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Here we give the proofs of the 3 lemmas used in the main paper. Since the proof of Lemma 2 will use the conclusion of
Lemma 3, we prove Lemma 3 before proving Lemma 2 in the following proofs.

Lemma 1. ∀A,B ∈ <m×n that satisfy AT B = 0, we have

(1)‖A + B‖w,∗ ≥ ‖A‖w,∗;

(2)‖A + B‖F ≥ ‖A‖F .

Proof. Denote by λk(X) and σk(X) the k-th eigenvalue and singular value of matrix X, respectively, and denote by S the
subspace of <n. Based on the Courant-Fisher MaxMin Theorem [1], we have

λk(AT A + BT B) = max
dim(S)=k,

min
Y 6=0,Y∈S

YT AT AY + YT BT BY
YT Y

;

= max
dim(S)=k,

min
Y 6=0,Y∈S

YT AT AY + YT BT BY + YT AT BY + YT BT AY
YT Y

= σ2
k(A + B)

λk(AT A) = max
dim(S)=k,

min
Y 6=0,Y∈S

YT AT AY
YT Y

= σ2
k(A).

Since YT BT BY ≥ 0, we have

YT AT AY + YT BT BY
YT Y

≥ YT AT AY
YT Y

,

σ2
k(A + B) ≥ σ2

k(A),
|σk(A + B)| ≥ |σk(A)|.

Based on the definition of F-norm and weighted nuclear norm, we have

‖A + B‖w,∗ =
∑
i

|wiσi(A + B)| ≥
∑
i

|wiσi(A)| = ‖A‖w,∗;

‖A + B‖2F =
∑
i

σ2
i (A + B) ≥

∑
i

σ2
i (A) = ‖A‖2F .

Lemma 3. ∀A ∈ <n×n and a diagonal non-negative matrix W ∈ <n×n with non-ascending ordered diagonal elements, let
A = XΦYT be the SVD of A, we have ∑

i

σi(A)σi(W) = max
UT U=I,VT V=I

tr[WUT AV],
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where I is the identity matrix, σi(A) and σi(W) are the i-th singular values of matrices A and W, respectively. When U = X
and V = Y, tr[WUT AV] reaches its maximum value.

Proof. Based on the definition of eigenvalue and the triangle inequality, we have

tr[WUT AV] = |
∑
i

λi(WUT AV)|

≤
∑
i

|λi(WUT AV)|.

Based on the Theorem 3.3.13 and Theorem 3.3.14 in [2], we have∑
i

|λi(WUT AV)| ≤
∑
i

σi(WUT AV)

≤
∑
i

σi(W)σi(UT AV)

≤
∑
i

σi(W)σi(A)

From the above derivation, we have
∑

i σi(W)σi(A) ≥ tr[WUT AV]. For a special case, let U = X and V = Y, tr[WUT AV]
reaches its maximum: ∑

i

σi(A)σi(W) = max
UT U=I,VT V=I

tr[WUT AV].

Lemma 2. ∀M =

[
A B
C D

]
with A ∈ <m×m and D ∈ <n×n, if the weights satisfy w1 ≥ · · · ≥ wm+n ≥ 0, we have

‖M‖w,∗ ≥ ‖A‖w1,∗ + ‖D‖w2,∗,

where w = [w1, . . . , wm+n], w1 = [w1, . . . , wm] and w2 = [wm+1, . . . , wm+n].

Proof. Based on the conclusion of Lemma 3, assume that W is a diagonal matrix and its diagonal elements are the corre-
sponding elements in the weight vector w. If the weights satisfy w1 ≥ . . . ≥ wn ≥ 0, ∀X ∈ <n×n we have

‖X‖w,∗ =
∑
i

σi(X)σi(W) = max
UT U=I,VT V=I

tr[WUT XV].

For matrix M, with the above equality we have

‖M‖w,∗ =

∥∥∥∥ A B
C D

∥∥∥∥
w,∗

= max
UT U=I,VT V=I

tr[WUT MV]

≥ max
UT

1 U1=I,VT
1 V1=I,UT

2 U2=I,VT
2 V2=I

tr[

(
w1 0
0 w2

)(
UT

1 0

0 UT
2

)(
A B
C D

)(
V1 0
0 V2

)
]

= max
UT

1 U1=I,VT
1 V1=I

tr[W1UT
1 AV1] + max

UT
1 U1=I,VT

2 V2=I
tr[W2UT

2 DV2]

= ‖A‖w1,∗ + ‖D‖w2,∗.
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