, we
explain how to utilize these components to implement the lookup and insert kernels of GPH.

5 Lookup Kernel in GPH

In this section, we introduce the GPU lookup kernel of GPH. Section 5.1 describes the processing
procedure of lookup kernel in GPH. Section 5.2 elaborates on the design of lookup groups and the
Bucket Requester.

5.1 The Processing Procedure of Lookup Kernel

In the GPH lookup kernel, GPH organizes several consecutive threads in a warp to form a Lookup
Group 𝑔 to process the same lookup operation. The Lookup Group concept in GPH is similar to the
cooperative group in existing GPU-based hash tables, and we will introduce the difference shortly.
We illustrate the processing procedure of lookup kernel in GPH by the running example lookup(8)
in Figure 6.

• First, it computes Cell id 𝑖 and accesses 𝐶𝐸𝐿𝐿[𝑖]. The Cell id 𝑖 = H𝑐 (8) = 4, then it reads
Δ4 = 2 and Φ4 = 0 in 𝐶𝐸𝐿𝐿[4].

• Second, it computes Virtual Bucket id 𝑗 . The Virtual Bucket id of the searched key 8 is
computed by 𝑗 = H𝑣 (8, 0) = 2.

• Third, it computes the Hash Table Bucket id 𝑉 𝑗
𝑖 . With Cell id 4, Virtual Bucket id 2, and

(MappingΦ4,OffsetΔ4), the correspondingHash Table Bucket id is computed via𝑉 2
4 = H𝑏 (4, (2+

2) mod 4, 0) = 3.

• Last, it accesses and checks 𝐵 [𝑉 𝑗
𝑖 ] for the searched key. 𝐵 [3] is accessed by the Bucket

Requester module in GPH and returns (8,3) in 𝐵 [3] as the result of lookup(8) .

As stated in Section 4.2, GPH guarantees that lookup(𝑘) only probes one Hash Table Bucket,

i.e., 𝐵 [𝑉 𝑗
𝑖 ], to determine the existence of (𝑘 , 𝑣) in the hash table. In other words, the key-value

pair (𝑘 , 𝑣) can only be in 𝐵 [𝑉 𝑗
𝑖 ], otherwise it does not exist in the hash table. This is the reason

that GPH is categorized as perfect hashing and achieves high 𝐴𝑂 (see Takeaway of Observation I).
However, accessing only one Hash Table Bucket for each lookup operation is still the most costly
step in lookup kernel, because it includes accessing𝑀 slots located in the global memory of GPU.
To further accelerate this step, we introduce the Bucket Requester module in Section 5.2, which is
critical to improve the lookup performance.

5.2 Efficient Hash Table Bucket Access

The Hash Table Bucket access is the most expensive step in the lookup processing procedure in
GPH. As discussed in Section 3, existing GPU-based hash tables typically leverage cooperative
groups to address this challenge. The threads in a cooperative group process the same lookup
operation and access the different slots of the target hash table bucket in global memory. This
strategy facilitates efficient coalesced memory access, hence it reduces 𝐶𝑃𝐼 in Equation (1), as
Takeaway of Observation III shows.

An example of bucket request in the existing GPU-based hash table DyCuckoo is illustrated in
Figure 7(a), where lookup kernel of the DyCuckoo uses the cooperative group of 16 threads to
access a bucket of 16 slots via a warp instruction. However, there is a trade-off between the number
of cooperative groups and the number of threads in each cooperative group as the total number of
working threads in GPU is fixed. Thus, it may result in high 𝐸𝐼 , see Takeaway of Observation II.
According to our performance model, a higher 𝐸𝐼 reduces the overall performance.
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Fig. 6. GPH lookup kernel

To overcome this and minimize 𝐸𝐼 · 𝐶𝑃𝐼 (see our performance analysis model), we devise the
Bucket Requester module in GPH. The key idea of Bucket Requester is to efficiently request
more buckets via each warp instruction. In particular, the design of Bucket Requester utilizes two
techniques: vectorization and instruction-level parallelism (ILP).

Algorithm 1 Setup configuration for bucket requester

1: def setup_bucket_requester_config():
2: # max bytes requested per thread is 16 bytes
3: max_trans_bytes = 16
4: bytes_per_slot = sizeof(KV_TYPE)
5: config.slots_per_thread = M div |g|
6: # try to let each thread request full 16 bytes by regarding slots as a vector
7: config.slots_per_vector=min(max_trans_bytes div bytes_per_slot,slots_per_thread)
8: config.vectors_per_thread = config.slots_per_thread div config.slots_per_vector
9: return config

Vectorization. In the bucket request methods of existing GPU-based hash tables, each thread
typically accesses one slot, e.g., each thread accesses a slot inDyCuckoo, see in Figure 7 (a). However,
if we use fewer threads in a group to request a bucket with the same size, each thread is assigned to
access multiple slots, and this can be accelerated by exploiting the GPU vectorization technique [2].
InGPH, we utilize CUDA’s official built-in vector types [5], which can interpret multiple contiguous
slots of up to 16 bytes as a vector data type. For example, two adjacent 8-byte slots in a bucket can
be interpreted as a 16-byte ulonglong2 vector. Thus, we can interpret several adjacent slots in a
bucket as a vector, and threads can access a vector instead of a slot in a warp instruction.
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4-thread group to request a 128-byte bucket as efficiently as 16-thread group in traditional method

Algorithm 2 Bucket requester

1: def bucket_requester(B, bkt_id, config, lane):
2: # each thread requests a vector per instruction
3: V_TYPE = type of vector with config.slots_per_vector slots
4: VB = reinterpret B to be array of V_TYPE vectors
5: vectors = array of length config.vectors_per_thread in V_TYPE
6: # unroll loop
7: for i in range(config.vectors_per_thread):
8: vectors[i] = VB[bkt_id * M + config.vectors_per_thread * lane + i]
9: return vectors

To ensure that each thread accesses the maximum number of slots (i.e., 16 bytes in CUDA) in a
warp instruction, Algorithm 1 determines the configuration, i.e., the slots for each thread to access,
the slots in each vector, and the number of vectors that each thread should request. The sketch of
Bucket Requester is depicted in Algorithm 2. Lines 3 and 4 reinterpret the memory region of Hash
Table Buckets in the type of vectors. Line 5 allocates registers to hold the requested vectors. Lines 6
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Algorithm 3 Slot check

1: def slot_check(vectors, k, config, group_mask):
2: res_lane = -1
3: # split the requested vector into key-value pairs
4: slots = array of length config.slots_per_vector in KV_TYPE
5: for i in range(config.vectors_per_thread):
6: slots = split_vectors_into_kvs(vectors[i])
7: for j in range(config.slots_per_vector):
8: # ballot_sync gets bitmask of threads with key == k

10: res_mask = ballot_sync(group_mask, slots[i].key==k)
11: # ffs returns position of first set bit
12: res_lane = ffs(resMask & -resMask) - 1
13: if res_lane >= 0: break
14: if res_lane >= 0: break
15: return res_lane

to 9 request and return vectors consisting of multiple slots. The returned vectors are verified, which
are split into slots (Line 6, Algorithm 3), and the slot check is performed for the lookup answer.

Instruction-Level Parallelism (ILP). In order to keep more threads active to execute instructions,
the ILP feature of GPU allows threads not to stall after issuing memory requests but to keep
executing other instructions. The threads will only stall at the instructions depending on the
value not yet fetched from memory [53]. Thus, a thread in a GPU-based hash table does not
stall immediately after requesting the Hash Table Bucket, but only stalls at the slot check which
compares the slot value with the key. Thus, we utilize the ILP feature by issuing the memory
requests to the Hash Table Bucket as many as possible before the slot check. Our strategy is to
buffer all requested vectors and perform the slot check (Algorithm 3) at the end of the lookup
operation. Although this strategy uses more registers for buffering the requested vectors, it allows
all memory requests to be issued before any stall. Besides, we have observed that registers are
sufficient for buffering vectors in most practical cases. Thus, all memory requests of vectors will
first be issued in Algorithm 2, and then threads only stall at slot check in Algorithm 3.
Figure 7 (b) provides an example of Bucket Requester with vectorization and ILP techniques

in the lookup kernel of GPH. It shows how a lookup group of |𝑔| = 4 utilizes Bucket Requester
to request a Hash Table Bucket with 16 slots, each 8 bytes in size. The buckets are interpreted as
8 vectors, each 16 bytes in size (ulonglong2), so that each vector contains two slots. Each thread
issues requests to the two vectors before the thread stalls at any slot check. Finally, the thread
splits the requested 2 vectors into 4 slots and performs the slot check. Compared to the existing
approach that uses 16 threads per group in Figure 7(a), Bucket Requester uses only 4 threads per
group. Thus, GPH can have more groups in a warp.
In GPH, we employ Bucket Requester for efficient bucket access, which enables GPH to use

fewer threads in each lookup group to efficiently access all the slots in the bucket. We will verify
GPH can access the buckets of the same size with far less 𝐸𝐼 and similar 𝐶𝑃𝐼 compared to the
existing GPU-based hash tables in Section 7. Interestingly, the techniques we have used in Bucket

Requester are generic, and can be adapted to the existing GPU-based hash tables. We leave it as
future work as it is out of the scope of this work.

6 Insert Kernel in GPH

Supporting dynamic updates on the GPU-based perfect hash table is challenging as the one probe
property of perfect hashing is not easy to guarantee. In this section, we introduce the GPH insert
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kernel. In particular, Section 6.1 describes the insert processing procedure. Section 6.2 analyzes the
theoretical guarantee for insertion in GPH. Section 6.3 presents how to support parallel insertions
in GPH.

6.1 The Processing Procedure of Insert Kernel

The insert kernel organizes threads into the Insert Groups. To process insert(𝑘 , 𝑣), Insert Group
ℎ reads (𝑘 , 𝑣) and accesses a Hash Table Bucket 𝐵 [𝑉 𝑗

𝑖 ], which is processed as the lookup kernel

with searched key 𝑘 . If there is a vacant slot in 𝐵 [𝑉 𝑗
𝑖 ], ℎ writes (𝑘 , 𝑣) to the slot in it, which is

a Direct Insert in GPH. Otherwise, the bucket overflow occurs in the Hash Table Bucket. It is
essential to resolve the bucket overflow when it occurs as GPH guarantees exactly 1 probe for each
lookup. In particular, we devise the Extended Move in GPH to handle bucket overflow during insert
processing.

The general idea of Extended Move is to relocate the key-value pairs to other Hash Table Bucket

which has vacant slots. In the perfect hashing scheme, it is not trivial as resolving the bucket
overflow is changing the mapping from keys to buckets, which could affect all the mapped keys. To
overcome it, Extended Move relocates the key-value pairs within 𝑅 Hash Table Buckets to resolve
the bucket overflow during insert processing.
Returning to the sketch of GPH in Figure 5, Extended Move first attempts to change Offset Δ𝑖

to Δ′
𝑖 , which determines the Hash Table Bucket 𝐵 [𝑉 𝑗

𝑖

′
] via the hash functionH𝑏 . The key-value

pairs with Cell id 𝑖 will be relocated in an effort to resolve the bucket overflow. Extended Move

enumerates all possible Δ′
𝑖 to resolve the bucket overflow at Offset level as its value range is

[0,𝑅 − 1]. However, it is still possible the bucket overflow cannot be resolved at the Offset level.
Thus, Extended Move changes the value of Mapping Φ𝑖 , which first determines the new Virtual

Bucket id 𝑗 via the hash function H𝑣 , then identifies the new Hash Table Bucket 𝐵 [𝑉 𝑗
𝑖 ] via the

hash function H𝑏 . We illustrate the bucket overflow resolving procedure in Extended Move via the
example in Figure 8, as the number of Virtual Buckets in a cell is 𝑅 = 4. Bucket overflow occurs
when inserting (69, 2) into Hash Table Bucket 3 in GPH.
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• First, it attempts to change Offset. Since 𝑖 = 4 and 𝑗 = 2 for 𝑘 = 69, insert(69, 2) probes
𝐵 [𝑉 2

4 = 3], but the bucket 3 is full and bucket overflow occurs. Thus, Extended Move attempts
to change Offset Δ4 = 0 to Δ′

4 = 1.

• Second, it relocates key-value pairs with changed Offset. The key-value pair (69, 2) is
inserted intoHash Table Bucketwith id 5 via the newOffset Δ′

4 = 1. To guarantee the correctness,
all the key-valued pairs inserted with theOffset Δ4 = 0 (all colored key-value pairs inHash Table

Buckets 0, 3, 6 in 1©) will be relocated with the new Offset Δ′
4 = 1. See the colored key-value

pairs in Hash Table Buckets 3, 5, 6 in 2©). The key-value pair (1, 4) causes bucket overflow on
Hash Table Bucket 6 again. Extended Move then enumerates other possible Δ′

4, e.g. 2 and 3 as
𝑅 = 4 and 0, 1 has been enumerated. It cannot resolve the bucket overflow by changing Δ′

4 in
this example.

• Third, it attempts to change Mapping Φ𝑖 and relocates the key-value pairs. Extended

Move next attempts to change Mapping Φ4 = 0 to Φ4
′ = 1. It changes Virtual Bucket id 𝑗 for all

key-value pairs that were inserted with Φ4 in𝐶𝐸𝐿𝐿[4], e.g., key-value pair (48, 6) was originally
inserted into 𝐵 [𝑉 0

4 = 0], but now it should be inserted into 𝐵 [𝑉 2
4
′ = 4]. In this example, it is

valid to have Δ4
′ = 0 and Φ4

′ = 1 to insert (69, 2) in GPH, and Extended Move resolves bucket
overflow and terminates.

To optimize the performance of insert kernel in GPH, we reduce unnecessary memory access
by pruning invalid changes of Mapping and Offset before relocation, e.g., we skip the relocation
that must overflow (e.g., the number of key-value pairs in a bucket exceeds𝑀) or multiple Virtual

Buckets of the same cell are relocated to the same Hash Table Bucket (i.e., 𝑉 𝑗1
𝑖 = 𝑉 𝑗2

𝑖 ).

6.2 Theoretical Guarantee of Insert Kernel

Theorem 6.1 provides the theoretical guarantee to insert an arbitrary key-value pair into GPH.

Theorem 6.1. The expected relocation times of key-value pairs within 𝑅 Hash Table Buckets to

insert an arbitrary key-value pair (𝑘 , 𝑣) to GPH is 𝑂 (1
/
(1 − 𝛼)𝑅), where 𝑅 is the number of Virtual

Buckets of a cell, and 𝛼 is the load factor of GPH before (𝑘 , 𝑣) insertion.

For the sake of presentation, let us prove the above theorem in a GPH, where each Hash Table

Bucket has only one slot (i.e., 𝑀 = 1). It is the upper bound of the relocation times of GPH with
𝑀 > 1 as the key-value pairs mapped from different cells could co-exist in the same Hash Table

Bucket in GPH with𝑀 > 1.
The number of key-value pairs stored in GPH is 𝑑 = 𝛼 · 𝑁 . Now we Insert(𝑘 , 𝑣) on GPH. If it

is a Direct Insert (i.e., writing to vacant slot or overwriting an existing key), there is no overflow.
If there is an overflow, we assume that there exists a valid relocation. Then, the Extended Move

attempts to change the Φ𝑖 to insert (𝑘 , 𝑣) and resolves bucket overflow. We consider the worst case
to relocate, i.e., all 𝑅 Hash Table Buckets 𝐵 [𝑉 0

𝑖 ],𝐵 [𝑉
1
𝑖 ], . . . ,𝐵 [𝑉

𝑅−1
𝑖 ] are occupied and should be

relocated to 𝑅 vacant buckets without overflow. Let 𝑋 be the event of a successful relocation and 𝑇
be the number of relocation times until the first successful 𝑋 happens. In each relocation, the 𝑅
key-value pairs that were inserted via 𝐶𝐸𝐿𝐿[𝑖] and are stored in 𝐵 [𝑉 0

𝑖 ], . . . ,𝐵 [𝑉
𝑅−1
𝑖 ] are randomly

relocated to 𝑅 buckets in a total of 𝑁 buckets with 𝑑 full buckets. Thus, the probability of 𝑋 is

𝑃𝑟 (𝑋 ) =
(𝑁−𝑑

𝑅

) / (𝑁
𝑅

)
. Then, 𝐸 (𝑇 ) =

∑∞
𝑙=1 𝑙 · 𝑃𝑟 (𝑋 ) (1 − 𝑃𝑟 (𝑋 ))

𝑙−1 = 1
/
𝑃𝑟 (𝑋 ) as each attempt is

independent and follows a geometric distribution. Hence:
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𝐸 (𝑇 ) =

(𝑁
𝑅

)
(𝑁−𝑑

𝑅

) =
∏

0≤ 𝑗<𝑅

(1 +
𝑑

𝑁 − 𝑑 − 𝑗
) ≤ (1 +

𝑑

𝑁 − 𝑑 − 𝑅
)𝑅 (2)

Since 𝑁 = 𝑑
𝛼 , 𝑑 � 𝑅, and 0 ≤ 𝛼 ≤ 1, we have

𝐸 (𝑇 ) ≤ (1 +
𝑑

𝑁 − 𝑑 − 𝑅
)𝑅 = (1 +

𝛼 · 𝑑

𝑑 − 𝛼 · (𝑑 + 𝑅)
)𝑅 ≈ (

1

1 − 𝛼
)𝑅 (3)

At this point, the proof is complete.

Discussion of Insertion Failure. Insertion failure occurs when the number of key-value pairs,
which mapped to the buckets of a cell, exceeds 𝑅 ·𝑀 . In other words, a valid relocation for the newly
inserted key-value pair does not exist. We next analyze the probability of the insertion failure in
GPH. Without loss of generality, we assume the keys are independent distributed, and the mapping
from key to bucket is uniform, i.e., each key randomly selects one of 𝑁 buckets with the probability
1
𝑁 . For a given cell with 𝑅 distinct buckets, the event that a key maps to any of these 𝑅 buckets

follows a Bernoulli trial with the success probability 𝑅
𝑁 . After 𝑑 insertions, the number of keys

mapped to the buckets of a cell follows the binomial distribution 𝐵(𝑑 , 𝑅𝑁 ) [48]. Let 𝑌 be the event
that after 𝑑 insertions, the number of key-value pairs mapped to the buckets of a given cell does

not exceed 𝑅 ·𝑀 . Thus, the probability of success insertion is 𝑃𝑟 (𝑌 ) =
∑𝑅 ·𝑀

𝑘=0

(𝑑
𝑘

) ( 𝑅
𝑁

)𝑘 (
1 − 𝑅

𝑁

)𝑑−𝑘
.

Hence, the probability of failure insertion is 1− 𝑃𝑟 (𝑌 ), which is smaller than 0.5% when 𝑑 
 𝑀 ·𝑁 ,
i.e., the probability is practically negligible, as it falls below the conventional statistical significance
threshold [19]. For example, in our default experimental setting (see Section 7) with a 1.5GB table
size and 70% load factor, the theoretical probability of insertion failure on a cell is only 0.00539%.
Thus, the insertion failures on GPH are negligible.

6.3 Designs to Support Parallel Insert

With multiple Insert Groups performing insertions in parallel, it is challenging to resolve the race
condition among these groups. Besides, it is critical to reduce the I/O cost caused by the data
relocation. In this section, we introduce our designs to support parallel insert on GPU to address
these challenges.

Efficient Direct Insert.When multiple ℎ are processing different insert operations simultaneously,
they could overwrite each other and read outdated data if they manipulate the same cell or bucket.
Specifically, Direct Insertmay be affected by race conditions, i.e., (i) after reading the cell and before
writing to the Hash Table Bucket, the cell is modified by others; and (ii) after finding the vacant slot
and before writing the key-value pair, the vacant slot is written by others. To overcome the race
conditions, we split the insert kernel into two phases: Saturation Fill Phase, and Refinement Phase.
The Saturation Fill Phase only allows Direct Insert, and the insert operations that encounter

bucket overflow will be left for the Refinement Phase. Therefore, there is no modification to the
Cell Index to trigger the first race condition, and all insert operations in this phase are lock-free.
The second race condition can be resolved by using atomic compare and swap (atomicCAS) to
write key-value pair to slot, which ensures that the slot is vacant and avoids overwriting. In the
Refinement Phase, we assign locks for each cell and Hash Table Bucket to ensure the correctness
of reading from and writing to them.

Efficient Extended Move. We briefly summarize the major steps of supporting multiple parallel
Extended Move on GPU.

• Request locks of 𝐶𝐸𝐿𝐿[𝑖] and 𝑅 Hash Table Buckets associated with 𝐶𝐸𝐿𝐿[𝑖]. A potential
deadlock scenario may arise when each of two Insert Groups holds a lock of a Hash Table
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Bucket that the other requires, resulting in both Insert Groups unable to proceed. We employ the
wait-die scheme [52] to avoid deadlock by assigning lock access priority to each Insert Group

according to their starting time.

• Employ Workspace in shared memory. Workspace is used to cache Hash Table Buckets for
later data relocation and the metadata information for later use in validating Δ𝑖 and Φ𝑖 , e.g., the
number of vacant slots and the number of key-value pairs inserted via 𝐶𝐸𝐿𝐿[𝑖] in a bucket.

• Attempt to modify Δ𝑖 and check its validity based on the metadata of the cached buckets. The step
does not require a global memory request because threads use the information from Workspace

in shared memory to validate the modification.

• If no valid Δ𝑖 is found, modify Φ𝑖 and return to the first step of requesting additional locks for
new mapped 𝑅 Hash Table Buckets.

• If the valid Δ𝑖 and Φ𝑖 are found, we conduct data relocation inWorkspace, then push the updated
Hash Table Buckets fromWorkspace to global memory. Finally, release the locks.

7 Experimental Evaluation

We verify the efficiency of GPH via overall performance evaluation, case study and effectiveness
study in this section.

7.1 Experimental Setting

Datasets. We used both synthetic and real-world datasets in the experimental evaluation. In
particular, the synthetic datasets are Random, Lineitem, and TaoBenchmark, and the real-world
dataset is Reddit. We follow existing work [40, 46] to remove the duplicate pairs in each dataset and
use 4-byte integer keys and 4-byte integer values. The descriptions of each dataset are as follows.

• Random [6], applies the Fisher-Yates shuffle to the space of 232 unsigned integers, then generates
100,000,000 key-value pairs.

• Lineitem [1], has 100,784,453 key-value pairs, which are generated by TPC-H. We hash the
combination of three columns (ORDERKEY, PARTKEY, and LINENUMBER) to obtain the hashed keys
in the Lineitem dataset, and hash LINESTATUS to obtain the corresponding values.

• TaoBenchmark [26], simulates the workload of TAO. In particular, TAO [23] is a distributed data
store, which is designed for social graph workloads processing at Facebook. In this work, the
dataset generated by TaoBenchmark contains 165,000,000 key-value pairs. Its lookup workload
is highly skewed, i.e., the most frequent 20% of keys contribute 82.14% of lookup operations, as
it is generated based on assoc_get requests.

• Reddit [4], is a real-world workload, which collects Reddit comment actions from Kaggle in May
2015. It has 54,160,677 key-value pairs. We hash comment ID as key and username as value by
following the setting in DyCuckoo [46].

We generate the lookup workload for each dataset, which consists of 200,000,000 lookup keys.
The lookup keys are uniformly distributed except TaoBenchmark.

Experimental Environment. All experiments are conducted on an Intel(R) Xeon(R) Gold 6230R
CPU@ 2.10GHz server with an NVIDIA Tesla V100S GPU. All reported measurements are averaged
by running the experiments three times. Following the settings of existing work [11, 39, 46], we
also store the whole dataset on global memory and use cudaEvent to measure GPU kernel time.

Competitors and Configurations. We compare GPH with three representative GPU-based
hash tables: CUDPP [11], DyCuckoo [46], andWarpCore [40]. All the competitors use their code
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and default configurations. We use 32,768 thread blocks for lookup operations in GPH, and each
threads block has 512 threads. The Lookup Group size |𝑔| and Insert Group size |ℎ | are 4 and 8 in
GPH, respectively. The number of slots in a Hash Table Bucket𝑀 is 16. To address GPU shared
memory constraints, the Cell Index in GPH is partitioned per-SM during device setup, with each
SM assigned 98,304 1-byte cells in 96KB shared memory, and lookups resolve their target SM
through a precomputed mapping finalized prior to kernel execution. Each cell is associated with
8 Virtual Buckets (𝑅). The hash function maps multiple keys to an integer in GPH is defined
as H𝑖 (𝑘1, . . . ,𝑘𝑛) = H𝑖 ,0 (H𝑖 ,1 (𝑘1) + · · · + H𝑖 ,𝑛 (𝑘𝑛)), and these hash functions are fmix32 from
MurmurHash3 [13] with different seeds. We use C++ and CUDA to implement GPH. All compared
GPU-based hash tables are compiled with nvcc of CUDA version 12.5 and compute capability 7.0.

Parameters Tuning in GPH. The values of the parameters in GPH (e.g., 𝑀 , |𝑔|, |ℎ |, 𝑅) affect
its performance on different GPU devices. It is not trivial to determine the optimal parameter
settings in GPH for different GPU devices and workloads. In GPH, the parameters can be set by
benchmarking across hundreds of randomly selected combinations and selecting the best of them.
We leave more efficient auto parameter setting on GPH as future work.

7.2 Performance Evaluation

In this section, we compare the lookup performance of GPH with competitors on different datasets
and workloads. For every GPU-based hash table, we first construct its hash table on GPU global
memory, then process the lookup operations in the workload.

Lookup Throughput by Varying Hash Table Size. We first evaluate the lookup throughput of
the competitors and our GPH by varying table size from 1.25GB to 2GB. Each workload consists of
50% positive lookup (i.e., the lookup keys in the hash table) and 50% negative lookup (i.e., the keys
are not in the hash table). Figure 9 depicts the experimental results among the four tested datasets.
There is no doubt that our proposed GPH outperforms all competitors. It is the only GPU-based
hash table that achieves over 8000 MOPS in all tested cases. In particular, the average improvement
of GPH, on the four datasets, over the competitorsCUDPP,DyCuckoo, andWarpCore, is 1.74-2.29×,
3.82-3.88×, and 1.75-2.78×, respectively. It confirms the superiority of GPH in lookup operations
processing. In addition, we observe that all three competitors have a higher lookup throughput
with a larger table size. The reason is that there are more vacant slots in a larger table so that their
lookup operations can be terminated earlier when probing the vacant slots. Overall, GPH exhibits
stable and superior lookup performance across different datasets and table sizes.

Lookup Throughput by Varying Positive Ratio.We next evaluate the throughput of lookup
kernels by varying the positive ratio of lookup operations in the tested workloads. In these exper-
iments, we set the hash table size as 1.5GB for all tested GPU-based hash tables, and the tested
positive ratio ranges from 0% to 100% with a step size 25%. On the tested four datasets, as shown in
Figures 10 (a)-(d), the improvement of GPH can be up to 2.11×, 3.63× and 2.52× over the existing
GPU-based hash tables CUDPP, DyCuckoo, and WarpCore, respectively. The lookup throughput
of all GPU-based hash tables (including our GPH) increases with the rise of positive ratio in the
workload. The reason is that, compared to a positive lookup, a negative lookup typically needs
more probing cost to determine the lookup key is not in the hash table. To optimize it, WarpCore

determines the absence of the key as it encounters vacant slots. CUDPP employs an insert routine
to enable an early-break strategy for negative lookup. Thus, the throughput of WarpCore and
CUDPP on negative lookup outperforms that of DyCuckoo which requires two bucket probes
for every negative lookup. However, the overall throughput of competitors on negative lookup
still has enough space for improvement. For instance, none of the existing GPU-based hash tables
reaches 5000 MOPS for the negative lookup workloads, i.e., the positive ratio of the workload is

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 165. Publication date: June 2025.



GPH: An Efficient and Effective Perfect Hashing Scheme for GPU Architectures 165:21

(a) Random (b) Lineitem

(c) TaoBenchmark (d) Reddit

Fig. 9. Lookup throughput, varying hash table size

(a) Random (b) Lineitem (c) TaoBenchmark (d) Reddit

Fig. 10. Lookup throughput by varying positive ratio

(a) 𝐴𝑂 ,
varying table size

(b) 𝐴𝑂 ,
varying positive ratio

(c) 𝐸𝐼 ·𝐶𝑃𝐼 ,
varying table size

(d) 𝐸𝐼 ·𝐶𝑃𝐼 ,
varying positive ratio

Fig. 11. Performance analysis model evaluation

0%. However, the throughput of GPH for negative lookup workloads is over 8500 MOPS for all
tested datasets. Interestingly, CUDPP is slightly better than GPH when the positive ratio in the
workload is 100% on TaoBenchmark. The reason is that the lookup keys in TaoBenchmark are
skewed and CUDPP caches the hot key-value pairs as its single-slot hash table entry occupies less
cache memory.

Evaluation of Lookup Performance Analysis Model. In this experiment, we evaluate our
proposed lookup performance model (i.e., the time cost is negatively correlated with 𝐴𝑂 and
correlated with 𝐸𝐼 · 𝐶𝑃𝐼 ), see Equation (1) in Section 3, on Random. We omit the experimental
results on other datasets as they share similar observations and conclusions. In particular, we collect
the measured metrics 𝐴𝑂 , 𝐸𝐼 ·𝐶𝑃𝐼 by varying the data size and positive ratio.
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(a) Comparison with Crystal (b) Breakdown of Crystal with GPH

Fig. 12. End-to-end GPU time cost of Crystal hash join

Figures 11(a) and (b) show the 𝐴𝑂 of all these GPU-based hash tables in all tested cases. The 𝐴𝑂
of GPH is the largest, which reaches almost 100%. It confirms (i) the Takeaway of Observation I in
Section 3, and (ii) the effectiveness of the designs in GPH (i.e., guaranteeing exactly 1 probe for
each lookup operation). For DyCuckoo, its𝐴𝑂 is around 86% for many tested cases, and it has a low
𝐴𝑂 with 50% and 75% of positive ratio. The reason is that the number of probes of DyCuckoo is
quite stable for full positive or full negative lookup operations, but the mixed positive and negative
lookup operations increase the degree of inconsistency. CUDPP exhibits a relatively high 𝐴𝑂 but
falls down with the rise of table size and positive ratio. The reason is that its number of probes
for positive lookup is in a range of 1 to 4 entries, while most negative lookup operations have
a consistent number of probes. WarpCore shows the lowest 𝐴𝑂 because of its open addressing
scheme. Thus, the number of probes falls into a large range as some warps are unfairly assigned
with lookup operations that need to probe much more entries than others.

Figures 11(c) and (d) show that the GPH achieves stable 140 billion cycles 𝐸𝐼 · 𝐶𝑃𝐼 on different
table size and positive ratio, which is the smallest among evaluated competitors. The reason is that
GPH chooses to use fewer threads in a cooperative group, thus, it has small a 𝐸𝐼 . In addition, the
use of Bucket Requester in GPH results in small 𝐶𝑃𝐼 . Interestingly, CUDPP and DyCuckoo have
large 𝐸𝐼 · 𝐶𝑃𝐼 , especially for small table size and negative lookup. The reason is that small tables
and negative lookups typically require more probes to hash tables, as small tables have few vacant
slots and negative lookups need more probes to determine the result.

7.3 Hash Join Case Study on a GPU Database

In this section, we investigate the superiority of GPH in the hash join case study on a GPU database.
Specifically, we replace the non-partitioned global hash table used in the hash join algorithm of the
GPU database Crystal [51] with our GPH and verify its practical performance on hash join.
The hash join algorithm in Crystal builds a GPU-based open address hash table on the smaller

relation R and probes it by using the larger relation S. Both relations R and S are generated via a
data generator for hash join studies [17, 28], the packed key-value pairs in R and S are 8 bytes. To
evaluate the mixed lookup and insert workloads, we vary the size of relation S while keeping R

fixed. In particular, the cardinality of R is 16,777,216, and the cardinality of S is correspondingly
scaled to be 4 · |R |, 8 · |R |, 16 · |R |, 32 · |R | and 64 · |R |, which follows the setting in [51]. The load
factor of the open address hash table in Crystal and our GPH are 50%, which is common for hash
join workload [33, 41].
Figure 12(a) shows the time cost of Crystal and Crystal with GPH. The performance gain of

GPH over the original hash table in Crystal becomes larger with the rising of probe relation size as
GPH is optimized for accelerating lookup operations. The cut-off point between lookup and insert
occurs when there are roughly 8 times more lookups than insertions. Figure 12(b) provides the
breakdown of the cost of GPH. It illustrates that the proportion of the building cost varies from
94% to 20% when |S| grows from 1 · |R | to 64 · |R |.
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(a) varying |𝑔 | (b) varying𝑀

Fig. 13. Lookup throughput w.r.t. different settings

(a) Random (b) Lineitem (c) TaoBenchmark (d) Reddit

Fig. 14. Insert throughput, varying hash table size

(a) 𝑅 and𝑀 (b) Key-value size (c) Skewness

Fig. 15. Effectiveness study of insert kernel on load factor and throughput

7.4 Effectiveness Study

Effect of the Designs in Lookup kernel.We first verify the effectiveness of the Bucket Requester
module and perfect hashing design of GPH on Random. In particular, BR-ON PH-ON is our
GPH, which enables Bucket Requester module and with prefect hashing scheme. BR-OFF PH-ON

replaces the Bucket Requester module in GPH by the bucket request approach in [46]. BR-OFF,
PH-OFF uses the bucket request approach and non-perfect hash scheme in [46]. We vary the
number of threads in a Lookup Group |𝑔| and the number of slots in a Hash Table Bucket𝑀 . The
results in Figure 13 depict that BR-ON, PH-ON outperforms BR-OFF PH-ON, and BR-OFF PH-ON

outperforms BR-OFF PH-OFF in all cases. The overall performance gain of our GPH (i.e., BR-ON
PH-ON) are from twofold: (i) GPH is a perfect hash table, which guarantees exactly 1 probe for
each lookup; (ii) the lookup performance of GPH is further improved by Bucket Requester, which
is built upon the perfect hashing scheme of GPH and improves 𝐸𝐼 ·𝐶𝑃𝐼 .
In addition, according to the comparison between BR-ON PH-ON and BR-OFF PH-ON, we

observe that the Bucket Requester is most effective when |𝑔| = 4, as the design of the Bucket
Requester enhances each thread to access several slots. Interestingly, the performance of |𝑔| = 2 is
low. The reason is that the SM does not have enough registers to cache the vectors in this extreme
case, resulting in low 𝐴𝑂 . Moreover, Bucket Requester enables similar performance for𝑀 = 8 and
𝑀 = 16. Thus, we use 16 slots each bucket to improve the space efficiency.
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Effect of the Designs in Insert Kernel. We last evaluate our design of insert kernel in all tested
workload. GPH employs the perfect hashing scheme to accelerate the lookup performance. The
trade-off in the design is that the insert procedure has to spend more time on data relocation and
lock contention. As shown in Figure 14, the throughput of the insert kernel of GPH is worse than
those of other GPU-based hash tables. However, it is still worth mentioning that GPH is the first
GPU-based hash table with perfect hashing scheme that supports dynamic insert operation. The
insert throughput of GPH is over 100 MOPS.
In Figure 15(a), we report the load factor by inserting key-value pairs into GPH with different

numbers of associated Virtual Buckets in each cell (𝑅) and different number of slots in each bucket
(𝑀). The results show that the load factor of GPH can be affected by varying 𝑅 and𝑀 . These results
provide some guidelines for users to specify the parameters (e.g., 𝑅 and𝑀) in GPH.

We also study the effect of varying the key and value sizes on insertion performance. Figure 15(b)
illustrates the insertion performance for compacted key-value pair sizes of 4, 8, and 16 bytes.
Compared to the default 8-byte size, the 4-byte size achieves an average throughput increase of
46.8%, and the 16-byte size results in an average throughput decrease of 38.4%. The results indicate
that larger key-value sizes lead to lower insert throughput, as they consume more bandwidth.

We last investigate the impact of skewness on insertion performance in Figure 15(c). The skewness
is represented by 50,000,000 data records generated from a Zipf distribution, where the parameter
𝑠 ranges from 0 (indicating uniform distribution) to 4 (indicating highly duplicated keys). The
results indicate that GPH demonstrates improved insertion performance with skewed data. The
reason is that inserting duplicate keys triggers the overwrite (similar to previous GPU-based hash
tables [14, 46, 55]) in Direct Insert so it avoids the expensive overflow handling Extended Move.

8 Conclusion

In this work, we propose an effective-and-generic lookup performance model with insightful
observations that reveal the performance bottleneck in existing GPU-based hash tables. Then, we
propose a novel GPU-based hash table GPH to accelerate the lookup performance. We employ
the perfect hashing in GPH. To further improve the lookup throughput, the Bucket Requester
module is proposed, which exploits vectorization and instruction-level parallelism techniques. We
also devise the insert kernel to support parallel insertions in GPH. To our best, it is the first GPU
perfect hashing with dynamic insert operation supports. We demonstrate the superiority of GPH
by extensive experiments on both synthetic and real-world datasets. In the future, GPH will be
enhanced by two-fold: (i) devising auto parameter setting method for GPH, and (ii) supporting
other data types (e.g., strings, objects) on GPH to improve its usability in different workloads.
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