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ABSTRACT
Understanding and diagnosing query optimizers is crucial to guar-
antee the correctness and efficiency of query processing in database
systems. However, achieving this is non-trivial as there are three
technical challenges: (i) hundreds and thousands of query plans
are generated for each query during the query optimization proce-
dure; (ii) the transformation logic among query plans is not easy
to investigate even for expert database system developers; and
(iii) navigating users to the root causes of the bugs/errors is in-
herently hard as the changes of the operators among query plans
are missing in the query processing log. In this work, we propose
QOVIS to overcome these challenges, which identifies the query
optimization bugs/issues and investigates their root causes via a
visualization-assisted approach. Specifically,QOVIS consists of data
preprocessing layer, transformation logic computation layer, and
visual analysis layer. We conduct extensive experimental studies
(e.g., user study, case study, and performance study) to evaluate the
efficiency and effectiveness of QOVIS. In particular, our user study
(on 24 database developers and researchers) confirms that QOVIS
significantly reduces the time required to investigate the bugs/er-
rors in the query optimizer. Moreover, the generality of QOVIS is
verified by utilizing it to understand and diagnose the real-world
reported bugs/errors in different query optimizers of three widely-
used systems: Apache Spark, Apache Hive, and DuckDB.
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1 INTRODUCTION
Big data and database systems have been widely used in various
applications to process huge amounts of data, e.g., e-commerce
shopping, and business intelligence reports. Query optimizer is one
of the most important components in these systems. It transforms
the user SQL query into an efficient physical execution plan [40].
Many research studies [40, 42, 62] have been proposed to improve
the efficiency of the final generated execution plan of the query
optimizer. However, the study on the correctness and efficiency of
the query optimizer is not sufficient. In particular, the correctness
of the query optimizer guarantees that the generated execution
plan is semantically equivalent to the user input SQL query, and
the efficiency of the query optimizer measures the time cost to
transform a user SQL query to a physical execution plan.

Recently, Tang et al. [59] discovered logic bugs in relational data-
base management systems (RDBMS) through automated testing
methods. However, it can only answer “whether” the query opti-
mizer works correctly, but cannot answer “how” the query optimizer
works and “where” the optimization bug/issue occurs. Understand-
ing and diagnosing query optimizers is the key to answering these
two questions. Unfortunately, the query optimizer is inherently
complex and its optimization procedure is very complicated even
for database experts and system developers. The key reasons are
twofold: (i) the query optimization procedure is intricate because
it involves hundreds or even thousands of interrelated optimiza-
tion strategies; and (ii) it lacks effective tools to facilitate users in
analyzing tedious optimization logs from these systems.

In this paper, we propose QOVIS to understand and diagnose
query optimizers via a visualization-assisted approach. The tech-
nical challenges to build QOVIS are three dimensions. First, the
optimization log of a user-input SQL query always includes hun-
dreds or thousands of intermediate query plans. Thus, it is difficult
to provide an overview of the optimization procedure. Second, the
transformation logic among the query plans is not easy to identify
even with the expertise of the database system. To make matters
worse, optimization bugs/errors probably occur across multiple
query plans. Third, navigating users to explore the root causes
of bugs/errors is inherently difficult as it needs to investigate the
relationship of the changed operators among different query plans.
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To overcome these challenges, we first investigated 57 opti-
mization bugs/issues that are reported on the issue tracker web-
sites [2, 4, 6] of three well-known systems: Apache Spark [17],
Apache Hive [61], and DuckDB [49], in this work. We then clas-
sified these reported issues into two categories: (i) transformation
error, which produces incorrect query plans due to the improp-
er/incorrect implementation of the query optimization strategy;
and (ii) workflow error, which affects the efficiency of the query
optimizer (e.g., applying redundant optimization strategies). As we
will elaborate shortly, existing work cannot automatically identify
both types of errors in query optimizers.

To address them, we propose QOVIS to understand and diagnose
the query optimizer via a visualization-assisted approach. In partic-
ular, it consists of three layers: data preprocessing layer, transforma-
tion logic computation layer, and visual analysis layer. The collected
query optimization logs are processed into the optimization trace,
which includes a query plan sequence and an optimization step
sequence in the data preprocessing layer. To ease the understanding
of optimization processes, the transformation logic among plans are
computed in the transformation logic computation layer to reduce
the manual effort for query optimization procedure understand-
ing and diagnosing. An exhaustive search of the optimization rule
sequence, which transforms one query plan to another, is obvi-
ously impractical. We adopt the 𝐴∗ algorithm by devising novel
estimation functions to improve the performance of the plan trans-
formation problem. In the visual analysis layer, QOVIS offers a
suite of carefully designed visualization views (i.e., trace hierarchy
view, plan view, and transformation logic view) to facilitate users
in identifying and investigating the above bugs/errors.

QOVIS is built on Apache Spark [17] as it is widely used in many
leading IT companies (e.g., Google, Meta) for various applications,
and many users frequently report the bugs of Apache Spark on its
issue tracker website [4] during daily usage. To verify the generality
of QOVIS, we extend it to two other well-known systems: Apache
Hive [61] and DuckDB [49]. In particular, Apache Hive adopts
Apache Calcite [19] as query optimizer, which is a volcano/cascade
style optimizer and has been used in many systems, e.g., Apache
Drill [36] and Apache Flink [22]. DuckDB is a popular lightweight
database for analytical queries, its query optimizer is different from
the Catalyst in Apache Spark. It is worth pointing out that QOVIS
can be easily extended to other database systems as it only uses the
query plans and optimization steps in the query optimization logs,
and the source code of QOVIS is available at [9].

Although understanding and diagnosing query optimizers by
utilizing QOVIS might be a little difficult at first. Compared to using
limited information provided by the EXPLAIN command of database
systems, or reading long and tedious textual logs, the visualization-
assisted approach in QOVIS provides a well-organized and vivid
representation of the optimization process. It will ease the analyzing
procedure significantly as long as users become familiar with the
visual encoding and interactions. We will explicitly verify it shortly.
Contributions. The contributions are summarized as follows:
• We analyze the optimization issues in three popular database

systems and classify them into two categories by considering the
correctness and efficiency of the underlying query optimizers:
transformation error and workflow error (see Section 2).
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Figure 1: Query optimization procedure illustration

• We propose QOVIS to understand and diagnose query optimiz-
ers via a visualization-assisted approach, which facilitates the
database system developers to analyze optimization trace visu-
ally at a fine-grained level (see Section 3).

• We devise plan transformation algorithms and novel visualiza-
tion designs to support efficient and effective visual analysis of
the optimization trace (see Section 4 and Section 5).

• We conduct extensive experimental studies (including case study,
user study and performance study) on real queries to demon-
strate the superiority of QOVIS (see Section 6).

2 PROBLEM DESCRIPTION
In this section, we first introduce the basic concepts of query op-
timizer in Section 2.1, then discuss two key issues of the query
optimizer during query processing in Section 2.2.

2.1 Query Optimizer
The query optimizers in the database systems transform the user
input SQL query to an optimized query plan. We next use the
query optimizer, Catalyst [17], in Apache Spark to introduce the
fundamental concepts in the query optimizers.

Figure 1(a) depicts the workflow of the query optimizer in Apache
Spark 3.0.0. A given input SQL query is parsed into an initial plan,
i.e., Plan #0. The optimization procedure consists of four sequential
major optimization steps: Analysis, Logical Optimization, Planning,
and Adaptive Query Execution (AQE). In each step, the optimizer
transforms the input plan into an equivalent but more efficient
one by applying pre-defined optimization strategies. As shown in
Figure 1(a), the initial Plan #0 is transformed into Plan #1 to Plan #9
during the query optimization procedure. We next formally define
the query plan and optimization step as follows.

Definition 1 (Query plan). The query plan 𝑝 is an ordered tree,
where each leaf node is a relational table, each intermediate node is
an SQL operator with a list of arguments, and each edge between two
nodes shows the data dependency of the connected nodes.

Example. Plans #1 to #4 in Figure 1(b) are the query plan examples.
We use R to represent the leaf relational table in the query plan.
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Definition 2 (Optimization step). In the query optimizer, the
optimization step 𝑠 transforms the input query plan 𝑝 to a more
efficient query plan 𝑝′ by applying pre-defined optimization strategies.

Example. Figure 1(b) shows examples of optimization steps, e.g.,
Plan #1 is transformed into Plan #4 via the optimization step Logical
Optimization. Interestingly, the granularity of optimization steps in
the optimizer varies, and they can be nested. For example, the step
Logical Optimization includes two sub-steps: Operator Optimization
and Infer Filters. Within Operator Optimization step, it consists of
two optimization sub-steps PredicatePushdown and ColumnPruning,
as the exemplified optimization step hierarchy shown in Figure 1(b).

In almost all (if not all) database systems, the system log inter-
mingles optimization plans and optimization steps during query
processing. For example, database developers should pre-process
query execution logs of Apache Spark to identify the specific query
plan or optimization step for bug fixing or performance improve-
ment. In this work, we refer to the pre-processed execution log in
these systems as optimization trace, which consists of (i) a sequence
of plans and (ii) a sequence of steps, as shown in Figure 1(c).

2.2 Query Optimization Issues
To provide a comprehensive study of query optimization issues,
we investigate 57 issues [13], which are reported on their issue
tracker websites [2, 4, 6]. We classified them into two categories: (i)
transformation error and (ii) workflow error, which correspond to
the correctness and efficiency of the underlying query optimizer,
respectively. In particular, transformation errors are the issues that
affect the correctness of the optimizer, and workflow errors are
the issues that influence the efficiency of the optimizer. We next
elaborate on the details of the above two categories.

2.2.1 Transformation error. It is the case that the optimizer trans-
forms the input plan 𝑝 to an optimized plan 𝑝′ incorrectly, thus
𝑝′ is not semantically equivalent to 𝑝 (𝑝 ≠ 𝑝′). In general, 𝑝′ is
referred to as a problematic plan as it (i) is invalid, (ii) returns in-
correct results, or (iii) takes an unexpectedly long execution time.
Obviously, the transformation error shows the correctness issues of
the optimizer during the query processing as the optimized plan 𝑝′
is not equivalent to the input query plan 𝑝 .
Example 1 (Incorrect plan transformation). Figure 2(a) shows
a reported optimization issue [10]. In particular, the SQL query
self-joins a table t1 on the column x. Figure 2(b) shows the correct
join logic with table t1. The expected result is [4] as the left anti-
join only keeps the rows in table t2 that do not occur in table t1.

However, the returned result of Apache Spark 3.3.0 is [2,3,4].
The incorrect result is caused by the transformation error as the
optimized logical plan (Plan #7) in Figure 2(c) is not equivalent to the
initial plan (Plan #0), i.e., the join operator is removed unexpectedly.
By tracking the optimization trace, we find a problematic predicate
(t1.x+1)=t1.x results in an “Empty” relation, which is caused by
the PushDownLeftSemiAntiJoin step, see Figure 2(c).

It is not trivial to identify the transformation error during the
query processing. Existing commands, e.g., EXPLAIN, of the query
optimizer only provide the optimized logical plan and do not detail
the optimization steps. Hence, the system developers always have
to verify the system log manually to pinpoint the optimization
step that results in the problematic plan. Obviously, it is a time-
consuming task. To make matters worse, it is hard to identify the
root cause of the transformation error even if the system developers
find the corresponding optimization step in the system log with
their expertise. The reason is that the optimization step in the log
does not show the changes of the query plans.

In the literature, verifying the equivalence of SQL queries is
studied [24, 25, 30, 68, 69]. However, they cannot be adapted to
find the transformation error in the query optimizer as (1) verify-
ing the equivalence of query plans, i.e., 𝑝 and 𝑝′, is different from
them as the query plans include physical operators and execution
algorithms; and (2) there are hundreds or even thousands of in-
termediate query plans for the input SQL query, so it is almost
impossible to verify the equivalence among all of them using the
above expensive algorithms. In addition, automatic logic bug de-
tection tools [27, 50, 59, 60] are proposed to identify the logic bugs
during the query processing. Their core idea is to compare the exe-
cution results of the optimized query plan with the ground truth.
First, these tools cannot be used to identify the transformation er-
ror which does not cause incorrect results. Second, many of their
detected errors are in the query executor, thus, it is not easy to
identify the transformation errors in query optimizers. Last but not
least, almost all of these tools do not provide insights to pinpoint
the root cause of the logical bug.

In this work, we propose QOVIS, which assists database system
developers to investigate the transformation logic of the optimizer
for these transformation errors in an explicit manner. For example,
with the help of QOVIS, it is easy to identify that the PushDown-
LeftSemiAntiJoin optimization step caused the transformation error,
as the red cross in Figure 2(c) shown. Moreover, it provides clues
for developers to conclude that the above step fails to process the
predicate that contains attributes from the same relational table (t1
in this case). Consequently, it is safe to conclude that the optimiza-
tion step may not be implemented correctly to process the above
corner case and it sheds light to fix this bug in the query optimizer.

2.2.2 Workflow error. It is the case that the optimizer transforms
the input plan 𝑝 to an optimized plan 𝑝′ correctly, i.e., the query
plans 𝑝 and 𝑝′ are equivalent both semantically and practically (𝑝
= 𝑝′). However, the optimization steps from 𝑝 to 𝑝′ may result in (i)
redundant optimizations, (ii) sub-optimal query plan, or (iii) even
crashes during the optimization process. Even though optimizers
with volcano/cascade architecture use memorization techniques to
detect redundant query plans, the workflow error cannot be avoided
in them, as the case study in Apache Hive shows (Section 6.1.3).
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Example 2 (Loop optimization). Figure 3 illustrates an example
of workflow error, which is reported on Apache Spark issue tracker
website [11]. As shown in Figure 3(a), the SQL query joins two
tables tbl and ids. Figure 3(b) shows the schema of the database,
where table tbl has two columns: id and nested. When Apache
Spark 3.3.0 optimizes this query, the optimizer keeps re-optimizing
the plan with the same steps but leaves the plan unchanged, see
Figure 3(c). As reported by the developers, these steps “go back and
forth, undoing each other’s work” until the max iteration thresh-
old (i.e., 100) is reached. Obviously, this process includes many
redundant optimization steps and wastes a lot of time on them.

Optimization issues caused by the workflow errors is even more
difficult to identify than transformation errors as they return correct
results unless it is crashed during the query processing. Logically,
pinpointing the workflow errors in the query optimizer needs to
analyze the whole query optimization log. However, it is almost
impossible to achieve by checking the plain text in the system log
manually as the number of steps is daunting. For example, it in-
cludes more than 1200 optimization steps for the query in Figure 3.
In addition, to pinpoint these workflow errors, system developers
need to analyze multiple optimization steps simultaneously and
track the changes of operators/arguments across different interme-
diate query plans, e.g., the looped plan sequence in Figure 3(c).

Unfortunately, existing tools [16, 34, 47, 48, 56, 58, 63] cannot
be used to investigate the large amount of optimization steps and
associated intermediate query plans. In particular, Picasso [34] and
pg4n [56] provide diagrammatic or textual information of final gen-
erated plans but do not include the optimization steps in optimizers.
Existing visualization tools [16, 47, 48, 58, 63] focus on the correct-
ness and execution performance of the final plan and only provide
information about coarse-grained steps (e.g., Analysis and Logical
Optimization). To sum up, they do not support the systematic anal-
ysis of the numerous fine-grained optimization steps. Hence, they
cannot be adapted to identify the workflow errors in optimizers.

In this work, we devise a visualization-assisted approach in QO-
VIS, which helps database system developers to identify workflow
errors in query optimizers. In particular, the optimization steps are
visualized in a hierarchical structure in QOVIS, which allows devel-
opers to investigate optimization steps and corresponding changes
of plans at different levels of granularity. Moreover, our proposal
QOVIS provides the explicit transformation logic of query plans,
which links the operators among different query plans. Thus, the
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cascading effects of different optimization steps on the same opera-
tor can be identified easily. For example, with the help of QOVIS,
the root cause of the workflow error of Figure 3 is that the Project
operators are repeatedly inserted in the ColumnPruning step but
removed by other subsequent steps, as illustrated in Figure 3(c).

3 THE OVERVIEW OF QOVIS
Figure 4 provides a system overview of our proposal QOVIS, which
is designed to assist database system developers in identifying
transformation error and workflow error in the query optimizer and
providing clues to fix them via a visualization-assisted approach.
We introduce the layers of QOVIS from bottom to top as follows.
• The data preprocessing layer (at the bottom) collects system logs

during query processing and extracts the optimization trace. The
optimization steps are associated with the intermediate query
plans and the hierarchy of optimization steps is constructed. We
refer the interested readers to Appendix B at [9] for details.

• The transformation logic computation layer (in the middle) takes
the query plans and computes the transformation logic between
them. Returned transformation logic is crucial to analyze the
transformation error and workflow error, which correspond to
the correctness and efficiency of query optimizers, respectively.

• The visual analysis layer (at the top) is the front-end of QOVIS.
With three carefully designed visualization views and interac-
tions, it enables intuitive and explicit optimizer error identifica-
tion and root cause localization.

Discussion. The generality of QOVIS stems from its flexible archi-
tecture as none of its components depends on the specific designs
of the underlying database systems. Specifically, QOVIS only uses
the optimization plans and steps during query processing, which
are usually logged or can be easily obtained, for example, Apache
Calcite provides hooks that can be invoked before and after ex-
ecuting an optimization step. Moreover, QOVIS is applicable to
volcano/cascade style query optimizers as only the intermediate
plans of the path (from the initial plan to final plan) among the
explored plan space (e.g., via dynamic programming based search)
will be investigated and analyzed.
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4 TRANSFORMATION LOGIC COMPUTATION
The transformation logic between intermediate query plans pro-
vides crucial clues for developers to understand and diagnose trans-
formation errors and workflow errors in query optimizers. However,
few existing systems provide such transformation logic in their logs.
To address this, we first formally define the plan transformation
problem in Section 4.1 and then present our approaches to comput-
ing logic during the transformation of the plan in Section 4.2.

4.1 Plan Transformation Problem
As illustrated by transformation error and workflow error examples
(e.g., Figure 2 and Figure 3), the transformation logic shows the
change of query plans (e.g., operators, arguments, hints), which is
essential for database system developers to identify the correctness
and efficiency issues in the underlying optimizer. However, existing
solutions require manual efforts of the developers to analyze the
transformation logic by utilizing their expertise. The reasons are
twofold: (i) the system log does not include the transformation
logic, and (ii) the optimization step is too coarse to analyze.

For example, as depicted in Figure 1(b), Plan #1 is transformed
to Plan #2 after applying the optimization step PredicatePushdown,
which is the most fine-grained optimization step in the query opti-
mizer. However, Figure 5 illustrates the computed transformation
logic of the PredicatePushdown step. Specifically, the solid blue
curves show the changes of these operators and arguments in the
query plans by applying specific optimization rules (e.g., 𝑟1, 𝑟2, 𝑟3),
and the dashed gray curves link those unchanged operators. These
curves explicitly show that the predicate of the Filter (𝜎) in Plan #1
(i.e., a.x=1 && a.y=b.z) is split and pushed down to the Join (⊲⊳)
and another Filter operators in Plan #2.

Analyzing the above transformation logic between query plans
manually is time-consuming. Moreover, computing such transfor-
mation logic is not trivial as (i) the correctness of the manually
analyzed logic cannot be guaranteed; and (ii) it requires huge com-
putation costs, as we will present shortly. To overcome them, we
first define the optimization rule in Definition 3, then use it as the
building block to formulate the plan transformation problem.

Definition 3 (Optimization Rule). An optimization rule 𝑟
transforms query plan 𝑝 to 𝑝′, i.e., 𝑝′ = 𝑝 ⊕ 𝑟 , and it guarantees
𝑝 is semantically equivalent to 𝑝′.

Example. Figure 6 depicts the example of applying optimization
rule ExpandFilter on query plan 𝑝 to obtain the optimized query
plan 𝑝′. Specifically, the Filter operator (𝜎) in 𝑝 is divided into two
Filter operators in 𝑝′ by separating the predicate x=1 && y=2 via

𝑝 𝑝′

ExpandFilter

x=1 && y=2

R

σ
σ
σ

a(x,y)

x=1

y=2

R a(x,y)

Figure 6: The optimization rule ExpandFilter example

conjunction property, i.e., 𝜎𝑝𝑟𝑒𝑑1∧𝑝𝑟𝑒𝑑2 (R) = 𝜎𝑝𝑟𝑒𝑑1 (𝜎𝑝𝑟𝑒𝑑2 (R)), in
relational algebra [55].

In each query optimizer, all these pre-defined optimization rules
form the rule set R of the optimizer. For example, we include 25
different rules in the rule set R for Apache Spark 3.3.0, which are
from the fundamental relational algebra [55] and its implemented
optimization strategies. However, the rule set can be extended
to support various transformation logics in different versions of
Apache Spark or other database systems. Several recent studies [65,
69] are proposed to generate and verify additional optimization
rules in the rule set R. Our work is orthogonal to them as the rule
set R of the query optimizer is the input of the following problem.

Problem 1 (Plan Transformation Problem). Given a rule set
R and two query plans 𝑝 and 𝑝′, the plan transformation problem
is finding the transformation logic, which is a rule sequence Φ =
{𝑟1, · · · , 𝑟 𝑗 }, such that (i) ∀𝑟𝑖 ∈ Φ, 𝑟𝑖 ∈ R; (ii) 𝑝′ = 𝑝 ⊕ Φ = 𝑝 ⊕ 𝑟1 ⊕
· · · ⊕ 𝑟 𝑗 ; and (iii) |Φ| is minimum.

Example. Given the rule set R and two query plans 𝑝 and 𝑝′, see
Plan #1 and Plan #2 shown in Figure 5. The plan transformation
problem returnsΦ= {𝑟1 : ExpandFilter, 𝑟2 : PushdownPredicateToJoin,
𝑟3 : PushdownPredicateThroughJoin}, as the rules depicted in the
middle of Figure 5.

The minimum constraint of Problem 1 ensures that the transfor-
mation logic between 𝑝 and 𝑝′ is concise. If there does not exist a Φ
to transform 𝑝 to 𝑝′, it means the two plans are not equivalent with
the given rule set R. In other words, there may be a correctness
issue, which should be investigated by the developers.

4.2 Problem Reduction and Solutions
Solving the above plan transformation problem is not easy as the
number of possible rule sequences is exponential, i.e., 𝑂 ( |R| |Φ | ). In
this section, we first reduce the problem to a shortest path problem.
Then, we devise solutions to address it efficiently.

4.2.1 Problem Reduction. Logically, Problem 1 can be reduced to
a shortest path problem on a directed graph. In particular, each
node in the graph is a query plan and each edge in the graph is an
optimization rule 𝑟 ∈ R that transforms the incoming query plan
to the out-going query plan. By setting the edge weight as 1, the
shortest path between two query plans represents the minimum
rule sequence that transforms the source plan into the target plan.
Given the query plans 𝑝 and 𝑝′, Problem 1 is equivalent to finding
the shortest path from 𝑝 to 𝑝′ in the graph.
Example. The plan transformation between 𝑝 and 𝑝′ can be re-
duced to find the shortest path between source node 𝑝 and desti-
nation node 𝑝′ in Figure 7. It is worth noting that we enumerate
all possible rules and generate all intermediate query plans, see
the dotted nodes in Figure 7. The shortest path between 𝑝 and 𝑝′
is 𝑝 → 𝑝6 → 𝑝12 → 𝑝′, and the corresponding rule sequence Φ
= {𝑟1, 𝑟2, 𝑟3}, as shown in Figure 7.
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Figure 7: Reducing Problem 1 to a shortest path problem

In practice, it is almost impossible to enumerate all possible in-
termediate query plans and construct the graph then conduct the
short path search for the result. The reasons are two-fold: (i) the
number of possible intermediate plans is exponential with the rule
sequence length; and (ii) it is expensive to generate every interme-
diate plan. Inspired by the heuristic search algorithms, we adapt
the 𝐴∗ algorithm to solve the reduced shortest path search problem.
Specifically,𝐴∗ starts at query plan 𝑝 . In each iteration, it selects the
next intermediate plan ˜︁𝑝 to explore such that 𝑓 (˜︁𝑝) = 𝑔(˜︁𝑝) + ℎ(˜︁𝑝)
is minimized. 𝑔(˜︁𝑝) is the number of edges in the path from 𝑝 to ˜︁𝑝 ,
i.e., it is the minimum number of the applied optimization rules
that transform 𝑝 to ˜︁𝑝 . ℎ(˜︁𝑝) is a heuristic function that estimates the
minimum number of edges in the path from ˜︁𝑝 to 𝑝′, i.e., the number
of optimization rules that should be used to transform ˜︁𝑝 to 𝑝′. 𝐴∗
guarantees the optimality of the result if the heuristic function ℎ(˜︁𝑝)
is admissible, see the well-established conclusion in Lemma 1 [35].

Lemma 1 (Result optimality of 𝐴∗). If the heuristic function
ℎ(˜︁𝑝) is admissible, meaning that it never overestimates the actual
minimum rule number to get to 𝑝′ from ˜︁𝑝 , then 𝐴∗ is guaranteed to
return the shortest path from 𝑝 to 𝑝′.

With the above property in mind, the technical challenge to
address Problem 1 is to devise the heuristic function ℎ(˜︁𝑝), which
should not exceed the actual minimum number of optimization
rules that transforms ˜︁𝑝 to 𝑝′, we denote it as |Φ∗ |. In addition, the
estimated value of the heuristic function ℎ(˜︁𝑝) should be as close
as possible to the ground truth |Φ∗ |, thus, the high efficiency of
𝐴∗ algorithm can be achieved. In the following, we introduce our
solutions to reduce the computation cost.

4.2.2 The zero Heuristic Function H0. One of the most straight-
forward designs of heuristic functions for Problem 1 is H0 (˜︁𝑝) = 0,
which is admissible. With this heuristic function, 𝐴∗ is equivalent
to a BFS-based exhaustive search algorithm as edge weights are 1.
Suppose the depth from 𝑝 to 𝑝′ is 𝑑 in the above search process,
the time complexity and space complexity of the BFS-based exhaus-
tive search algorithm are both 𝑂 ( |R|𝑑 ). Obviously, this approach
is impractical as the time and space costs are exponential.

4.2.3 Difference-based Heuristic Function H . Using H0 (˜︁𝑝) is inef-
ficient as it does not take the information of 𝑝′ into consideration
during the search process. Intuitively, the number of optimization
rules to transform ˜︁𝑝 to 𝑝′ is related to the difference between ˜︁𝑝
and 𝑝′. However, there are many methods to measure the differ-
ence between two query plans, e.g., operator types, arguments of
operators, and join orders. In this section, we introduce a simple
yet effective measurement to quantitatively measure the difference
between two query plans by only considering the operators. We
left the extension to other query plan difference measurements as

future work. In particular, we consider the difference of the given
operator in two plans, see Definition 4.

Definition 4 (Operator type measurement). Given two query
plans 𝑝𝑖 and 𝑝 𝑗 and the operator 𝑜𝑝 , the difference of 𝑝𝑖 and 𝑝 𝑗 on the
operator 𝑜𝑝 is defined as odiff𝑜𝑝 (𝑝𝑖 , 𝑝 𝑗 ) = |𝑁 (𝑝𝑖 , 𝑜𝑝) − 𝑁 (𝑝 𝑗 , 𝑜𝑝) |,
where 𝑁 (𝑝𝑖 , 𝑜𝑝) is the number of the operator 𝑜𝑝 in query plan 𝑝𝑖 .

Example:Taking the query plans 𝑝 and 𝑝′ in Figure 6 as an example,
the difference between 𝑝 and 𝑝′ with regard to Filter operator 𝜎
is odiff𝜎 (𝑝 , 𝑝′) = |𝑁 (𝑝 , 𝜎) − 𝑁 (𝑝′, 𝜎) | = |2 − 1| = 1. It is worth
pointing out that the operator type measurement odiff𝑜𝑝 (·, ·) is a
metric, we omit the proof due to page limits.

With the different number of given operators in two query plans˜︁𝑝 and 𝑝′, we next consider how many optimization rules should be
applied to transform ˜︁𝑝 to 𝑝′, which is estimated with Definition 5.

Definition 5 (Rule influence on Operator 𝑜𝑝). Given a query
plan 𝑝𝑖 , the rule influence of 𝑟 ∈ R w.r.t the operator 𝑜𝑝 is defined as
the number of affected operator 𝑜𝑝 in the transformed 𝑝 𝑗 = 𝑝𝑖 ⊕ 𝑟 ,
denoted as I𝑜𝑝 (𝑟 ).

Example: The optimization rule ExpandFilter always splits one
Filter operator in a query plan into two Filter operators in the
generated query plan, see the example in Figure 6. Thus, we have
I𝑜𝑝 (ExpandFilter) = 1.

Given two query plans ˜︁𝑝 and 𝑝′, it is intuitive to derive the
lower bound of the required optimization rules that transform ˜︁𝑝
to 𝑝′ when we know the difference of operator 𝑜𝑝 between them
(via Definition 4) and the rule influence on 𝑜𝑝 (via Definition 5),
which can be one of the heuristic function H(˜︁𝑝) to estimate the
number of required rules from ˜︁𝑝 to 𝑝′. We formally define it as:
H(˜︁𝑝) = H𝑜𝑝 (˜︁𝑝) = ⌈︂

odiff𝑜𝑝 (˜︁𝑝 , 𝑝 ′ )
𝑚𝑎𝑥𝑟 ∈RI𝑜𝑝 (𝑟 )

⌉︂
.

To guarantee the returned result is minimal for Problem 1, we
next prove H𝑜𝑝 (˜︁𝑝) is admissible via Theorem 1.

Theorem 1. H𝑜𝑝 (˜︁𝑝) is a lower bound of the minimum number of
required rules to transform ˜︁𝑝 to 𝑝′.

Proof. There are two cases: (I) If there does not exist a path from˜︁𝑝 to 𝑝′, then H𝑜𝑝 (˜︁𝑝) ≤ |Φ∗ | = ∞; (II) Otherwise, there is a shortest
path Φ∗ = {𝑟1, · · · , 𝑟𝑙 }. Let {𝑝1, · · · , 𝑝𝑙+1} be the plan sequence by
applying each rule in Φ∗ sequentially, where 𝑝1 = ˜︁𝑝 and 𝑝𝑙+1 = 𝑝′,
and ∀𝑖 ∈ [1, 𝑙], 𝑝𝑖+1 = 𝑝𝑖⊕ 𝑟 𝑖 . Thus, it holds odiff𝑜𝑝 (˜︁𝑝, 𝑝′)

= odiff𝑜𝑝 (𝑝1, 𝑝𝑙+1) ≤ odiff𝑜𝑝 (𝑝1, 𝑝2) + · · · + odiff𝑜𝑝 (𝑝𝑙 , 𝑝𝑙+1)
≤ I𝑜𝑝 (𝑟1) + · · · + I𝑜𝑝 (𝑟 𝑙 ) ≤ 𝑚𝑎𝑥𝑖∈[1,𝑙 ]I𝑜𝑝 (𝑟 𝑖 ) × 𝑙

≤ 𝑚𝑎𝑥𝑟 ∈RI𝑜𝑝 (𝑟 ) × 𝑙 =𝑚𝑎𝑥𝑟 ∈RI𝑜𝑝 (𝑟 ) × |Φ∗ |.
Thus, H𝑜𝑝 (˜︁𝑝) is proven to be admissible. □

Moreover, H𝑜𝑝 (˜︁𝑝) is admissible for every operator 𝑜𝑝 in the
operator set O, thus, the heuristic function H(˜︁𝑝) can be further
tightened by setting: H(˜︁𝑝) = HO (˜︁𝑝) = max𝑜𝑝∈O{H𝑜𝑝 (˜︁𝑝)}.
4.2.4 Enhanced Heuristic Function H+. The heuristic function
HO (˜︁𝑝) is obviously not tight as it takes the maximum H𝑜𝑝 (˜︁𝑝)
among all possible operators. It means it only considers the number
of optimization rules relative to the changes of a specific operator,
and does not consider other operators in the query plans.
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Considering two query plans ˜︁𝑝 and 𝑝′ in Figure 8, it applies

CollapseProject and ExpandFilter optimization rules to transform
𝑝 to 𝑝′. The estimated number of rules is 1 as it takes a maximum
between H𝜋 (˜︁𝑝) = 1 and H𝜎 (˜︁𝑝) = 1. However, the changes of the
operators Project (𝜋 ) and Filter (𝜎) are independent, e.g., applying
CollapseProject and ExpandFilter separately. Logically, the estimated
minimum rule number should be the sum of H𝜋 (˜︁𝑝) and H𝜎 (˜︁𝑝).
Inspired by the above observation, we improve the tightness of the
heuristic function H(˜︁𝑝) by taking the rule influence on different
operators into account.

Definition 6 (Independent rule influence on operators).
Two heuristic functions of different operators H𝑜𝑝𝑖 (˜︁𝑝) and H𝑜𝑝 𝑗

(˜︁𝑝)
are independent iff ∄ 𝑟 ∈ R,I𝑜𝑝𝑖 (𝑟 ) > 0 ∧ I𝑜𝑝 𝑗

(𝑟 ) > 0.

Example. Considering all cases in Figure 8 and Figure 9, H𝜋 (˜︁𝑝)
and H𝜎 (˜︁𝑝) is independent, while H⊲⊳ (˜︁𝑝) and H𝑅 (˜︁𝑝) is not, since
𝑟3 affects both Join and Relation, as shown in Figure 9.

To identify the relationship of the heuristic functions among
different operators, we first compute the relationship table I∗ (𝑟 )
(see the exemplified table in Figure 9) by considering every 𝑜𝑝 in O,
then classify these operators into a set of groups via Definition 6,
i.e., G = {𝐺1,𝐺2, · · · ,𝐺𝑡 }. For any two operators 𝑜𝑝𝑖 and 𝑜𝑝 𝑗 in
the same group, their heuristic functions H𝑜𝑝𝑖 (˜︁𝑝) and H𝑜𝑝 𝑗

(˜︁𝑝)
are independent, For operators 𝑜𝑝𝑖 and 𝑜𝑝 𝑗 in different groups,
their heuristic functions H𝑜𝑝𝑖 (˜︁𝑝) and H𝑜𝑝 𝑗

(˜︁𝑝) are correlated. The
relationship table I∗ (𝑟 ) can be precomputed as it only relies on the
optimization rule properties. We last define the improved heuristic
function H+

O (˜︁𝑝) = max∀𝐺𝑖 ∈G{
∑︁
𝑜𝑝∈𝐺𝑖

H𝑜𝑝 (˜︁𝑝)} for 𝐴∗ algorithm.
We omit the admissible proof of H+

O (˜︁𝑝) as it is straightforward.

5 VISUAL ANALYSIS DESIGN
The query plans, optimization steps, and transformation logic are
provided after the processing of data preprocessing layer and trans-
formation logic computation layer in QOVIS. However, database
system developers face two major challenges in understanding and
diagnosing optimization issues: (i) the overwhelming number of
plans, steps, and logic in the query optimization procedure and (ii)
the complex interrelationships among them. Both (i) and (ii) ex-
ceed the cognitive abilities of humans to effectively understand and

analyze. To overcome these challenges, we propose a visualization-
assisted approach in QOVIS that enables users to perform their
analysis tasks efficiently and visually.

5.1 Task Analysis and Abstraction
Database system developers, i.e., the target users of QOVIS, per-
form analysis tasks when they are understanding and diagnosing
the optimizer. To design a visualization-assisted approach that fa-
cilitates them, it is crucial to determine these user tasks [29] and
abstract them into domain-independent terms [20].

5.1.1 User Task Analysis. The high-level goal of users is to identify
and investigate the optimization issues (i.e., transformation errors
and workflow errors) during query processing. To achieve this, users
perform several low-level analysis tasks. We conduct a scenario-
based task analysis [29] to determine the necessary user tasks. It is
based on the issues we collected from Apache Spark issue tracker
website [4]. We briefly summarize the identified tasks as follows.
(I) Plan analysis task. It is identifying the details of plans to
understand their semantics and verify their equivalence. The de-
tailed information includes operators, dependencies of operators
and arguments associated with each operator. Taking Figure 2 as an
example, the transformation error can be identified after performing
plan analysis tasks as Plan #1 and Plan #2 in it are not equivalent.
(II) Step analysis task. It is investigating the used optimization
steps in the optimizer to identify redundant steps and locate po-
sitions of errors. It includes step names, step hierarchy, and the
associated plans (i.e., input/output plans). For example, the work-
flow error can be easily identified in Figure 3 as it has a repeated
sequence of steps. Furthermore, the problematic steps can be found
by investigating the plans associated with them.
(III) Transformation logic analysis task. It is analyzing the
transformation logic among query plans to verify the correctness
of transformations and track the problematic operators/arguments.
For example, as shown in Figure 5, by checking the relationship
depicted explicitly by curves, the plan transformation can be easily
explained and verified.

5.1.2 User Task Abstraction. Based on the above commonly used
user analysis tasks, we next abstract them to three domain-independent
properties that the visualizations should effectively illustrate.
• Topology. It is involved in tasks (I) and (III). The visualization

design should provide a clear topology of the query plans, e.g.,
operators and the data dependency of two connected operators,
to illustrate the topological structure of the plans and highlight
the changes of operators/arguments among them.

• Hierarchy. It is involved in tasks (II) and (III). The hierarchy of
optimization steps should be visualized concisely to assist the
users in understanding the hierarchical structure of steps and
locating the associated query plans.

• Relationship. It is involved in the task (III). The transformation
logic among different operators should be visualized without
visual clutter, which helps the users to analyze the relationship
of the operators/arguments between adjacent plans and among
multiple plans and diagnose the optimization steps.



Figure 10: The visual analysis process for a workflow error (see Figure 3) in QOVIS

5.2 Visualization and Interaction Design
With our user tasks and abstracted visualization terms, we now
introduce our visual design. Our interface comprises three compo-
nents: trace hierarchy view, plan view, and transformation logic view.
The design follows an “overview+details” scheme, displaying both
overview and detailed views in separate presentation spaces [26].
Trace hierarchy view. This view serves as the overview and is
positioned at the top of the interface. It is designed to (i) illustrate
the steps and related plans during the optimization; and (ii) support
hierarchical exploration to enable long optimization trace analy-
sis. Figure 10(a) shows the trace hierarchy view in QOVIS with a
hierarchy-based sequence visualization [32, 38, 46].

It utilizes gray dots to represent plans and lines connecting these
dots to depict the steps that transform one plan into another. Step
names are displayed as texts on the lines. Figure 10(a) demonstrates
the highest level of a trace, comprising 4 major optimization steps:
Analysis, Optimization, Planning, AQE. Specifically, colors encode
steps, and the height of lines encodes the total number of optimiza-
tion steps under the current step. For instance, the Optimization
step has a higher line than the Planning step, indicating the Op-
timization step has more sub-steps. Furthermore, each step can
be expanded or collapsed by clicking the line to show or hide its
optimization steps. For example, when clicking the Optimization
step in Figure 10(a), all sub-steps will be placed under Optimization
step, see Figure 10(b), and the plans will be updated. Continuous
repeated steps are grouped and visualized as one, using a number
in a bracket to indicate the repetition time, shown as the red rec-
tangle in Figure 10(b). Given a large volume of steps and plans, the
trace hierarchy view enables developers to progressively explore
the optimization process in a top-down manner, thereby preventing
them from becoming overwhelmed by the vast amount of data.
Plan view. This view is embedded within the transformation logic
view to demonstrate a single plan with its detailed information. The

goal of the plan view is to intuitively display the topological struc-
ture of operators within a query plan, along with the arguments
of these operators. The query plan is visualized using a node-link
diagram, which is widely used to represent the topological structure
of tree data [8, 12, 14, 44, 46, 47, 51, 63]. As the dashed rectangle in
Figure 10(c) shows, the nodes present the operators, with their argu-
ments placed within these nodes. The nodes are arranged from top
to bottom and from left to right, to accurately depict parent-child
and sibling relationships. For large and complex plans, we simplify
the node by only visualizing the operator symbol and expanding it
when it needs to be further analyzed. This layout ensures consis-
tent position encoding of operators across adjacent plans and eases
change tracking in large and complex plans.
Transformation logic view. This view is located at the bottom
of the interface to show detailed plans. It is consistent with trace
hierarchy view. It visually presents transformation logic between
plans and guides users to identify the root causes of optimization
errors. The transformation logic view presents a sequence of plan
views with visible links showing transformation logic between ad-
jacent plans. These links are the results of the plan transformation
problem in Section 4.1. Initially, plans are displayed under the cor-
responding gray dots in the trace hierarchy view. When users click
a specific argument within a plan, purple links appear to show the
transformation logic of this argument. For example, as shown in
Figure 10(c), after clicking "_extra..." within the node in a red
rectangle, the transformation logic of this attribute is displayed by
purple lines among all plans. Lines are designed to avoid overlap-
ping with nodes and minimize crossings, which are key factors in
reducing visual clutter in graph visualizations [21, 64]. As shown in
Figure 10(d), links connecting the same operators in two plans are
depicted with purple dashed lines, and arrow buttons at both ends
allow users to jump directly past unchanged steps. Hovering over a
line highlights the transformation logic path in blue (Figure 10(c))
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Figure 11: The diagnosis process for a transformation error of DuckDB using QOVIS, where a subquery is pruned incorrectly.

and displays a tooltip with the optimization rules affecting the
argument (see (c1) in Figure 10(c)). The transformation logic view
simplifies tracking the evolution of a plan, its operators, and its
arguments from the initial plan, enabling users to quickly identify
issues and root causes within the optimization trace.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of QOVIS by conduct-
ing extensive experimental studies.

6.1 Case Study
In this section, we use QOVIS to analyze three real cases in Apache
Spark, Apache Hive, and DuckDB, respectively. All issues are re-
ported and fixed by the developers in the community. We provide
three other real-world cases of these systems in Appendix A at [9].

6.1.1 Loop Optimization in Apache Spark. Suppose the SQL query
in Figure 3(a) is running on Apache Spark 3.3.0 with the data schema
in Figure 3(a). Its trace hierarchy view is depicted in Figure 10(a),
which shows the overview of its query optimization trace.
Identify the error in the optimization trace. We can observe
that the height of the Optimization step, as the orange line shown in
Figure 10(a), is higher than the heights of the other three steps (i.e.,
Analysis, Planning, AQE). It means the Optimization step has a large
number of sub-steps. We next explore the details of theOptimization
step by expanding it, which are illustrated in Figure 10(b). The
repetition count of Operator Optimization before Inferring Filters
step is 100, which is obviously larger than the usual case. Thus, we
further investigate this abnormal step by clicking its triangle icon,
the result is visualized in Figure 10(c). Interestingly, the query plan
is not changed during the 100 optimization steps. Thus, there exists
a workflow error in the optimization trace, i.e., loop optimization.
Locate root cause of the error. To locate the root cause of the
loop optimization in the optimization trace, we investigate two
consecutive Operator Optimization before Inferring Filters steps,
as the dotted line shown in Figure 10(c). In particular, these two
consecutive steps incur two optimization loops, as illustrated in
Figure 10(d). Each loop consists of 4 optimization steps. We observe
that two Project operators are generated during theColumnPrunning

of the 1st loop, shown in the red rectangle of Figure 10(d). The right
Project operator is removed in RemoveNoopOperators of the 1st
loop. The left one is merged during the CollapseProject in the 2nd
loop, as the purple lines highlighted in Figure 10(d). In other words,
the ColumnPrunning step is eliminated by the CollapseProject and
RemoveNoopOperators steps during the query optimization trace,
which is the root cause of the above loop optimization issue.
6.1.2 Incorrect Subquery Pruning in DuckDB. It is a transformation
error of DuckDB v0.10.0, which is reported on its GitHub issue
page [5]. In particular, the SQL query in Figure 11(b) is equivalent
to selecting distinct values from table tbl (in Figure 11(a)). However,
DuckDB v0.10.0 returns [1,2,3,3], which is incorrect.
Identify the error in the optimization trace. We start our in-
vestigation by examining the optimization trace overview in Fig-
ure 11(c). We identify an incorrect transformation from the plan (d1)
to plan (d4). Obviously, the UNION and its associated right branch
of plan (d1) are pruned in (d4), which results in the loss of “distinct”
property of the UNION operator. Thus, there is a transformation
error in the Optimization step.
Locate root cause of the error. To identify the root cause of this
issue, we first expand Optimization step to examine its detailed
procedure in Figure 11(d). We trace the elimination of the right
branch of UNION by clicking operator arguments on it, such as the
predicate of the FILTER operator (highlighted by the red rectangle
in plan (d1)). After clicking the right arrow button associated with
this predicate, the view automatically scrolls to the next changed
step of this predicate, i.e., the filter_pushdown step. We find this
step is incorrectly implemented — transforming plan (d2) to (d3).
The bug is fixed by a patch for the filter_pushdown step [7]. This
fix matches our analysis and confirms the effectiveness of QOVIS.
6.1.3 Recursive Application of Optimization Steps in Apache Hive.
It is a workflow error in Apache Hive v4.0.0, which is reported on
its issue tracker website [1]. With the created tables by Figure 12(a),
the optimizer fails to compile the SQL query in Figure 12(b) and
throws an Out-Of-Memory (OOM) exception.
Identify the error in the optimization trace. Figure 12(c) shows
the overview of the optimization trace and the last step is not
finished before exiting, see the warning glyph. We thus expand
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SELECT tu.timeu, t3.num FROM
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UNION ALL
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JOIN t3 ON tu.timeu = t3.time3;

CREATE TABLE t1 (str STRING); CREATE TABLE t2 (time2 INT);
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(Plans are cut)

(0.$0) IN 
[CAST(unix_timestamp() 
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AND ... (212 more chars)
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(0.$0) IN 

[CAST(unix_timestamp() 
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(d3)
(0.$0) IN …

(9999+ more chars)

(d1)
Part of the
last plan

Figure 12: The diagnosis process for a workflow error of Apache Hive using QOVIS, where a loop occurs in the optimization.

and check this step, as depicted in Figure 12(d). In the rightmost
plan (see d1), we find a HiveFilter operator with an extremely large
predicate. By hovering over this predicate, a tooltip shows that
the string of it has more than 9,999 chars. Moreover, we find that
this predicate becomes larger and larger abnormally from a small
one during the optimization, see the tooltips (d3) and (d6). We thus
speculate that the expansion of this predicate results to the crash.
Locate root cause of the error. Clicking the problematic predicate
in HiveFilter operator in the last plan (d1), all related predicates of
different plan operators are highlighted and linked by purple lines
in Figure 12(d). By following these links, we observed a loop opti-
mization on this predicate. In the first loop, starting from plan (d2),
the problematic predicate is pushed down by HiveJoinPushTransi-
tivePredicatesRule step, see the solid purple line between (d2) and
(d4). Then it is merged to another HiveFilter operator to generate
(d5) by HiveFilterMergeRule step, see two solid purple lines between
(d4) and (d5). After executing six additional steps, plan (d7) is cre-
ated. Interestingly, plan (d7) is identical to the plan (d2), except the
HiveFilter operator with the problematic predicate. Subsequently,
the HiveJoinPushTransitivePredicatesRule step is repeatedly applied
to plan (d7), creating a new HiveFilter operator. This new operator
triggers an explosive expansion of the predicate in the next itera-
tion. It is a workflow error as it is caused by incorrect interactions
among five optimization steps, even though each step individually
is correct. As the description in the fix patch [3], all five steps are
modified to prevent the recursive loop.

6.2 User Study
In this section, we conduct a user study to verify whether users
can identify the errors/issues in the query optimization trace in less
time and with fewer errors. The user study details are at [15].
Comparedmethods. The traditional methods to analyze the query
optimization trace are based on logs. We denote them as LogSol. In
particular, participants analyze optimization logs via a text editor
with several interactive features, e.g., keyword searching. For our
solutions, we evaluated two versions of our proposal: (i) QOVIS,
which uses all techniques proposed in QOVIS, and (ii) QOVIS− ,

which is a constrained version of QOVIS by removing transforma-
tion logic view and related interaction in visual analysis layer.
Study participants. We recruited 24 participants (21 males and
3 females, aged 19 to 31) for our user study. These participants
include PhD students researching database systems and database
system developers working in the industry. All of them had prior
experience with database systems for about 4.7 years on average.
Twelve of them have experience in developing core components
(e.g., executor, optimizer) in database systems.
Studied cases. To evaluate QOVIS on various cases, we prepared
8 cases from three systems (i.e., Apache Spark, Apache Hive, and
DuckDB) for the user study. In particular, the queries in these cases
vary in join types, the number of joins (ranging from 1 to 4) and
the scalability of optimization steps (from 47 to 1044 steps). They
involve different features of optimizers, such as subquery rewrites
and hint processing. Five of them are real queries that include
optimization issues, i.e., workflow error and transformation error.
Study procedure and tasks. During the study, participants are
asked to perform designed tasks via a web-based system. Each study
lasts approximately two hours, beginning with a 40-minute tutorial.
During the tutorial, we introduce the motivation of study, back-
ground, and the visualization and interaction designs in QOVIS.
After that, participants conduct an exemplified study to familiarize
themselves with the interface and the tasks. Then, they perform 9
tasks within approximately 80 minutes. Finally, participants submit
their feedback and suggestions for QOVIS via a questionnaire. For
each participant, the first 6 tasks are created by assigning one of
three methods (LogSol, QOVIS− , and QOVIS) to 6 cases selected
from 8 cases. The assignments follow the Latin square design princi-
ple [39, 43] to ensure balance and unbiasedness. Participants use the
assigned method to analyze the cases and determine whether there
is an optimization error. The last 3 tasks focus on the three problem-
atic cases. Each participant needs to locate the root causes of them
with the previously assigned method. To complete each task, partic-
ipants answer a multiple-choice question (with 4 options), designed
following the guidelines in [70]. Additionally, participants respond
to a single-choice question (with 5 options) regarding their confi-
dence in their answers. The confidence levels are: “Not Confident”,
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Figure 13: Median time, mean error rates and mean confidence levels for all 3 methods on these tasks (× is the mean value). The
results strongly support the conclusion that QOVIS assists users in completing tasks in less time (𝑝 = 0.006 < 0.05) and with
fewer errors (𝑝 = 0.045 < 0.05), while users have the highest confidence score (3.52).

“Slightly Confident”, “Confident”, “Very Confident”, and “Extremely
Confident”. The system records the time taken, the answers for
each task, and the responses to the questionnaire.
Analysis method. The time and error are typical measurements in
the evaluation of user performance [37, 41]. The tested hypotheses
of the user study on LogSol, QOVIS− and QOVIS are:
• H1: in terms of efficiency, the time cost of the participants for

the user study is T (QOVIS) < T (QOVIS−) < T (LogSol).
• H2: in terms of accuracy, the accurate rate of the participants

for the user study is A(QOVIS) > A(QOVIS−) > A(LogSol).
We conduct traditional null hypothesis significance tests to eval-

uate these hypotheses. The normality of distribution for the col-
lected user study results is tested by the Shapiro-Wilk test [52] with
𝛼 = 5%. We next utilize non-parametric statistical tests [54] (i.e.,
one-tailed Wilcoxon signed-rank [66] tests with 𝛼 = 5%) on them as
the tested results above confirm that it is not a normal distribution.
The returned 𝑝-value shows the compatibility of null hypotheses
with the tested data, which 𝑝 < 0.05 means that there is strong
evidence against the null hypothesis; in other words, the tested
hypothesis is statistically significant.
Efficiency analysis. The top figure in Figure 13(a) utilizes the box-
plot to show the distribution of the median time participants took to
answer each task by using three different methods. The mean values
are marked by × within each bar. The time cost of the participants
using QOVIS (and QOVIS− ) is obviously smaller than that of using
LogSol. In particular, compared with LogSol, QOVIS and QOVIS−
reduce 31.4% and 16.0% time cost, respectively. The bottom chart
of Figure 13(a) illustrates the time difference between QOVIS (resp.
QOVIS−) and LogSol. Specifically, the median time cost of QOVIS
and QOVIS− is faster than LogSol by 174.21 and 88.71 seconds.
Moreover, QOVIS and QOVIS− are consistently faster than LogSol
in almost all (if not all) tested cases. It confirms the effectiveness of
QOVIS for all participants. The 𝑝-value for QOVIS is 0.006, which
strongly supports the conclusion that QOVIS assist users in com-
pleting tasks in less time. In addition, as shown in Figure 13(a), the
median time cost of QOVIS is less than its of QOVIS− . In general,
QOVIS is better than QOVIS− for the participants to explore opti-
mization issues. However, some participants report that QOVIS− is
more efficient in some special cases, as it visualizes fewer elements
so that it is easier to focus on key query plans.
Accuracy analysis. Figure 13(b) presents the error rates of par-
ticipants using three different methods. We say the answer is not

correct (i.e., the above reported “error rate”) when the participants
give the wrong answer to the task. It is clear that the participants
could identify the corresponding errors in the optimization trace
more accurately by using QOVIS and QOVIS− . In particular, the
mean error rates of QOVIS and QOVIS− are 0.343 and 0.338, re-
spectively. Both methods are obviously better than LogSol, which
has a mean error rate of 0.424, see the top figure in Figure 13(b).

The 𝑝-value for QOVIS is 0.045, which strongly supports the
conclusion that QOVIS assist users in completing tasks with few er-
rors. Interestingly, QOVIS also has a smaller box size than QOVIS− ,
which suggests that QOVIS has more consistent performance than
QOVIS− among all participants. It can also be confirmed by the
𝑝-values of the accuracy hypotheses for QOVIS and QOVIS− (i.e.,
0.045 < 0.074), which are depicted at the bottom of Figure 13(b).
Furthermore, the negative mean error difference per task shows
that QOVIS− and QOVIS effectively reduce the error rates.
Confidence analysis. Figure 13(c) illustrates the participants’ con-
fidence distribution of the three methods in the study. The confi-
dence levels are on a scale from 1 to 5, which correspond to “Not
Confident”, “Slightly Confident”, “Confident”, “Very Confident”, and
“Extremely Confident” respectively. The top chart in Figure 13(c)
shows that the confidence scores for LogSol range from 2 to 3, in-
dicating levels from “Slightly Confident” to “Confident”. However,
the confidence levels of the participants by using both QOVIS and
QOVIS− are from “Confident” to “Very Confident” as their scores
are consistently above 3. Comparing with LogSol, QOVIS and QO-
VIS− significantly enhance the confidence of the participants to
their answers for the study tasks, which is confirmed by the mean
difference (e.g., 0.89 and 0.88) in the bottom of Figure 13(c).
User feedback. All participants agree QOVIS is the most user-
friendly and efficient method among three competitors. For exam-
ple, the positive feedback highlights exploring with QOVIS reduces
the amount of data to analyze and enables participants to focus on
interested parts, which will be more efficient for large and complex
queries. Several participants also report that the system is hard to
use at first, and it is alleviated by practicing with more tasks.

6.3 Performance Study
In this section, we evaluate the performance of our proposed algo-
rithms (i.e., H0, H , and H+) for the plan transformation problem.
Test dataset. To obtain the test dataset for the plan transformation
problem, we collect query optimization traces by executing two
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Figure 14: The performance study result

categories of queries in Apache Spark 3.3.0: (i) 13 queries in the
SSB [45] with a scale factor of 1; and (ii) 6 real-world queries from
Apache Spark issue tracker website, 3 of them include optimization
issues. From the searching process of each transformation in these
traces, we randomly sample 1000 query plan pairs and compute their
minimum rule sequence using breadth-first search as ground truth.
The sequence length is evenly distributed from 1 to 10. We gather
both simple cases that are easier to characterize using our heuristic
functions (e.g., differ only in operator types) and difficult cases (e.g.,
differ in operator types, join order and operator arguments).
Experimental setup. We implement three algorithms in Python3
and run experiments on a server with a 3.80GHz Intel(R) Core i7-
10700K CPU and 64GB memory. The operating system is Ubuntu
20.04. For each plan pair, we run three different algorithms sepa-
rately and measure the time cost and the number of visited unique
plans. We use the number of visited plans to show the memory
consumption of each algorithm as the visited query plans are stored
in the main memory. The timeout is set as 1800 seconds per case as
it cannot find the rule sequence if there is a transformation error.
Result analysis. Figure 14 reports the performance of our devised
two heuristic functions (i.e., H and H+) against H0 by varying the
length of rule sequences from 1 to 10. The lines are cut whenever
more than 25% of cases with the same sequence lengths cannot be
completed within the timeout (shown as a colored vertical line).
Compared to H0, our proposed heuristic functions significantly
reduce the time cost, as depicted in Figure 14(a). In particular, the
transformation logic of all input plan pairs can be returned by
using our H+. The maximum time cost using H+ is 1032 seconds.
In addition, H0 times out when the sequence length exceeds 5. The
time cost of H0 increases exponentially with the rising sequence
length, which is consistent with our theoretical complexity analysis
(i.e., |R |𝑑 ). Figure 14(b) illustrates the number of visited query plans
for all three methods. As shown in Figure 14(b), the trend of unique
visited plans in each algorithm is consistent with its time cost. The
gap of the visited plans between H0 and our proposed methods
H and H+ becomes obvious when the sequence length is large.
Moreover, H+ always takes less time (resp. the number of visited
plans) than H due to the power of the enhanced heuristic function.

7 RELATEDWORK

Automatic Query Process Diagnosing. Many studies have been
proposed to automatically detect the issues in the relational data-
base management system (RDBMS) [18, 50, 59]. Rigger et al. [50]
focus on detecting logical bugs when the generated plans produce
incorrect results w.r.t the ground truth. Tang et al. [59] discover

logic bugs in RDBMS via the automated testing method. These
tools can identify issues in RDBMS, but they do not provide further
explanations for the issues. Moreover, they can only detect logic
bugs, and they cannot identify the errors and locate the root causes.
Interactive Query Optimization Investigation. Recently, sev-
eral research work are proposed to analyze the query optimization
process by involving domain experts [16, 34, 47, 48, 56–58, 63].
Many tools are also devised in the industry, e.g., Spark UI [12], Mi-
crosoft SQL Server Management Studio (SSMS) [8], and Tez UI [14].
OurQOVIS differs from them by three-fold: (i) these systems are not
designed to understand and diagnose the query optimizer system-
atically; (ii) they do not illustrate fine-grained optimization steps
and related plans; and (iii) QOVIS visualizes the transformation
logic among multiple intermediate query plans, which assists the
developers in identifying the root causes of the occurred errors.
Interactive Query Execution Investigation. Perfopticon [44],
QEVIS [53], and DHive [67] provide visual analytics interface with
coordinated views and flexible interactions, which allow users to
thoroughly observe and diagnose the query execution process. The
major difference of our work is that QOVIS focuses on the query
optimizer, which has not been studied by these existing work.
SQL Query and Query Plan Visualization. Many work focus on
improving the understanding of queries and query plans for the
database end users. The visualizations can illustrate the high-level
structure of queries in an intuitive way, so users can observe the
query logic easily [23, 31, 41]. QueryVis [41] and STRATISFIMAL
LAYOUT [28] develop a node-link diagram to visualize the query
logic to facilitate the query understanding and communication.
Query plans are one of the most straightforward ways to understand
the execution logic of a query, many tools [33, 44, 47, 48, 58, 63]
have been proposed to visualize them. For example, Starburst [33]
develops the Query Graph Model (QGM) to represent the query
plan in a graph structure. However, both SQL query and query plan
visualizations cannot be adapted to understand and diagnose the
query optimizer in our work.

8 CONCLUSION
In this work, we propose QOVIS to identify the bugs/errors and
locate their root causes in query optimizers. Specifically, it consists
of three layers: data preprocessing layer, transformation logic com-
putation layer, and visual analysis layer. It is generic as it only uses
the optimization step and query plans on the system log, and does
not rely on any specific designs of the underlying database systems.
To verify its generality, we utilize it to understand and diagnose
different query optimizers on three widely used systems (Apache
Spark, Apache Hive, and DuckDB). Two possible future research
directions are: (i) proposing other measurements to quantify the
difference between query plans; and (ii) supporting the analysis of
parameterized queries and large queries.
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