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2 Image Reconstruction
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4 Luc Van Gool, and Lei Zhang , Fellow, IEEE

5 Abstract—The depth images acquired by consumer depth sensors (e.g., Kinect and ToF) usually are of low resolution and insufficient

6 quality. One natural solution is to incorporate a high resolution RGB camera and exploit the statistical correlation of its data and depth.

7 In recent years, both optimization-based and learning-based approaches have been proposed to deal with the guided depth

8 reconstruction problems. In this paper, we introduce a weighted analysis sparse representation (WASR) model for guided depth image

9 enhancement, which can be considered a generalized formulation of a wide range of previous optimization-based models. We unfold

10 the optimization by the WASR model and conduct guided depth reconstruction with dynamically changed stage-wise operations. Such

11 a guidance strategy enables us to dynamically adjust the stage-wise operations that update the depth image, thus improving the

12 reconstruction quality and speed. To learn the stage-wise operations in a task-driven manner, we propose two parameterizations and

13 their corresponding methods: dynamic guidance with Gaussian RBF nonlinearity parameterization (DG-RBF) and dynamic guidance

14 with CNN nonlinearity parameterization (DG-CNN). The network structures of the proposed DG-RBF and DG-CNN methods are

15 designed with the the objective function of our WASR model in mind and the optimal network parameters are learned from paired

16 training data. Such optimization-inspired network architectures enable our models to leverage the previous expertise as well as take

17 benefit from training data. The effectiveness is validated for guided depth image super-resolution and for realistic depth image

18 reconstruction tasks using standard benchmarks. Our DG-RBF and DG-CNN methods achieve the best quantitative results (RMSE)

19 and better visual quality than the state-of-the-art approaches at the time of writing. The code is available at https://github.com/

20 ShuhangGu/GuidedDepthSR

Ç

21 1 INTRODUCTION

22 HIGH quality, dense depth images play an important role
23 inmany realworld applications such as humanpose esti-
24 mation [1], hand pose estimation [2], [3] and scene under-
25 standing [4]. Traditional depth sensing is mainly based on
26 stereo or lidar, coming with a high computational burden
27 and/or price. The recent proliferation of consumer depth
28 sensing products, e.g., RGB-D cameras and Time of Flight
29 (ToF) range sensors, offers a cheaper alternative to dense
30 depth measurements. However, the depth images generated
31 by such consumer depth sensors are of lower quality and reso-
32 lution. It therefore is of great interest whether depth image
33 enhancement can make up for those flaws [5], [6], [7], [8], [9],

34[10], [11]. To improve the quality of depth images, one cate-
35gory of methods [5], [6] utilize multiple images from the same
36scene to provide complementary information. Thesemethods,
37however, heavily rely on accurate calibration and are not
38applicable in dynamic environments. Another category of
39approaches [7], [8], [9], [11], [12] introduce structure informa-
40tion from a guidance image (for example, an RGB image) to
41improve the quality of the depth image. As in most cases the
42high quality RGB image can be acquired simultaneously with
43the depth image, such guided depth reconstruction has a
44wide range of applications [13].
45A key issue of guided depth enhancement is to appropri-
46ately exploit the structural scene information in the guidance
47image. By incorporating the guidance image in theweight cal-
48culating step, joint filtering methods [12], [14], [15], [16]
49directly transfer structural information from the intensity
50image to the depth image [17], [18]. Yet, due to the complex
51relationship between the local structures of intensity and
52depth, such simple joint filteringmethods are highly sensitive
53to the parameters, and often copy unrelated textures from the
54guidance image into the depth estimation. To better model
55the relationship between the intensity image and the depth
56image, optimization-based methods [7], [8], [9] adopt objec-
57tive functions to characterize their dependency. Although the
58limited number of parameters in these heuristic models has
59restricted their capacity, these elaborately designed models
60still capture certain aspects of the joint prior, and have deliv-
61ered highly competitive enhancement results. Recently, dis-
62criminative learning solutions [10], [19], [20], [21] have also
63been proposed to capture the complex relationships between
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of64 intensity and depth. Due to the unparalleled non-linear

65 modeling capacity of deep neural networks as well as the
66 paired training data, deep learning based methods [20], [21]
67 have achieved better enhancement performance than conven-
68 tional optimization-based approaches.
69 To deal with the guided depth reconstruction task, recent
70 solutions [19], [20], [21] utilize deep neural networks (DNN)
71 to build the mapping function from the low quality inputs
72 and the guidance images to the high quality reconstruction
73 results. As for other dense estimation tasks [22], [23], [24], an
74 appropriate network structure plays a crucial role in the suc-
75 cess of the DNN-based guided depth reconstruction system.
76 Recently, a large number of works [24], [25], [26], [27] have
77 shown that some successful optimization-based models
78 could provide useful guidelines for designing network archi-
79 tectures. By unrolling the optimization process of variational
80 or graphical models, network structures have been designed
81 to solve image denoising [25], [26], compressive sensing [28]
82 and semantic segmentation [24]. These networks employ
83 domain knowledge as well as paired training data and have
84 achieved state-of-the-art performance for different tasks. In
85 this paper, we analyze and generalize previous optimization-
86 based approaches, and propose better network structures to
87 deal with the guided depth reconstruction task.
88 Work related to this paper is that of Riegler et al. [29],
89 which unrolls the optimization steps of a non-local varia-
90 tional model [30] and proposes a primal-dual network
91 (PDN) to deal with the guided depth super-resolution task.
92 Yet, PDN follows the unrolled formula of the non-local regu-
93 larization model [30] strictly, and only adopts the pre-
94 defined operator (Huber norm) to penalize point-wise differ-
95 ences between depth pixels. As a result, the PDNmethod [29]
96 has limited flexibility to take full advantage of paired train-
97 ing data. In this paper, we propose amore flexible solution to
98 exploit paired training data as well as prior knowledge from
99 previous optimization-based models. We analyze previous

100 dependency modeling methods and generalize them as a
101 weighted analysis sparse representation regularization
102 (WASR) term. By unfolding the optimization process of the
103 WASR model, we get the formula of a stage-wise operation
104 for guided depth enhancement, and use it as departure point
105 for our network structure design. In Fig. 1, we provide a
106 flowchart of the general formula of the unfolded optimiza-
107 tion process of the WASR model. Each iteration of the opti-
108 mization algorithm can be regarded as a stage-wise
109 operation to enhance the depthmap.

110WASR is a generalized model which shares many of
111the characteristics common to previous optimization-based
112approaches [7], [31]. Unfolding its optimization process pro-
113vides us with a framework to leverage the previous expertise
114while leaving our model enough freedom to take full advan-
115tage of training data. With the general formula of the stage-
116wise operation established, we adopt two approaches to
117parameterize the operations. The first approach parameter-
118izes the unfolded WASR model in a direct way. Based on the
119unfolded optimization process, the stage-wise operations con-
120sist of simple convolutions and nonlinear functions. We learn
121the filters and nonlinear functions (parameterized as the sum-
122mation of Gaussian RBF kernels [25], [26]) for each stage-wise
123operation, in a task-driven manner. Although such model
124shares its formula for the optimization with a simple WASR
125model, its operations are changed dynamically to account for
126the depth enhancement. As a result, it can generate better
127enhancements in just a few stages. In the remainder of this
128paper, we denote this model as dynamic guidance with RBF
129nonlinearity parameterization (DG-RBF). An illustration of
130one stage of the DG-RBF operation can be found in Fig. 2.
131Besides the DG-RBF model, we also propose to parameter-
132ize the stage-wise operation in a loose way. In particular,
133we analyze the stage-wise operation’s formula and divide the
134operation into three sub-components: the depth encoder,
135the intensity encoder and the depth decoder. Instead of using
136one large filter and one nonlinear function to form the encoder
137and the decoder in the stage-wise operation, we use several
138layers of convolutional neural networks (CNN) to improve

Fig. 1. Illustration of the unfolded optimization process of a WASR model. The WASR model takes low quality depth estimation YY and guidance
intensity image GG as input, aims to achieve a high quality depth image XX. Each step of the optimization process can be termed as a stage-wise
operation. By dynamically changing the stage-wise operation, we construct the DG-RBF and DG-CNN model for fast and accurate guided depth
reconstruction.

Fig. 2. Illustration of one stage-wise operation in the DG-RBF model.
DG-RBF follows the unfolded optimization process of WASR strictly, the
current enhancement result xxt and the guidance image gg are first con-
volved with the corresponding L analysis filters, respectively. After a
nonlinear transform, the filtering responses of xxt and gg are combined via
an element-wise product, and further convolved with the L adjoint filters
to form the result with a regularization term. Finally, the results of regu-
larization and the fidelity terms are summarized to obtain the updated
result xxtþ1.
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of139 the capacity of each sub-component. The overall model of this

140 dynamic guidance with CNN nonlinearity parameterization
141 (DG-CNN) is designed based on the unfolded optimization
142 process of the WASR model, while its sub-components are
143 parameterized with powerful CNNs. As DG-CNN builds
144 upon the conventional optimization-based approach and the
145 recent advances in deep learning, it generates better enhance-
146 ment results than the existing methods. An illustration of a
147 two stage DG-CNN model can be found in Fig. 3, details of
148 the networkswill be introduced in Section 5.
149 The formula of the WASR model and some experimental
150 results of the DG-RBF method have been introduced in our
151 earlier conference paper [32]. In this paper, we provide
152 more information about the WASR model and DG-RBF
153 method, and provide the DG-CNN approach, a new param-
154 eterization of the WASR model. Due to its unparalleled non-
155 linearity modeling capacity, CNN based parameterization
156 often generates better enhancement results than the Gauss-
157 ian RBF based method, especially in challenging cases with
158 large zooming factors. Furthermore, the well optimized
159 deep learning tool box makes the CNN based method (DG-
160 CNN) more efficient than DG-RBF in both training and
161 testing.
162 The contributions of this paper are summarized as
163 follows:

164 � By analyzing previous guided depth enhancement
165 methods, we formulate the dependency modeling of
166 depth and RGB images as a weighted analysis sparse
167 representation (WASR) model. We unfold the opti-
168 mization process of the WASR objective function,
169 and propose a task-driven training strategy to learn
170 stage-wise dynamic guidance for different tasks. A
171 Gaussian RBF kernel nonlinearity modeling method
172 (DG-RBF) and a special CNN (DG-CNN) are trained
173 to conduct depth enhancement at each stage.
174 � We conduct detailed ablation experiments to analyze
175 the model hyper-parameters and network architec-
176 ture. The experimental results clearly demonstrate
177 the effectiveness of the optimization-inspired net-
178 work architecture design.
179 � Experimental results on depth image super-
180 resolution and noisy depth image reconstruction val-
181 idate the effectiveness of the proposed dynamic
182 guidance approach. The proposed algorithm
183 achieves the best quantitative and qualitative depth
184 enhancement results among the state-of-the-art
185 methods that we compared to.

186The rest of this paper is organized as follows. Section 2
187briefly introduces some related work. Section 3 analyzes pre-
188vious objective functions of guided depth enhancement
189approaches, and introduces the task-driven formulation of
190the guided depth enhancement task. By unrolling the optimi-
191zation process of the task-driven formulation, Sections 4 and 5
192introduce two parameterization approaches, i.e., parameter-
193ize the nonlinear operation in each step with Gaussian RBF
194kernels or parameterize each gradient-descent stagewith con-
195volutional neural networks. Section 6 conducts ablation
196experiments to analyze the model hyper-parameters and to
197show the advantage of the optimization-inspired network
198architecture design. Sections 7 and 8 provide experimental
199results of the different methods for guided depth super-
200resolution and enhancement. Section 9 discusses the DG-RBF
201andDG-CNNmodels. Section 10 concludes the paper.

2022 RELATED WORK

203In this section, we introduce related work. We start by briefly
204surveying the analysis representationmodel literature to then
205review prior guided depth enhancement methods. Finally,
206we discuss previous work on optimization-inspired network
207architecture design.

2082.1 Analysis Sparse Representation

209Sparse analysis representations have been widely applied in
210image processing and computer vision tasks [25], [26], [33],
211[34], [35], [36]. An analysis operator [37] operates on image
212patches or analysis filters [35], [38] operate on whole images
213to model the local structure of natural images. Compared
214with sparse synthesis representations, the analysis model
215adopts an alternative viewpoint for union-of-subspaces recon-
216struction by characterizing the complement subspace of sig-
217nals [39], and usually results inmore efficient solutions.
218Here we only consider the convolutional analysis repre-
219sentation, with one of its representative forms given by:

X̂X ¼ argmin
XX

LðXX;YY Þ þ
X

l

X
i
rlððkkl �XXÞiÞ; (1)

221221

222whereXX is the latent high quality image and YY is its degraded
223observation. � denotes the convolution operator, and ð�Þi
224denotes the value at position i. The penalty function rlð�Þ is
225introduced to characterize the analysis coefficients of latent
226estimation, which are generated by the analysis dictionaries
227fkklgl¼1;...;L in a convolutional manner. LðXX;YY Þ is the data
228fidelity term determined by the relationship between XX and
229its degraded observation YY . For example, for the task of

230Gaussian denoising, LðXX;YY Þ ¼ 1
2s2

kXX � YY k2F shows that the

231difference between XX and YY is zero mean white Gaussian

noise with standard deviation value s. In the remainder of

this paper, we denote rlððkkl �XXÞiÞ by rl;iðkkl �XXÞ for the pur-
pose of simplicity. For Gaussian denoising, one can simply let

LðXX;YY Þ ¼ 1
2s2

kXX � YY k2F .
232Sparse analysis representation has been studied for sev-
233eral decades. Rudin et al. proposed a total variation (TV)
234model [33], where the analysis filters are gradient operators
235and the penalty function is the ‘1-norm. Subsequently,
236many attempts were made to provide better analysis filters
237and penalty functions, and an emerging topic is to learn
238sparse models from training data. Zhu et al. [40] proposed a

Fig. 3. Illustration of DG-CNN structure (with two stage-wise operations)
for guided depth reconstruction. The light orange, purple and gray com-
ponents in the figure correspond to the depth encoder, the intensity
encoder and the joint decoder, respectively.
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239 FRAME model which aims to learn penalty functions for
240 predefined filters. Roth et al. [35] proposed a field-of-expert
241 (FoE) model in which analysis filters are learned for prede-
242 fined penalty functions. Although FRAME and FoE are orig-
243 inally introduced from a MRF perspective, they can also be
244 interpreted as analysis representation models [37]. Recently,
245 Schmidt et al. [25] and Chen et al. [26] suggested to model
246 the related functions with linear combinations of Gaussian
247 RBF kernels, and can learn both analysis filters and penalty
248 functions from training data. Moreover, by incorporating
249 the specific optimization methods, stage-wise parameters
250 can be learned in a task driven manner.
251 Despite their achievements in image restoration, most
252 existingmethods are used for learning analysis representation
253 of images from a single modality and cannot be applied to
254 guided depth image reconstruction. Kiechle et al. went a step
255 forward by introducing a bimodal analysis model to learn a
256 pair of analysis operators [19]. But the issue of explicit and
257 dynamic guidance from intensity images remains unad-
258 dressed in analysis representation learning. In this work, we
259 extend the analysis model by introducing a guided weight
260 function for modeling the guidance from intensity image and
261 by adopting a task-driven learning method to learn stage-
262 wise parameters for dynamic guidance.

263 2.2 Guided Depth Enhancement

264 The wide availability of consumer depth sensing equipment
265 has made depth enhancement an important application.
266 To estimate high quality depth images, guided depth
267 enhancement can incorporate an intensity image of the
268 same scene, as supplementary information, which can be
269 found on the Computer Society Digital Library at http://
270 doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2961672.
271 Based on the co-discontinuous assumption between the guid-
272 ance and target images, general joint filtering methods, such
273 as bilateral filters [16] and guided filters [17], can be directly
274 applied to transfer structural information from intensity to
275 depth images. Yet, due to the complex dependency between
276 depth and intensity, such simple joint filtering methods may
277 transfer irrelevant texture into the depth estimation.
278 To better model the dependency, the optimization based
279 methods combine the input image YY , the output imageXX and
280 the guidance image GG into an optimization model [7], [8], [9],
281 [31], [41]. In [7], Diebel and Thrun proposed an MRF-based
282 method to characterize the pixel-wise co-difference between
283 the depth and intensity images. Their prior potential function
284 is defined asX

i

X
j2NðiÞ fmðGGi �GGjÞðXXi �XXjÞ2; (2)

286286

287 where i and j are the pixel indexes of image, NðiÞ is the set
288 of neighboring index of i, and fmðzÞ ¼ expð�mz2Þ. Similar
289 weight functions have also been adopted in other models,
290 e.g., non-local mean (NLM) [8], for guided depth enhance-
291 ment. Besides pixel-wise differences, other cues such as
292 color, segmentation and edges, are also considered to
293 design proper weight functions. Instead of modifying the
294 weight function, Ham et al. [31] adopt Welsch’s function to
295 regularize the depth differencesX

i

X
j2NðiÞ fmðGGi �GGjÞð1� fnðXXi �XXjÞÞ=n: (3)297297

298Moreover, several hand-crafted high order models have
299also been proposed, to model the weight function and the
300depth regularizer [9].
301Recently, learning-based methods started to exploit train-
302ing data to enhance the results. To model the statistical
303dependency between the local structures of corresponding
304intensity and depth images, analysis [19] and synthesis [10]
305dictionary learning methods have been suggested in a data-
306driven manner. Taking the low quality depth image and the
307guidance intensity image as inputs, [20], [22], [29] directly
308train a CNN to generate the high quality enhanced output
309result.

3102.3 Optimization-Inspired Network
311Architecture Design

312The idea of unfolding the optimization or inference steps of
313variational model as neural networks has been investigated
314from different perspectives. Some early work [27], [42] pro-
315posed to only conduct a limited number of steps in the optimi-
316zation algorithm for the purpose of efficiency. Gregor et al.
317[42] shown that learning the filters and the mutual inhibition
318matrices of truncated versions of FISTA [43] and CoD [44]
319leads to a dramatic reduction in the number of iterations to
320reach a given code prediction error. Domke [27] proposed a
321truncated fitting approach which only runs a fixed number of
322iterations of an inference algorithm to combat computational
323complexity.
324In addition to the efficiency issue, recent works found
325that unfolding the inference steps of optimization algorithm
326also helps to increase model flexibility and improve the esti-
327mation results for different applications. Schmidt et al. [25]
328unfolded the inference process of conditional random field
329and proposed a shrinkage field approach to solve the image
330denoising problem. Chen et al. [26] proposed to learn time
331varying linear filters and penalties from a reaction-diffusion
332model point of view. Recently, Kobler et al. [45] explored
333links between variational energy minimization methods
334and deep learning approaches, and proposed a variational
335network for different image reconstruction tasks. Compared
336with exact minimization, unfolded networks are able to per-
337form different operations in each step [46]. Consequently,
338these methods [25], [26], [45], [46] achieved great improve-
339ments in both run-time and reconstruction performance
340over conventional models. Besides single image reconstruc-
341tion, the idea of optimization-inspired network architecture
342design has also been exploited in other tasks. To incorporate
343the CRF model in a CNN-based semantic segmentation
344method, Zheng et al. [24] unrolled the mean-field approxi-
345mate inference algorithm as a recurrent neural network.
346Their proposed CRF-RNN integrates a CRF model with
347CNNs, and achieved state-of-the-art performance on the
348semantic segmentation task. Compressive Sensing (CS) is
349an effective approach for fast Magnetic Resonance Imaging
350(MRI). To improve the MRI reconstruction accuracy and
351speed, Yang et al. [28] proposed an ADMM-Net, which is
352derived from the ADMM algorithm for optimizing a CS-
353based MRI model.
354In the field of guided depth super-resolution (SR),
355Riegler et al. [29] introduced a two-stage primal-dual network
356(PDN) approach. PDN [29] utilizes a fully convolutional
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357 network to estimate a coarse high resolution depth image, and
358 adopts an unrolled variational model to refine the coarse esti-
359 mation. The PDNmethod combines the advantages of a CNN
360 and variational methods to achieve top depth SR perfor-
361 mance. Nonetheless, PDN still strictly follows the optimiza-
362 tion steps of a concrete variational model, and has limited
363 capacity in adapting to the training data. The latest DNN-
364 based methods [20], [21] improved over the depth SR results
365 of PDN. In this paper, we generalize conventional guided
366 depth reconstruction models, and provide a more flexible
367 solution to benefit fromdomain knowledge and training data.

368 3 TASK-DRIVEN WASR MODEL

369 FOR DEPENDENCY MODELING

370 In this section, we first suggest a weighted analysis sparse
371 representation (WASR)model to introduce guidance informa-
372 tion from the intensity image. Then, a task-driven parameter
373 training formulation of the proposed model is derived for
374 training parameters in the objective function.

375 3.1 Weighted Analysis Regularization
376 for Dependency Modeling

377 For the conventional analysis sparse representation from
378 Eq. (1), the regularization term is only a function of the out-
379 put image XX. Actually, the models in Eqs. (2) and (3) can be
380 treated as special handcrafted analysis models, in which a
381 group of inter-pixel difference operators are used as the
382 analysis filters and the weight function on GG is introduced
383 for explicit guidance. Motivated by this observation, we
384 propose a generalized weighted analysis model for guided
385 depth reconstruction. Instead of regularizing the first order
386 inter-pixel differences, the proposed weighted analysis
387 model adopts high order filters to capture better the struc-
388 tural dependency between intensity and depth image

X
i

X
l
wl;iðGGÞrl;iðkkl �XXÞ; (4)

390390

391 where the weight for the lth analysis operator at position i is
392 denoted as wl;iðGGÞ. The weight function extracts information
393 from the guidance image GG to adaptively regularize the
394 analysis coefficients.
395 Eq. (4) is a generalized version of Eqs. (2) and (3). Like the
396 previousmethods,WASR aims to capture the co-discontinuous
397 property between depth and intensity images for better depth
398 reconstruction. Specifically, by extracting the local information
399 of the guidance image, theweight function in Eq. (4) adaptively
400 regularizes the penalty on the analysis coefficient of the depth
401 image, and consequently determines the locations of sharp
402 edges in the depth image. Analyzing previously proposed
403 guided depth enhancement methods [7], [8], [9] under our
404 WASR framework, we note that different weighting and pen-
405 alty functions have been suggested in a handcraftedmanner. In
406 the next subsection, we introduce the task-driven formulation
407 of the proposed WASR model, which provides a method to
408 learn better model parameters to fit the guided depth recon-
409 struction task.

410 3.2 Task-Driven Learning of WASR Parameters

411 Having the weighted analysis regularization term, the
412 depth enhancement can be achieved by solving

min
XX

LðXX;YY Þ þ
X

i

X
l
wl;iðGGÞrl;iðkkl �XXÞ; (5)

414414

415where the data fidelity term LðXX;YY Þ in Eq. (5) is specified
416by the depth reconstruction task to indicate the relationship
417between latent high quality estimation XX and the observa-
418tion YY . The WASR regularization term provides prior infor-
419mation to reconstruct the depth image and plays a crucial
420role to the reconstruction quality.
421Since the model parameters may vary for different tasks,
422we provide a task-driven formulation to learn task-specific
423parameters for Eq. (5) [47], [48].
424We denote by D ¼ fYY s;XXs

gt; GG
sgSs¼1 a training set of S

425samples, and by YY s, XXs
gt, and GGs the sth input depth image,

426ground truth depth image, and ground truth intensity
427image, respectively. Following [47], [48], the task-driven for-
428mulation can be written as a bi-level optimization problem

fr�l ; w�
l ; kk

�
l gLl¼1 ¼ arg min

frl;wl;kklgLl¼1

XS
s¼1

kXXs
gt �XXsk22

s:t: XXs ¼ argmin
XX

LðXX;YY sÞ þ
X
l

X
i

wl;iðGGsÞrl;iðkkl �XXÞ:

(6)
430430

431Eq. (6) optimizes the parameters in the objective function
432(5), makes the solution XXs of (5) as close (in terms of ‘2 dis-
433tance as chosen in (6)) as its corresponding ground truth
434imageXXs

gt.

4353.3 Dynamic Guidance With Unfolded WASR Model

436The lower-level problem in Eq. (6) defines an implicit func-
437tion on frl; wl; kklgl¼1���L, making the training problem very
438difficult to optimize. The high non-convexity of the lower-
439level problem further adds difficulty to obtaining the exact
440solution. Moreover, along with the enhancement procedure,
441more details of XXs will be recovered. Thus, instead of
442employing the same model parameters in all the iterations,
443by dynamically adjusting the model to better fit the recon-
444struction task both the efficiency and the enhancement
445result may benefit. To address this issue, we unfold the opti-
446mization process of the lower-level problem and train stage-
447wise operations for guided depth enhancement. Such stage-
448wise formulation not only reduces the difficulty of training,
449but also enables us to introduce the guidance information
450dynamically to cooperate with the newly updated estima-
451tionXXtþ1.
452To unfold the optimization process of (5), we assume that
453both the fidelity term LðXX;YY Þ and the penalty function
454rl;iðkkl �XXÞ are differentiable with respect to XX. Then, solv-
455ing (5) with gradient descent, the updated result XXtþ1 can
456be obtained by

XXtþ1 ¼
XXt � tt L0ðXXt; YY Þ þ

X
l
kk
t

l � WWt
lðGGÞ � PPt0

l ðkktl �XXtÞ� �� �
;

(7)
458458

459where L0ð�Þ is the derivative of the fidelity term, and tt is the
460step-length in step t. PPt0

l ðkktl �XXtÞ has the same size as
461kktl �XXt, and its value in position i is the derivative of the
462penalty function rt0l;iðkktl �XXtÞ. WWt

lðGGÞ is the corresponding
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463 weight function, and its value in position i is wt
l;iðGGÞ. kktl is

464 obtained by rotating kktl 180 degrees.
465 Eq. (7) enables us to write XXtþ1 as a function of the input
466 variables fXXt;GG; YY g. With ftt; frtl ; wt

l ; kk
t
lgLl¼1g, the function

467 determines one stage of operation which generates XXtþ1

468 from the current estimation XXt. Instead of solving Eq. (6)
469 which requires the operations in each step to be the same,
470 we propose to adopt different operations in each step. Con-
471 cretely, by allowing ftt; frtl ; wt

l ; kk
t
lgLl¼1g to be different in

472 each stage t, we adopt a series of stage-wise operations to
473 conduct the guided depth reconstruction. Compared with
474 keeping the model parameters unchanged and solving the
475 optimization problem in Eq. (5), such dynamic guidance
476 approach allows the proposed model to generate high qual-
477 ity depth estimations in several stages.
478 In order to get the optimal stage-wise operations, we pro-
479 pose to adopt a similar task-driven strategy as we intro-
480 duced in Eq. (6). In the next two sections, we introduce two
481 parameterization strategies for the stage-wise operation,
482 which enable us to learn optimal operations in a task-driven
483 manner.

484 4 LEARNED DYNAMIC GUIDANCE WITH RBF
485 KERNEL PARAMETERIZATION

486 In the previous section, we analyzed the WASR model and
487 analyzed the formula of the stage-wise operation for the
488 guided depth reconstruction. Based on Eq. (7), the ðtþ 1Þth
489 estimation XXtþ1 is determined by the current estimation XXt,
490 guidance image GG, observation YY and the stage-wise opera-
491 tions. In order to learn stage-wise operations, we adopt a
492 greedy training strategy to train the stage-wise operations
493 sequentially. Concretely, weminimize the difference between
494 XXgt and the new estimationXXtþ1 with respect to the operation
495 parameters. In this section, we introduce one parameteriza-
496 tion strategy of the stage-wise operation. We follow the for-
497 mula of Eq. (7) and parameterize the stage-wise operation of
498 the WASR model in a direct way. The derivation of the pen-
499 alty function is parameterized with a group of RBF kernels,
500 and we call the proposed model dynamic guidance with RBF
501 nonlinearity parameterization (DG-RBF).

502 4.1 Learning Step Length t

503 In Eq. (7), tt is the step length for the tth stage-wise opera-
504 tion. tt is a scalar and we can directly learn it without any
505 parameterization. However, as t affects both the two com-
506 ponents L0ðXXt; YY Þ and

P
lkk

t

l � WWt
lðGGÞ � PPt0

l ðkktl �XXtÞ� �
, cal-

507 culating its gradient with respect to the training loss is time
508 consuming. Since we will parameterize the prior term in
509 our DG-RBF model, the stage-variant step length for the
510 prior term can be absorbed into the parameterization of
511

P
lkk

t

l � WWt
lðGGÞ � PPt0

l ðkktl �XXtÞ� �
. Thus, in the proposed DG-

512 RBF model, we assume tt only affects the gradient of fidelity
513 term, i.e., XXtþ1 ¼ XXt � ttL0ðXXt; YY Þ �Plkk

t

l � WWt
lðGGÞ � PPt0

l

�
514 ðkktl �XXtÞÞ.

515 4.2 Parameterizing the Filter kk

516 kk in Eq. (7) are the analysis filters used to extract structural
517 information from the depth image. Previous works have
518 found that meaningful analysis filters often are zero-mean,
519 thus, we also parameterize the filters fkklgLl¼1 to ensure them

520to be zero-mean filters. Specifically, we require that each kkl
521is the summation of a zero-mean Discrete Cosine Transform
522(DCT) basis

kkl ¼
XI
i¼1

al;ibbi; (8)

524524

525where fbbigIi¼1 are the zero-mean DCT basis. The above

526parameterization helps us to constrain the filters fkktlgLl¼1 to
be zero-mean.

5274.3 Parameterizing the Penalty Functions r

528A good penalty function plays a crucial role in the success of
529analysis sparse representation models. Different functions
530have been suggested for generating sparse analysis coeffi-
531cients in conventional optimization models. In this paper,

532we parameterize frlð�ÞgLl¼1 to allow them to have more flexi-
533ble shapes. Actually, from Eq. (7) one can see that what we
534should parameterize is not the penalty function rtlðzÞ but
535the influence function rt0l ðzÞ. Here we write the influence
536function rt0l ðzÞ as

rt0l ðzÞ ¼
XM

j
btl;j exp

�ðz� mjÞ2
2s2

j

 !
; (9)

538538

539which is the summation of M Gaussian RBF kernels with
540centers mj and scalar factors sj. This formulation can pro-
541vide a group of highly flexible functions for image restora-
542tion [25], [26].
543The number M as well as the means fmjgMj¼1 and scaling

544factor s are the hyper-parameters of our model. The means

545fmjgMj¼1 determine the location of the kernels and the scaling

546factors their band width. The two parameters cooperate
547to determine the flexibility and cover range of the
548parameterization.

5494.4 Parameterizing the Weight Functions w

550As we have analyzed in Section 3.1, the weight function
551extracts local structures from the intensity image to adaptively
552regularize the penalty of the depth analysis coefficients. In
553previous hand-crafted models, some simple weight functions
554have been suggested to capture the co-difference of the depth
555and intensity images. In this paper, we adopt a similar form
556which utilizes filters to extract local structures of the intensity
557image to adaptively regularize the depth discontinuities.
558However, although the intensity and the depth images
559arise from the same scene and are strongly dependent, the
560values in the two images have different physical meaning.
561For example, a black box in front of a white wall or a gray
562box in front of a black wall may correspond to the same
563depth map but totally different edge gradients for the inten-
564sity images. Therefore, the weight function should be able
565to avoid the interference of such structure-unrelated inten-
566sity information, while extracting useful salient structures
567to help the depth map locate its discontinuities. To this end,
568the intensity map is locally normalized, to avoid the effect
569of different intensity magnitude. Specifically, given the vec-
570torization of the guided intensity image gg, we introduce the
571operator RRi to extract the local patch at position i by RRigg.
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572 The local normalization of RRigg can then be attained by

573 eei ¼ RRigg
jjRRiggjj2.

574 With eei, we define the weight function for the lth analysis
575 operator bbl at position i as

wl;iðGGÞ ¼ exp �ðggTl eeiÞ2
� �

: (10)
577577

578 The analysis operator gg l can serve as a special local struc-
579 ture detector. If the local normalized patch eei contains local
580 structures such as edges, wl;iðGGÞ will be very small to
581 encourage that the depth patch exhibits the corresponding
582 local structure.

583 4.5 Training of DG-RBF Parameters

584 After parameterization, the stage-wise operations can be

585 determined by the parameters QQt ¼ ftt; faat
l ;bb

t
l ; gg

t
lgLl¼1g.

586 Plugging XXs;tþ1ðXXt;GG; YY ;QQtÞ into the task-driven formula

587 of Eq. (6), we are able to learn optimal stage-wise operations
588 by minimizing

QQt ¼ argmin
QQ

1

2

XS

s¼1
jjXXs

gt �XXs;tþ1ðXXt;GGs; YY s;QQtÞjj2F :

(11)
590590

591 The gradient of the loss function with respect to the parame-
592 tersQQt ¼ ftt; faat

l ;bb
t
l ; gg

t
lgLl¼1g can be achieved by the chain rule

@lossðXXgt;XX
tþ1Þ

@QQt ¼ @lossðXXgt;XX
tþ1Þ

@XXtþ1
� @XX

tþ1

@QQt : (12)

594594

595 The detailed derivations of @XXtþ1

@QQt are introduced in the

596 Appendix, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2019.2961672.
597 Having the gradients, we learn the parameters for each
598 stage with the limited-memory Broyden-Fletcher-Goldfarb-
599 Shanno (L-BFGS) algorithm [49], [50]. We learn the stage-wise
600 parameters in a greedy manner. Given initialization XX0, we
601 learn one stage operator to generate estimation XX1 by mini-
602 mizing the difference betweenXX1 and target ground truthXX;
603 then, taking XX1 as input, we learn another operation for esti-
604 mating XX2 in the same manner. For both the noise-free and
605 noisy depth SR experiments, we use the results of bicubic
606 interpolation as the initialization of XX0. The initialization of
607 XX0 for other tasks will be introduced in each experiment. We
608 experimentally found that we can get very good results after
609 only a few stages of processing, i.e., T . After greedy learning,
610 joint training is utilized to learn the parameters of the T stages
611 simultaneously. All the experiments for the DG-RBF model
612 were implemented with Matlab. We used the L-BFGS toolbox
613 provided by [50] to train our model. For all the models, we
614 first conduct 200 iterations of the L-BFGS algorithm for each
615 stage in a greedy manner, and then perform another 50 itera-
616 tions on all the stages simultaneously. More implementation
617 details are given in the experiments sections.

618 5 LEARNED DYNAMIC GUIDANCE WITH CNN

619 In the previous section, we proposed a DG-RBF model which
620 parameterizes the filters as well as the nonlinear functions in
621 the stage-wise operations introduced in Eq. (7). By exploring

622the dynamic guidance strategy and learning optimal parame-
623ters in a task-driven manner, the proposed DG-RBF method
624greatly improves the flexibility of the original WASR model.
625But sinceDG-RBF follows the formula of stage-wise operation
626strictly - which only conducts one group of convolutions and
627nonlinear functions on the depth image - we adopted a group
628of RBF kernels to parameterize the penalty function in order
629to have a strong capacity towards nonlinearities. Furthermore,
630we utilize the L-BFGS algorithm [49] to train DG-RBF and it
631needs to calculate the gradient on the whole training set. The
632above reasons render the training of the complex DG-RBF
633model on a large training dataset time and memory consum-
634ing. In this section, we provide another parameterization of
635stage-wise operations for the guided depth enhancement.
636Specifically, we analyze the formula of Eq. (7) and use convo-
637lutional neural networks (CNNs) to approximate the stage-
638wise operations in amore flexibleway.

6395.1 Stage-Wise Operation With Intensity/Depth
640Encoder and Joint Decoder

641In Eq. (7), the difference between the current estimationXXt and
642the new estimationXXtþ1 consists of two components. The first
643component L0ðXXt; YY Þ comes from the data fidelity term of the
644objective function. It put the residual between current estima-
645tion and input observation back into the next estimation. The
646second component

P
lkk

t

l � WWt
lðGGÞ � PPt0

l ðkktl �XXtÞ� �
comes

647from the regularization term. It extracts high-dimensional fea-
648tures (analysis coefficients in the case of the WASR model)
649from the local structure in the image, and adjusts the features
650in the feature space to let the new estimation better fit the prior
651model.
652When the optimization algorithm is adopted to minimize
653the objective function, the backward part L0ðXXt; YY Þ prevents
654the estimation XX to move too far away from the observation
655YY , and the algorithm converges when the two components
656get in balance. Since, in this paper, only a fixed number of
657stage-wise operations are performed to generate the high
658quality estimation, the backward part can be ignored for the
659purpose of simplicity. By ignoring the fidelity part, we get the
660following residual formulation of the stage-wise operation

XXtþ1 ¼ XXt þ
X

l
kk
t

l � WWt
lðGGÞ � PPt0

l ðkktl �XXtÞ� �
: (13)

662662

663In the residual component, an intensity encoder WWt
lðGGÞ, a

664depth encoder rt0l ðXXtÞ and a joint decoder
P

l kk
t

l � ð�Þ cooper-
665ate to adjust the local structure in the current estimation. In
666particular, the intensity encoder and depth encoder extract
667local features from the intensity and depth images, resp.;
668then, after generating the joint coefficients with the point-wise
669product operator, the joint decoder reconstructs the final
670residual estimation. Denoting the intensity encoder, depth
671encoder and joint decoder by FIð�Þ, FDð�Þ and FRð�Þ, we can
672rewrite Eq. (13) in the form

XXtþ1 ¼ XXt þ FR FD XXt
� �� FI GGð Þ� �

: (14)
674674

675In our DG-CNN model, we formulate the encoders and
676decoders in Eq. (14) with several layers of CNN. Compared
677with the DG-RBF model, the CNN parameterization is able to
678provide more powerful encoders and decoders with stronger
679nonlinear modeling capacity. Furthermore, well optimized
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680 CNN toolboxes enable us to train the DG-CNN model easily
681 on large training datasets.

682 5.2 DG-CNN Network Structure

683 Based on our analysis from the previous Section 5.1, the stage-
684 wise operation for theWASR can be formulatedwith an inten-
685 sity encoder, a depth encoder and a joint decoder. To parame-
686 terize the encoder and decoder with a CNN, one simple
687 solution is to directly use several convolution and activation
688 layers to form the encoder and the decoder, and to gradually
689 improve the quality of the depth estimations fXXtgt¼1;...;T .
690 Yet, such a strategy reconstructs the joint features back into
691 the image domain where several stages of operation are
692 concatenated together and the reconstructed image acts as a
693 bottleneck in the deep neural network. The bottlenecks may
694 affect the training speed of the neural networks. Furthermore,
695 reconstructing the feature maps back into the image domain
696 impedes the increasing of the network perceptual field. In
697 order to avoid the appearance of bottlenecks in the networks,
698 for the multi-stage DG-CNN model, the tth depth encoder
699 takes the feature maps of the ðt� 1Þth joint decoder as input.
700 Furthermore, in order to increase the perceptual field of the
701 intensity encoder, the intensity encoder in each stage takes the
702 output feature maps from previous intensity encoder as well
703 as the guidance intensity image as inputs. An illustration of a
704 two-stage DG-CNNmodel can be found in Fig. 3. The orange,
705 the purple and the gray blocks represent the depth encoder,
706 the intensity encoder and the joint decoder, respectively. Each
707 encoder consists of 5 convolution, batch normalization [51]
708 and leakyReLU [52] layers, and eachdecoder consists of 3 con-
709 volution, batch normalization [51] and leakyReLU [52] layers.
710 Each convolution layer generate 32 feature maps. Except for
711 the first depth encoder block which takes the observed depth
712 image as input, all the remaining depth encoders take the fea-
713 ture maps of the joint decoder as input. Another convolution
714 layer (red rectangle in Fig. 3) is utilized to reconstruct the fea-
715 turemaps of the decoder back into the image domain.
716 All the DG-CNN experiments conducted in this paper
717 were implemented with the Pytorch toolbox [53]. We train
718 our model with the Adam [54] solver (b1 = 0.9), and set the
719 weight decay parameter to 10�4. We start from a learning
720 rate of 0.001 and divide it by 10 every 105 iterations. The
721 total number of training iterations is 3� 105. An Nvidia
722 Titan XP GPU was utilized to train our model. More details
723 on each dataset can be found in the experiments sections.

724 6 MODEL ANALYSIS AND DISCUSSION

725 Before comparing the proposed method with state-of-the-
726 art approaches, we conduct ablation experiments to analyze
727 the effect of hyper-parameters and network architecture
728 design choices. We first introduce the general setting of our
729 ablation experiments, and then present experimental results
730 to analyze the proposed DG-RBF and DG-CNN models,
731 respectively.

732 6.1 Experimental Setting

733 Weutilize the commonly usedMiddlebury dataset [55] to con-
734 duct our ablation experiments. Following the experimental
735 settings from previous works [9], [31], we use the Art, Books
736 and Moebius images as testing images. To prepare training

737data, we use 46 depth and intensity image pairs from theMid-
738dlebury dataset [55] and augment themwith flipping, rotation
739and scaling operations [56]. Both the training and testing sam-
740ples are generated by a bicubic resizing of the high quality
741depthmaps. The training and testing datasets are strictly sepa-
742rated, and there is no overlap between the scenes of the train-
743ing and testing images. To train our DG-RBF model, we crop
7443,000 small images of resolution 72�72 from the 46 images as
745training set.We did not use all the patches from the 46 training
746images because the L-BFGSmethod [49] used to train DG-RBF
747needs to calculate the gradient on the whole training set, and
748training the model on large datasets is time and memory
749expensive. In comparison, for our DG-CNN model, all the 46
750large images and their augmentations have been adopted as
751the training dataset. In each training iteration, we randomly
752crop 32 136� 136 patches from the 46 images to train our
753model. Although the augmentation improves the structural
754variety of the training samples, the training data is still not
755diverse enough as the color palette is rather poor. In our
756experiments, we use only the gray intensity image to guide the
757reconstruction.

7586.2 Analyzing DG-RBF

7596.2.1 Initialization and Model Regularization

760Before investigating the hyper-parameters of our model, we
761study two key aspects of the proposed method: the initiali-
762zation and the model regularization. Specifically, DG-RBF
763has two main groups of parameters for the filters and the
764non-linear functions, and we investigated the effect of ini-
765tialization approaches for both parameter groups. Further-
766more, we follow [26] and require the filters in DG-RBF to be
767zero-mean. We also provide experimental results to show
768the effect of the zero-mean constraint.
769To analyze the effect of zero-mean constraint, we compare
770two parameterization schemes for the filters. The first scheme
771adopts the zero-mean constraint and requires the filters to be
772the summation of zero-mean DCT filters. While, the second
773scheme does not regularize the filters, and directly learns the
774values in the filters. For both the filters and the penalty func-
775tions, we test two kinds of initialization approaches: random
776initialization and model-inspired initialization. In particular,
777we initialize the filters with random values or point-wise dif-
778ference filters, as widely done in previous optimization-based
779depth enhancement work; and initialize the penalty functions
780with random values or the commonly used influence function
781as adopted in [26].We adopt different initialization settings to
782train our DG-RBF models to super-resolve the testing images
783with a factor 8. We train a 5-stage DG-RBF model with 48
7847� 7 filters on 3,000 training samples. We first initialize the
785penalty function with the commonly used influence function
786and evaluate the effect of initialization and parameterization
787methods on the filters. The experimental results are reported
788in Table 1. The initialization approach as well as the parame-
789terizationmethod for the filters greatly affect the performance
790of the unrolled network. Domain knowledge such as zero-
791mean filters and point-wise difference filters are beneficial in
792designing aswell as initializing network structures.
793The effect of the initialization method for the penalty func-
794tions is not as significant as that for the filters, changing from
795the model-inspired initialization to random initialization will
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797 dataset [55] from 2.25 to 2.37.

798 6.2.2 Filter Size and Number

799 After investigating the effect of initialization and model regu-
800 larization, we study the most important hyper-parameters for
801 DG-RBF: the filter size and the number of filters.We trainDG-
802 RBF models with different numbers of filters as well as filter
803 sizes with 3,000 training samples. We utilize the same initiali-
804 zation and parameterization scheme for all the models. The
805 SR results aswell as the average inference time on the 3 testing
806 images [55] of different models are shown in Table 2. The
807 experiments were conduct in the Matlab environment and
808 we test different models on a PC with Intel i7-4790 CPU. All
809 the models utilize 5 stage-wise operations to super-resolve
810 the testing imageswith a factor 8. Generally, increasing the fil-
811 ter number and size both help to improve the SRperformance.
812 The filter size plays a more import role than the number of fil-
813 ters in the DG-RBF model. In the remainder of this paper, we
814 set the filter size to 9� 9 and filter number to 24, seeking a bal-
815 ance between performance and speed.

816 6.2.3 Number of RBF Kernels

817 In theDG-RBFmodel, the parameterization of non-linear pen-
818 alty functions is the same as in [26]. In [26], 65 kernels with
819 scaling parameter 10 have been utilized to cover the activation
820 range between -310 to 310. This said, we experimentally found
821 that the penalty functions work well even when we only
822 parameterize a smaller activation range. The SR results with
823 different kernel numbers and scaling factors are reported in
824 Table 3. All the models utilize 5 stage-wise operations to
825 super-resolve the testing imageswith a factor 8. The proposed
826 DG-RBF model achieves good results for a wide range of ker-
827 nel numbers. It is robust to this hyper-parameter. For similar
828 parameterization ranges, scaling factors 2.5, 5 and 10 can
829 achieve similar SR results and a scaling factor 20 will lead to a
830 performance drop due to insufficient parameterization accu-
831 racy. In addition, although DG-RBF cannot achieve good SR
832 performance with very small parameterization range, we do
833 not need to parameterize the penalty function for the

834complete possible activation range. Outside [-170, 170], a fur-
835ther enlargement of the parameterization range will not
836improve the SR results. Due to the above reasons, we utilize
83733 kernels with scaling factor 10 to parameterize the penalty
838functions used inDG-RBFmethod.

8396.2.4 Stage Number

840Another important hyper-parameter in the proposedDG-RBF
841model is the number of stages. As we utilize the L-BFGS [49]
842algorithm to train the stage-wise operations in a greedy man-
843ner, more stages can always lead to smaller training error. Yet,
844despite reducing the training error, adopting more stage-wise
845operations will also introduce more computational burden
846and increase the risk of over-fitting. In Table 4, we present the
847average RMSE and run-time on the three testing images in the
848Middlebury dataset [55]. For simple cases such as zooming
849factors 2 and 4, DG-RBF is able to achieve good results with a
850small number of stage-wise operations; whereas for challeng-
851ing cases the proposed model needs more operations to
852deliver a good estimation. As the DG-RBF model provides a
853very easy way to vary computational complexity, we propose
854to adopt different operation points to process different zoom-
855ing factors. For SR experiments with zooming factor 2, 4, 8
856and 16, we utilize 3, 4, 5 and 6 stage-wise operations, respec-
857tively, in the DG-RBF model. Note that we adopt different
858numbers of stage-wise operations for the purpose of balanc-
859ing the computational burden and the reconstruction perfor-
860mance. As can be found in Table 4, with a large stage number,
861DR-RBF is able to achieve high quality depth reconstruction
862results for different zooming factors.

8636.3 Analyzing DG-CNN

864Our DG-CNN also has a large number of hyper-parameters,
865including the feature map number and filter size, as well as
866training parameters such as the learning rate. For most of
867these parameters, we follow some commonly used settings in
868other CNN based approaches, and did not conduct experi-
869ments to analyze the effect of these parameters. In this subsec-
870tion, we first present the depth reconstruction performance of

TABLE 1
Experimental Results (Avg. RMSE) on the

3 Test Images [56] With Different Initialization
Methods and Constraints for the Filters

Random Init. Model Init.

W/ Zero-mean Cons. 3.00 2.25
W/o Zero-mean Cons. 3.22 3.23

TABLE 2
Experimental Results (Avg. RMSE / Runtime [s]) on the

3 Testing Images [56] by DG-RBF Variations With
Different Filter Sizes and Numbers

F. num. 12 24 48 72

5� 5 2.47 / 3.29s 2.45 / 5.70s 2.42 / 10.56s 2.39 / 15.88s
7� 7 2.34 / 4.69s 2.32 / 8.02s 2.25 / 14.77s 2.28 / 21.57s
9� 9 2.28 / 6.52s 2.18 / 11.26s 2.14 / 20.40s 2.15 / 29.31s
11� 11 2.29 / 9.03s 2.16 / 15.27s 2.13 / 28.32s 2.13 / 41.98s

TABLE 3
Experimental Results (Avg. RMSE) on the

3 Test Images [56] by DG-RBF Variations With
Different Penalty Parameterization Approaches

TABLE 4
Experimental Results (Avg. RMSE and Run-Time)
on the 3 Testing Images [56] by DG-RBF Variations

With Different Stage Numbers

Stage S=1 S=2 S=3 S=4 S=5 S=6 S=7 S=8

�2 0.84 0.73 0.73 0.74 0.74 0.74 0.74 0.75
�4 1.74 1.39 1.29 1.27 1.27 1.27 1.27 1.27
�8 2.88 2.40 2.26 2.22 2.18 2.18 2.19 2.19
�16 5.73 4.08 3.82 3.76 3.74 3.73 3.72 3.72
Time [s] 3.65 5.50 7.36 9.10 10.93 12.80 14.55 16.32
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872 properties of the proposed DG-CNN, which come from the
873 unrolled optimization steps of theWASRmodel. Our ablation
874 experiments show the advantages of the optimization-
875 inspired network architecture design.

876 6.3.1 Stage Number

877 We evaluate the proposed DG-CNN method with different
878 stage numbers (from one to four) on the Middlebury data set.
879 Table 5 summarizes the SR results for all the different factors
880 with different numbers of stage-wise operations. Similarly to
881 our DG-RBFmodel, with complex networks (more stage-wise
882 operations), the DG-CNN is able to achieve good results on all
883 the zooming factors. For simple caseswith small zooming fac-
884 tors a large number of stage-wise operations is not necessary
885 and the DG-CNN is able to deliver high quality results with a
886 small number of stage-wise operations. The same as for the
887 DG-RBF model, we adopt different numbers of stage-wise
888 operations in the DG-CNN for SR tasks with different zoom-
889 ing factors. For zooming factors 2, 4, 8 and 16, we utilize 1, 2, 3
890 and 4 stage-wise operations, respectively, in the proposed
891 DG-CNNmethod.

892 6.3.2 Stage-Wise Residual Learning

893 In each stage of the DG-CNN, we utilize encoder networks
894 fFI;FDg and a decoder network fFRg to approximate the dif-
895 ference between the current estimation and the next estimation
896 XXtþ1 �XXt. Each stage-wise operator can be seen as a special
897 residual block, which has been proved to be a highly effective
898 structure in deep neural networks [57]. In this part, we conduct
899 ablation experiments to show the advantage of stage-wise
900 residual learning. In particular, we compare the proposed net-
901 work architecture with two ablation architectures, which are
902 shown in Fig. 4. The first ablation network (Fig. 4a) adopts a
903 one-stage encoder-decoder network to estimate the residual
904 between the input and the target high quality depth image.
905 The second ablation network (Fig. 4b) adopts stage-wise oper-
906 ations but only contains a global skip connection between the
907 input and output image. For multi-stage networks with/with-
908 out stage-wise residual learning we utilize the same encoder-
909 decoder sub-networks, whereas for the single stage network

910we incorporate two times more convolutional layers in the
911encoder and decoder sub-networks. All three networks have
912the same computational complexity. The competing results of
913different networks can be found in Table 6, showing that the
914optimization-inspired stage-wise residual learning is benefi-
915cial for the guideddepth reconstruction task.

9166.3.3 Dependency Modeling

917WASR summarizes previous optimization-based methods
918and uses point-wise multiplication to combine the intensity
919and depth features. We adopt the multiplication strategy
920also in our DG-CNN network structure. Most of previous
921CNN-based guided depth reconstruction approaches [20],
922[21] use the concatenation operation to combine the inten-
923sity and depth features. Compared with concatenation, the
924point-wise multiplication helps to reduce the number of
925parameters as well as the computational burden of the net-
926work. By exchanging multiplication with concatenation,
927each stage-wise operation gets about 5 percent more param-
928eters and running time. Furthermore, as reported in Table 7,
929combining feature maps with multiplication instead of con-
930catenation achieves comparable or slightly better SR results
931on the Middlebury dataset.

9327 GUIDED DEPTH SUPER-RESOLUTION

933EXPERIMENTS

934In this section, we compare the proposedmethodswith other
935depth super-resolution methods. Two commonly used data-
936sets (Middlebury [55] and NYU [4]) are utilized to evaluate
937the depth upsampling performance of the proposed meth-
938ods. Besides the baseline bicubic and bilinear upsampling
939methods, we compare the proposed methods with a variety
940of guided depth super-resolution methods. The comparison
941methods include three filtering based methods [17], [58],

TABLE 5
Experimental Results (Avg. RMSE) on the

3 Testing Images [56] by DG-CNN Variations With
Different Numbers of Stage-Wise Sub-Networks

Stage S=1 S=2 S=3 S=4 S=5

�2 0.45 0.43 0.43 0.43 0.42
�4 0.88 0.84 0.82 0.82 0.81
�8 1.57 1.42 1.35 1.37 1.35
�16 2.80 2.50 2.40 2.36 2.36

Fig. 4. Ablation networks used to validate the effectiveness of the stage-wise residual learning structure. More details can be found in Section 6.3.2.

TABLE 6
Experimental Results (Avg. RMSE) on the 3 Testing Images [56]
by DG-CNN and Ablation Network Architectures Shown in Fig. 4

Single Stage
+ Global Res.

Multi-Stage
+ Global Res.

Multi-Stage
+ Stage-wise Res.

1.42 1.53 1.35

TABLE 7
Experimental Results (Avg. RMSE) on the 3

Testining Images [56] by DG-CNN Variations With Different
Feature Maps Combinations

Feature maps combination �2 �4 �8 �16

concatenation 0.44 0.86 1.36 2.41
multiplication 0.45 0.84 1.35 2.36
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942 [61], an MRF based optimization method [7], a non-local
943 mean regularized depth upsampling method [8], a total gen-
944 eralized variation (TGV) method [9], the joint static and
945 dynamic filtering (SDF) method [60], and the recently
946 proposed CNN-based deep joint filtering method [20] and
947 primal-dual network (PDN) [29]. In [21], Hui et al. also evalu-
948 ated their proposedMSG-Net on the 3 testining images in the
949 Middlebury [55] dataset. However, Hui et al. [21] utilized
950 the Gaussian blur + downsampling operation to generate the
951 low resolution input images, which is considered to be easier
952 than the bicubic downsampling setting in the SR literature
953 [62]. Here we also reported the performance by theMSG-Net
954 [21] for reference. Details about the experimental setup will
955 be introduced in the following subsections.

956 7.1 Super-Resolution Results on the
957 Middlebury Dataset

958 Following the experimental setting of [9], we conduct super-
959 resolution experimentswith both the noise-free and noisy low

960resolution depth map for four zooming factors, i.e., 2, 4, 8 and
96116. The settings of the noise-free experiment have been intro-
962duced in Section 6. To compare different methods with noisy
963low-resolution inputs, we utilize the testing images provided
964in [8]. To synthesize real noisy depth images, Park et al. [8]
965added conditional Gaussian noise to the low resolution depth
966maps. The Gaussian noise variance depends on the distance
967between the camera and the scene, and Park et al. did not pro-
968vide the details for the noise hyper-parameters. To generate
969training data, we add i.i.d Gaussian white noise with s ¼ 6 to
970the 46 clean images used in our noise-free experiments.
971The super-resolution results on the 3 noise-free testing
972images of the different methods are shown in Table 8. The
973proposed DG-RBF and DG-CNN methods consistently
974show their advantage over the competing methods. The
975proposed DG-RBF method outperforms all the optimiza-
976tion-based approaches as well as a recently proposed CNN-
977based method DJF [20]. DG-CNN achieves the best results
978on all the 3 images with different zooming factors. In Fig. 5,

TABLE 8
Experimental Results (RMSE) on the 3 Noise-Free Test Images

Fig. 5. Depth restoration results of different methods based on noise-free data (Moebius).
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979 we give visual examples of the super-resolution results for
980 the Moebius image with zooming factor 16. In the figure we
981 can see that the guided filter method [17] and the MRF
982 method [7] cannot generate very sharp edges. The results
983 of [58], [8] and [9] have some artifacts around the edges.
984 Our methods are able to generate high quality depth maps
985 with sharper edges and fewer artifacts.
986 We further evaluate the proposed methods for noisy
987 depth super-resolution. For both the DG-RBF and DG-CNN
988 models, we utilize the same hyper-parameters as we
989 adopted in the noise-free experiment. The results by differ-
990 ent methods are shown in Table 9. We do not provide the
991 results of DJF [20] because the authors have not provided
992 their network and have not reported results for such setting.
993 The results by [12] are also included, a method designed to
994 handle noise in depth super-resolution tasks. The proposed
995 methods again achieve the best results.

996 7.2 Super-Resolution Results on the NYU Dataset

997 In [20], Li et al. utilize the first 1,000 images of the NYU data-
998 set [4] as training data, and evaluate their DJF method on
999 the last 449 images of the NYU dataset. In this section, we

1000 follow their experimental setting and compare different
1001 methods on the 449 images. The results of the other meth-
1002 ods are provided by the authors of [20]. For the DG-RBF
1003 model, we crop 3000 72�72 subimages as the training set.
1004 For the DG-CNN model, we use all the 1,000 images as
1005 training dataset. The hyper-parameters for both the

1006DG-RBF and DG-CNN models are the same as our settings
1007on the Middleburry [55] dataset. The experimental results
1008are shown in Table 10. Compared with other methods, the
1009proposed DG-RBF and DG-CNN achieve the best results in
1010terms of RMSE. Some visual examples of the SR results of
1011different algorithms have been provided in Fig. 6.

10128 REALISTIC GUIDED DEPTH RECONSTRUCTION

1013In this section,we provide some experimental results for other
1014depth map restoration problems. We evaluate the proposed
1015methods on two datasets. The first dataset is a synthetic data-
1016set proposed by Lu et al. [11]. In order to mimic real low-
1017quality depth images, Lu et al. [11] add zero mean additive
1018Gaussian noise to the depth images, and thenmanually set 13
1019percent of pixels in the depth map as missing values to simu-
1020late the depth map acquired from consumer level depth sen-
1021sors. Moreover, the second dataset is a real sensor dataset
1022provided by [9]. A Time of Flight (Tof) and a CMOS camera
1023are used to obtain low resolution depth maps and intensity
1024images, and the ground truth depth images are generated by
1025a structured light scanner. The detailed experimental setting
1026will be introduced in the following subsections.

10278.1 Experimental Results on Synthetic Dataset [11]

1028In [11], Lu et al. propose a synthetic dataset to evaluate guided
1029depth reconstructionmethods. 30 depth and RGB image pairs
1030in the Middlebury database [55] are included in the dataset.
1031The size of all the images have been normalized to the same
1032height of 370 pixels. To comparewith previous algorithms, we
1033utilized the cross-validation method to obtain the reconstruc-
1034tion results on all the 30 images. Concretely, we divide the 30
1035images into 10 groups, and utilize 9 groups to train models to
1036estimate the depthmaps in the remainder group.We compare
1037our method with other methods designed for this task, which
1038include a low rank based method [11] and the recently pro-
1039posedmutual-structure joint filteringmethod [18].
1040Since our proposed method does not consider the noise
1041in the RGB image, for fair comparison, we pre-process the
1042RGB image by a state-of-the-art denoising method [63], [64]
1043and use the denoised image to guide the restoration of the
1044depth map. Such a method has been utilized in the original
1045paper [11] to compare with other depth restoration meth-
1046ods. In addition, since the missing values in the depth map

TABLE 9
Experimental Results (RMSE) on the 3 Noisy Test Images

TABLE 10
Experimental Results (RMSE) on the 449

NYU Test Images

NYU

�4 �8 �16

MRF [7] 4.29 7.54 12.32
GF [18] 4.04 7.34 12.23
JBU [16] 2.31 4.12 6.98
TGV [9] 3.83 6.46 13.49
Park [8] 3.00 5.05 9.73
Ham [32] 3.04 5.67 9.97
DJF [21] 1.97 3.39 5.63
DG-RBF (ours) 1.35 2.69 5.11
DG-CNN (ours) 0.87 1.78 3.53
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1047 are represented as zeros which may be considered as very
1048 sharp edges in the depth map, we use a simple masked joint
1049 bilateral filtering [65] method to generate initialization val-
1050 ues for the unknown points in the depth map.
1051 The restoration results by different methods are shown in
1052 Table 11. For both the DG-RBF and DG-CNN model, the
1053 hyper-parameters are the same as used for the super-resolution
1054 experiment with zooming factor 4. The results of [11] and [18]
1055 are downloaded from the websites of the respective authors.
1056 Both proposed DG-RBF and DG-CNN methods outperform
1057 the competingmethods. Interestingly, different fromour exper-
1058 imental results for the guided super-resolution task, the results
1059 by the DG-CNN approach are just comparable to the results by
1060 DG-RBF. The main reason is the very limited training data, the
1061 27 low-resolution images are insufficient to train the complex
1062 DG-CNNmodel for best performance. In contrast, the DG-RBF
1063 model can still achieve good performancewith a small training
1064 dataset because its number of parameters is much lower than
1065 that of DG-CNN. Some visual examples of the restoration
1066 results of different algorithms have been provided in Fig. 7.

1067 8.2 Experimental Results on Real Sensor Data

1068 In addition to synthetic data, we also evaluate the proposed
1069 method on a real sensor dataset [9]. We utilize the same 46
1070 images from the Middlebury dataset [55] as training images.
1071 As for our experiment on the synthetic dataset, we also uti-
1072 lized the joint bilateral filtering [65] method to generate

1073initialization values for the unknown points in the depth map.
1074For both the DG-RBF and DG-CNNmodel, the hyper-parame-
1075ters are the same as for the noise-free Middleburry super-reso-
1076lution experiment with zooming factor 4. We compare our
1077methods with other classic or state-of-art methods. The guided
1078reconstruction results are shown in Table 12. Our methods get
1079the best results in terms of the mean absolute error (MAE).
1080From Fig. 8 it is easy to see that our methods are capable of
1081generating clean estimations, whereas the results by other
1082methods copy irrelevant textures from the intensity image.

10839 DISCUSSION

1084By analyzing previous optimization-based methods, we pro-
1085posed aWASRmodel for the task of guided depth reconstruc-
1086tion. Instead of solving the optimization problem of the
1087WASR model, we proposed to utilize different parameters in
1088the optimization process and conduct the depth reconstruc-
1089tion with a dynamic guidance strategy. In particular, we
1090unfolded the optimization process of WASR and got the

Fig. 6. Depth SR results by different methods for a testing image in the NYU dataset [4].

TABLE 11
Experimental Results (RMSE) on the 30 Test Images in [11]

Lu et al. Shen et al. DG-RBF DG-CNN

[11] [19] (ours) (ours)

2.59 2.64 2.30 2.27

Fig. 7. Depth restoration results of different methods.

TABLE 12
Real Data Results (MAE) on the 3 Test Images in [9]

Books Shark Devil Average

Nearest Neighbor 18.21 21.83 19.36 19.80
Bilinear 17.10 20.17 18.66 18.64
Kopf [16] 16.03 18.79 27.57 20.80
He [17] 15.74 18.21 27.04 20.33
FBS [62] 13.42 17.07 16.10 15.53
SDF [61] 13.47 16.75 16.36 15.53
TGV [9] 12.36 15.29 14.68 14.11
Yang [60] 12.25 14.71 13.83 13.60
DG-RBF (ours) 12.18 14.48 13.79 13.48
DG-CNN (ours) 12.14 14.46 13.11 13.24
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1092 tion. Based on the stage-wise formula Eq. (7), we introduced
1093 two networks which parameterize the stage-wise operation
1094 with RBF kernels (DG-RBF) or convolutional neural networks
1095 (DG-CNN). Experimentally, we have shown that both the
1096 DG-RBF and DG-CNN models are able to generate good
1097 depth reconstruction results. In this section, we discuss the
1098 respectivemerits and drawbacks of the twomodels.
1099 DG-RBF follows the unfolded optimization process of
1100 WASR strictly and parameterizes the nonlinear penalty func-
1101 tions with Gauss RBF kernels. In comparison, the DG-CNN
1102 model approximates the stage-wise operation in a lose way;
1103 we decompose the stage-wise operation as an intensity
1104 encoder, a depth encoder and a joint decoder, and use several
1105 layers of CNN to parameterize these sub-components.
1106 Although both methods benefit from the domain knowledge
1107 of previous researches as well as training data, they adopt dif-
1108 ferent trade-offs between the twomerits. TheDG-RBFmethod
1109 strictly follows the unfolded optimization process ofWASR. It
1110 is more related to previous optimization-based approaches.
1111 This prior knowledge about the guided depth reconstruction
1112 problem enables the proposedDG-RBFmethod to capture the
1113 relationship between the guidance and the depth image in a
1114 more economic way. As a result, the DG-RBF method can be
1115 trained on small datasets and its generalization capacity is bet-
1116 ter than that of DG-CNN in general. On the synthetic dataset
1117 provided by Lu et al. [11], which only has 27 small training
1118 images, DG-RBF model achieved comparable results to the
1119 DG-CNN model with much less parameters. Yet, following
1120 the unfoldedWASRmodel strictly limits the flexibility of DG-
1121 RBF on datasets with large amounts of training data. The
1122 results generated by the DG-RBF are not as good as those of
1123 some learning-based approaches. In comparison to DG-RBF,
1124 DG-CNN benefits from the overall structure of the unfolded
1125 WASR model. The stage-wise formula provides useful hints
1126 on the design of the DG-CNN, while the advances in deep
1127 learning enable DG-CNN to take full advantage of training
1128 data. Consequently, the DG-CNN achieved stage-of-the-art
1129 performance on different datasets.
1130 Another difference betweenDG-RBF andDG-CNN resides
1131 in the training. Different from CNNs, where one can use the
1132 back-propagation algorithm for gradient calculation, the com-
1133 putation of the parameter gradients for the DG-RBF model is
1134 time consuming. In addition, the L-BFGS method [49] used to
1135 train DG-RBF requires to calculate parameter gradients for all
1136 the training samples.We have also tried to train DG-RBFwith
1137 stochastic algorithms, such as stochastic gradient descent
1138 (SGD) [66] and its ADAM variation [54]. L-BFGS always gen-
1139 erates better models which can generate high quality depth

1140reconstruction results. The limited performance achieved by
1141the SGD trainedDG-RBFmodelmay be due to our parameter-
1142ization scheme. Studies [67] in the deep learning literature
1143have found that components in the network can greatly affect
1144the training of the network. Inappropriate activation functions
1145in the network may lead to the vanishing gradient problem
1146and can render the network hard to train. The complex
1147parameterization scheme adopted in our DG-RBF model did
1148not take the training performance into consideration. Stochas-
1149tic algorithms with heuristic learning rates may not be able to
1150deliver a good model. L-BFGS computes accurate gradients
1151on the whole training set and utilizes a line search method to
1152determine the step length in each step. It has been utilized to
1153train optimization-inspired networks in many previous
1154works [26], [28].

115510 CONCLUSION

1156To model the dependency between the guiding intensity
1157image and the depth image we proposed a weighted analysis
1158sparse representation (WASR) model for guided depth recon-
1159struction. An intensity weighting term and an analysis repre-
1160sentation regularization term are combined to model the
1161complex relationship between the depth image and RGB
1162image. We unfold the optimization process of the WASR
1163model as a series of stage-wise operations. Two models,
1164DG-RBF andDG-CNN, have been introduced to parameterize
1165the stage-wise operation with Gaussian RBF kernels and
1166CNNs, respectively, andwe learn their model parameters in a
1167task-drivenmanner. Bothmodels generate high quality depth
1168estimation in just a couple of stages. We experimentally vali-
1169dated their effectiveness for guided depth super-resolution
1170and realistic depth reconstruction tasks using standard bench-
1171marks. To the best of our knowledge, our proposed DG-RBF
1172and DG-CNN methods achieve the best quantitative results
1173(RMSE) to date and better visual quality than the compared
1174state-of-the-art approaches.
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