
Object Tracking via Dual Linear Structured SVM and Explicit Feature Map

Jifeng Ning1, Jimei Yang2, Shaojie Jiang1, Lei Zhang3 and Ming-Hsuan Yang4

1College of Information Engineering, Northwest A&F University, China
2Adobe Research, USA

3Department of Computing, The Hong Kong Polytechnic University, China
4Electrical Engineering and Computer Science, University of California at Merced, USA

jf ning@sina.com, jimyang@adobe.com, shaojiejiang@126.com

cslzhang@comp.polyu.edu.hk,mhyang@ucmerced.edu

Abstract

Structured support vector machine (SSVM) based meth-
ods have demonstrated encouraging performance in recent
object tracking benchmarks. However, the complex and ex-
pensive optimization limits their deployment in real-world
applications. In this paper, we present a simple yet effi-
cient dual linear SSVM (DLSSVM) algorithm to enable fast
learning and execution during tracking. By analyzing the
dual variables, we propose a primal classifier update for-
mula where the learning step size is computed in closed
form. This online learning method significantly improves
the robustness of the proposed linear SSVM with lower com-
putational cost. Second, we approximate the intersection
kernel for feature representations with an explicit feature
map to further improve tracking performance. Finally, we
extend the proposed DLSSVM tracker with multi-scale es-
timation to address the “drift” problem. Experimental re-
sults on large benchmark datasets with 50 and 100 video
sequences show that the proposed DLSSVM tracking algo-
rithm achieves state-of-the-art performance.

1. Introduction

Object tracking aims to estimate the locations of a tar-
get in an image sequence. It can be applied to numerous
tasks such as human-computer interaction, traffic monitor-
ing, action analysis and video surveillance [34, 5, 26]. The
main issue of object tracking is the incapability to account
for large appearance variations due to viewpoint changes,
occlusions, deformations and fast motions.

Existing object tracking algorithms can be broadly cat-
egorized as either generative or discriminative. Generative
tracking algorithms [6, 22, 16, 17, 24] typically learn an ap-
pearance model to represent a target and use the model to
search for interesting regions in the next frame with min-

imal reconstruction error. Instead of constructing a model
to represent the appearance of a target, discriminative ap-
proaches [1, 2, 30, 3, 23, 11, 8, 33] consider the tracking
problem as a classification or regression problem of finding
the decision boundary that best separates the target from the
background. In recent years, the tracking-by-detection ap-
proach has attracted more attention due to its strength to
deal with targets undergoing large appearance variations.

Numerous classification algorithms such as support vec-
tor machines [1], boosting [2, 30], multiple instance learn-
ing [3] and random forests [23, 11] have been used in recent
tracking-by-detection methods. However, the goal of binary
classifiers is not seamlessly aligned with the one of object
trackers due to the structured output space of tracking. To
overcome this problem, Hare et al. [8] propose a kernelized
Structured SVM (Struck) for object tracking. The Struck
method treats object tracking as a structured output pre-
diction problem that admits a consistent target representa-
tion for both learning and detection. Especially, in a recent
tracking benchmark studies [18, 31, 32], Struck [8] shows
the state-of-the-art performance.

However, the high complexity of optimization and detec-
tion processes for Struck [8] with nonlinear kernels limits
its usage of high dimension features. It is critical to track-
ing performance because object representation with high
dimensional features can model the target better than low
dimensional ones. For example, KCF [10] greatly out-
performs its original version CSK [9] by only replacing
the low dimensional image feature with high dimensional
HOG feature. On the other hand, the primal SSVM can be
learned efficiently with linear kernels, which is very useful
for fast training and detection even if it uses high dimen-
sional features to represent the target. However, existing
sub-gradients methods [25, 21] are sensitive to the step size
when applied to online tasks. Therefore, it is of great in-
terest to design a proper SSVM tracking algorithm that can
run sufficiently fast with high dimensional features.

In this work, we propose a simple but effective dual lin-
ear SSVM (DLSSVM) tracking algorithm to solve these
problems. First, we formulate object tracking as a linear
SSVM detection problem to enable fast model updates in its
primal form. By analyzing the relationship between the dual
and primal variables, we present a closed form solution to
compute the step size of the model update, which is critical
for the tracking performance of linear SSVMs. Second, to
exploit nonlinear kernels while maintaining the linearity of
the proposed SSVM, we approximate the nonlinear kernels
with explicit feature maps. Third, to overcome the drifting
problem caused by large scale changes, we extend the pro-
posed tracker with multi-scale estimation. Experiments on
benchmark datasets [31, 32] of 50 and 100 image sequences
show that the DLSSVM tracker achieves the state-of-the-art
performance.

The main contributions of this work are summarized as
follows: First, a dual linear SSVM classifier is derived
in closed form, which is faster to train and evaluate than
non-linear classifiers and this important technique consti-
tutes the basis of this work. Second, with explicit feature
maps, the proposed DLSSVM tracker can exploit high di-
mensional linear features to better represent objects for vi-
sual tracking than non-linear SSVM methods in terms of
speed and accuracy. Third, the multi-scale estimation fur-
ther improves the performance by accounting for the large
scale changes during tracking.

2. Preliminaries
In this section we briefly introduce the structured SVM

formulation of the tracking-by-detection approach before
presenting the proposed algorithm.

2.1. Tracking-by-Detection

The tracking-by-detection method learns an online clas-
sifier to distinguish a target from its local background. We
review its main components and discuss the difference be-
tween traditional binary discriminative classifiers and struc-
tured SVMs. For the ease of illustration, we use the same
notations as [8] in the following. Let pt denote the object
central location at frame t, y is a relative transform accord-
ing to location pt. We represent a new position by pt ◦ y
where ◦ is a transformation operator (e.g., displacement,
Euclidean or affine transform). At the image location pt ◦ y,
we extract image patches xpt◦y

t . Let h(·) be a learned clas-
sifier and r be the radius of a search space Y that contains
all candidate locations.

Assume that we have the initial discriminative classi-
fier according to the first frame. First, we crop out a set
of image patches x

pt−1◦y
t from search space Y with ra-

dius ‖y‖ ≤ r and compute feature vectors. Second, we
use the discriminative classifier to update tracker location
y∗ = arg maxy∈Y h(xtpt−1◦y) and obtain the location

pt = pt−1 ◦ y∗ in the current frame. Third, members of the
sample set xtpt◦Y are cropped out around the current track-
ing position pt to update the discriminative classifier. For a
binary classifier [2, 3, 38], the image patches xtpt◦Y are di-
vided into two groups, whose labels are respectively +1 and
-1. For the structured SVM based classifier [8], the label of
sample xt is structured, i.e., the candidate positions y of the
target. Finally, the discriminative classifier is updated with
the newly arrived samples.

2.2. Structured SVM

In structured prediction, the goal is to predict a structured
output y ∈ Y for a given input x ∈ X where y can be
arbitrary output for different problems. In our tracker, y is
defined as a bounding box. The feature vector Φ(x, y) is a
function defined over a pair of input and output (x, y) which
encodes the relevant information. We learn a discriminative
classifier with parameter w defined by

y∗ = arg max
y∈Y

h(x,y,w) (1)

where h(x,y,w) = w>Φ(x,y) and w can be learned
in a large-margin framework from a sample set of
{(x1, y1), . . . , (xn, yn)} by solving the following global op-
timization problem:

min
w

1

2
‖w‖2 + c

n∑
i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i,∀y 6= yi : 〈w,Ψi(y)〉 ≥ L(yi, y)− ξi

(2)

where Ψi(y) = Φ(xi, yi) − Φ(xi, y) and L(yi, y) denotes
the task-dependent structured error of predicted output y in-
stead of the observed output yi. The slack variable ξi mea-
sures the surrogate loss for the i-th data point and c is the
regularization parameter. The loss function expresses a finer
distinction between yi and y, which plays an important role
in the structured SVM. Similar to the Struck method [8],
we choose to base the loss function on the bounding box
overlap rate

L(yi, y) = 1− sopt(yi, y) (3)

where s◦pt(yi, y) =
(pt◦yi)∩(pt◦y)
(pt◦yi)∪(pt◦y) . The Lagrange dual of the

above n-slack formulation is given by

min
α≥0

f(α):=
1

2
‖
∑
i,y 6=yi

αi,yΨi(y)‖2−
∑
i,y 6=yi

L(yi, y)αi,y (4a)

s.t. ∀i,∀y 6= yi : αi,y ≥ 0 (4b)

∀i :
∑
y 6=yi

αi,y ≤ c (4c)

In the dual structured SVM, the discriminative classifier can
be defined as w =

∑
i,y 6=yi

αi,yΨi(y).

(a) Training set (b) Pick up a sample from (a) (c) Different optimization processes by
Struck and our DLSSVM

Update a pair of dual
coefficients 0 and m
related to y0 and ym by
Algorithm 1 in [9]

Update one dual
cofficient k related to
yk by Eq.(6)

1 2

k m

1 2

k m

1 2

k m

1 2

k m

1 2

k

0 m

k

0

0 0

0 0

m

Figure 1. Comparing optimization processes for the Struck [8] and DLSSVM methods. (a) First, both SSVM trackers crop structured
samples around the tracking result in each frame. Each structured output of each sample has a dual coefficient α. (b) Second, a selected
sample is used to update its dual coefficients related to different structured outputs, i.e. support vectors. The Struck [8] and DLSSVM
methods use different optimization schemes to update it. (c) Third, a pair of dual variables need to be carefully chosen and optimized in
the Struck [8] method while only one dual variable is selected by a simple method and then updated in the proposed DLSSVM algorithm.

2.3. SSVM Based Tracking Analysis

Although dual SSVMs with non-linear kernels usually
perform better than ones with linear kernels for tracking,
the training and detection processes are more complex. As
a result, if a non-linear kernel is used in the SSVM for ob-
ject tracking, we cannot obtain the classifier parameter w
explicitly so that the object detection can be only evaluated
in the kernel space with a high computational cost.

The Struck method [8] uses low-dimensional features
(192-dimensional Haar-like features) to represent target for
reducing the computational cost. The sequential minimal
optimization (SMO) [19] used by the Struck method [8] has
a high computational cost as well because it requires find-
ing a violation pair for each update and its convergence rate
does not scale well with the size of the output space [39].

To alleviate the computational issue with non-linear ker-
nels, we use a linear SSVM as the discriminative classifier
w because it can be obtained explicitly. The use of linear
kernels could accommodate high dimensional features for
target representation and at the same time maintains a rel-
atively low computational load for both training and detec-
tion. In terms of representation power, we note that the ex-
plicit feature map [27] can approximate non-linear kernels
for non-linear decision efficiently and effectively.

3. Proposed Dual Linear SSVM Tracker
In this section, we first present our algorithm to effi-

ciently solve a dual SSVM with linear kernels. Next, we use
an unary representation [15] to approximate the intersection
kernel for modeling object appearance, which improves the
performance of the proposed DLSSVM tracker. Finally, we
present the proposed tracking algorithm via our online dual

linear SSVM optimization process. Figure 1 summarizes
the differences between the Struck and DLSSVM methods.

3.1. Dual Linear SSVM Optimization

We present an online learning algorithm to train a dual
linear SSVM for object tracking. We follow the basic dual
coordinate descent (DCD) [20] optimization process for the
dual SSVM and consider (4a) as a multivariate function
with respect to dual coefficients αi,y.

Optimization with closed form solution. In the DCD ap-
proach, the basic process is that in each iteration only one
sample is optimized. For a sample k, the DCD method first
selects one violated variable with maximum error as,

y∗k = argmax
y∈Yk

L(y, yk)− w>Ψk(y) (5)

Note that we keep the primal classifier w for efficient model
evaluation during tracking.

To estimate αk,y∗k , we first compute the derivative of (4a)
with respect to αk,y∗k (which is related to structured output
y∗k) and set it to zero. As a result, the new coefficient α′k,y∗k
is given by

α′k,y∗k =
L(yk, y

∗
k)

‖Ψk(y∗k)‖2
−∑

i,y 6=yi
(αi,yΨ>i (y)− αk,y∗kΨ>k (y∗k))Ψk(y∗k)

‖Ψk(y∗k)‖2

According to w =
∑
i,y 6=yi

αi,yΨi(y), we obtain a sim-
ple αk,y∗k update formula (6) for the above equation,

α′k,y∗k = αk,y∗k +
L(yk, y

∗
k)− w>Ψk(y∗k)

‖Ψk(y∗k)‖2
(6)

With the constraint in (4c), we have α′k,y∗ ∈ [0, c −∑
y 6=y∗ αk,y]. Therefore, the second term on the right hand

side of (6), which defines the increment of the dual coeffi-
cient by

γ =
L(yk, y

∗
k)− w>Ψk(y∗)
‖Ψk(y∗)‖2

(7)

is normalized as γ ∈ [−αk,y∗ , c−
∑

y αk,y].
Note that in (5) and (6) we use a linear kernel to explicitly

compute the primal parameters w. Compared to non-linear
kernels, where w is implicitly represented by the sum of all
dual coefficients multiplying kernel transformation of sup-
port vectors, the primal classifier only requires simple vec-
tor inner products which leads to much less complex train-
ing and detection. After optimizing one sample, we obtain
the updated primal classifier immediately,

w = w + γΨk(y∗) (8)

In (8) the update of w is similar to the sub-gradient de-
scent (SSG) [21] method [25]. However, the SSG method
is sensitive to the step size γ. Our update step size is de-
rived in closed form in the dual space. It takes advantage
of the DCD optimization with linear kernels and offers fast
convergence guarantee [20]. Therefore, after each iteration,
we obtain immediately the explicit classifier, which is sub-
sequently used for the next update.

After learning the discriminative classifier w, we carry
out object detection for the frame at time t using learned w
via the simple matrix operation defined by

y∗ = argmax
y∈Y

w>Ψt(y).

The structured output y∗ with maximum response is consid-
ered as the object location.

The DCD optimization [20] used by this work is sim-
pler than the SMO optimization technique [19] in the Struck
tracker [8]. In our method we only pick up one violation
variable each iteration and update its support vector coeffi-
cient while the SMO [19] method needs to carefully find
a pair of violated variables and update their coefficients.
Compared to Struck [8], the process to update and maintain
support vectors is simpler as it needs to only optimize one
dual coefficient at each step. The main difference between
the Struck [8] and DLSSVM methods is shown in Figure 1.

Budget of support vectors. The number of support vec-
tors in the SSVM increases gradually over time and a
fixed amount is maintained for memory efficiency. In our
method, the number of support vectors does not increase the
complexity of the training process because it is only used to
control the number of samples, which is different from the
Struck method [8].

As each dual coefficient is relatively independent in our
linear SSVM optimization, we remove the support vector

with the smallest norm, which is irrelevant to other support
vectors. When the number of support vectors in the SSVM
detector exceeds the budget, we remove one according to
the following formula,

α∗ = argmin
αi,y∈α

‖αi,yΨi(xi, y)‖2 (9)

where αi,y is the coefficient of the support vector Ψi(xi, y)
of sample xi.

3.2. Explicit Feature Map for Non-Linear Kernels

We employ an image kernel between pairs of the patches
cropped from a frame x at location y for the proposed
DLSSVM tracker,

Kimage(x, y, x̄, ȳ) = K(xp◦y, x̄p̄◦ȳ) (10)

For each patch, we normalize it to about 400 pixels and em-
ploy the feature representation in the MEEM method [36]
based on the CIE Lab color space. In addition, we apply the
non-parametric local rank transform (LRT) [35] to the light-
ness channel to increase invariance to illumination change.

We denote zi as the feature vector of one image patch
consisting of Lab and LRT channels, and measure the simi-
larity of two image patches using an intersection kernel.

K(xp◦y, x̄p̄◦ȳ) = K(zi, zj) =
∑
k

min(zki , z
k
j), (11)

where k is the k-th element of feature vector zi. To obtain
the primal classifier w in our DLSSVM formulation, we use
the explicit feature map Ψ(xp◦y) for the intersection kernel.
As an additive kernel, the explicit feature map can be ap-
proximated by the unary representation [15].

Let N denote the number of discrete levels, U(n) de-
note the unary representation of the integer n, e.g., U(3) =
{1, 1, 1, 0, 0, 0} when N = 6, and R(·) denote the round-
ing function. The unary representation of the feature zk is
defined by

φ(zk) =

√
1

N
U(R(Nzk)) (12)

Based on this unary representation [15], the intersection
kernel can be approximated by∑

k

min(zki , z
k
j) ≈

∑
k

< φ(zki), φ(zki) > (13)

such that Ψ(xp◦y) ≈ [φ(z1
i), φ(z2

i), . . . , φ(zki), . . .].
We set the quantization number N = 4 for color se-

quences. For grayscale sequences, since the color channels
are not available, we set the quantization numberN = 8 for
more accurate approximation of the intersection kernel.

For the dimension of features, the original features of
color image include four channels (Lab+LRT). Using unary

Figure 2. Main steps of the proposed DLSSVM tracker. (a) First,
we crop structured samples around the tracking results of the pre-
vious frame. (b) Second, we update the discriminative classi-
fier via dual linear SSVM optimization. Note that the explicitly
discriminative classifier is very important for object tracking to
rapidly train and detect. (c) We apply the updated classifier to de-
tect the object in the current frame.

representation with the quantization number N=4, we have
400*4*4=6400 dimensional vectors. For gray image, its
original features includes two channels (Gray+LRT). Using
unary representation with the quantization number N=8, we
also get 400*2*8=6400 dimensional vectors. In contrast,
the Struck [8] with a non-linear Gaussian kernel only uses
192 dimensional feature vectors due to computational loads.

3.3. Multi-scale Estimation

It is difficult for tracking methods with a fixed scale
representation to deal with target objects undergoing large
scale changes. To alleviate the drifting problem caused by
large scale changes, we extend the DLSSVM method with a
multiple scale estimation. In this work, we use DLSSVMs
at three different scales in parallel, and use the maximum
responses as the tracking results.

3.4. Tracking Algorithm

We follow a common optimization strategy [20, 4] to im-
plement our tracking algorithm. Figure 2 show the main
steps of the proposed DLSSVM tracker, and the details are
presented in Algorithm 1.

Especially, because both search region and discrimina-
tive classifier w actually belong to image features (Fig-
ure 2b), we can use the Fast Fourier Transform (FFT) al-
gorithm to speed up the detection process. However, it is
difficult for Struck [8] because it only gets implicitly dis-
criminative classifier.

4. Experimental Results
We first discuss the experimental setup, dataset, and eval-

uation metrics, and then present two sets of experiments:

• Analysis of proposed DLSSVM and related SSVM
trackers;

• Comparisons with state-of-the-art trackers.

Algorithm 1: DLSSVM tracking algorithm
input : Initial discriminative learner w = 0 and

initial object location p0.
Output: Tracking result location pi of each frame.

repeat
1. Estimate change in object location.
yt = arg maxy∈Y w>x

pt−1◦y
t

pt = pt−1 ◦ yt
2. Crop samples Xt = xpt◦y

t from current frame
and append it to end of dataset.
3. Update DLSSVM discriminative classifier.
Get the number n of samples data.
For j = 1 : n1

i = n− b((j − 1) ∗ n/n1)c
Select a sample Xi from sample set X.
According to (5), select y∗ from structured

labels Yi of sample Xi.
According to (6), update αi,y∗ corresponding to

y∗.
According to (8), update w.
Maintain support vectors budget based on (9).
Get the number n of samples data.
For p = 1 : n2

i = n− b((p− 1) ∗ n/n2)c
Select a sample Xi from sample set X.
According to (5), select y∗ from structured

label Yi of sample Xi with non-zero dual
coefficients .

According to (6), update αi,y∗ corresponding to
y∗.

According to (8), update w.
End For

End For
until End of video sequences;
Note: n1 and n2 are the numbers of iterations of
exploring (external loop) and optimization (internal
loop) [20] [4], and are fixed in all experiments.

More experimental results and videos can be found in
the supplementary material. All the MATLAB source codes
will be made available to the public.

4.1. Experimental Setup

Parameter Setting. For all sequences, we use fixed param-
eter values for fair evaluations. For the SSVM optimization
(2), c is set to 100. We set the budget of support vectors to
100. The search radius for training and detection process is
automatically determined by square root of the target area.
The size of image patch is normalized to 400 pixels accord-
ing to a trade-off between accuracy and speed. For scale es-
timation, we use the conservative scaling pool S={1 0.995,

Table 1. Characteristics of SSVM trackers. NU means no unary representation for the features

SSVM trackers
closed form kernel feature feature high dimension non-linear discriminative

solution type type dimensions feature decesion classifier
SSG no linear image feature 1600 yes no explicit
Struck yes Gaussian Haar-like 192 no yes implicit
Linear-Struck-NU yes linear image feature 1600 yes no explicit
Linear-Struck yes linear image feature 6400 yes yes explicit
DLSSVM-NU yes linear image feature 1600 yes no explicit
DLSSVM yes linear image feature 6400 yes yes explicit

Table 2. Experimental comparisons of the proposed DLSSVM and related trackers with different parameters settings: B50, B100 and B500
mean the budgets of support vectors are 50, 100 and 500 respectively. The entries in Bold red indicate the best results and the ones in blue
indicate the second best.

SSVM trackers
OPE TRE SRE

Mean FPSprecision success precision success precision success
(20 pixels) (AUC) (20 pixels) (AUC) (20 pixels) (AUC)

DLSSVM-NU 0.794 0.557 0.810 0.581 0.724 0.508 28.88
DLSSVM-B50 0.828 0.587 0.846 0.606 0.780 0.543 10.10
DLSSVM-B100 0.829 0.589 0.856 0.610 0.783 0.545 10.22
DLSSVM-B500 0.826 0.588 0.852 0.609 0.787 0.548 10.37
Scale-DLSSVM 0.861 0.608 0.857 0.615 0.811 0.565 5.40
SSG 0.608 0.443 0.665 0.486 0.584 0.424 46.13
Struck 0.656 0.474 0.707 0.514 0.634 0.449 0.90
Linear-Struck-NU 0.703 0.506 0.751 0.540 0.655 0.462 1.46
Linear-Struck 0.792 0.556 0.824 0.589 0.736 0.515 1.20

1.005}, which is similar to [13].

In our algorithm, we implement the training and detec-
tion process in MATLAB while the feature extraction step
in C++ for runtime performance as in the Multi-Expert En-
tropy Minimization (MEEM) method [36]. It runs at 10 fps
on a desktop computer with Intel i5-2400 CPU (3.10 GHz)
and 6 GB memory.

Dataset. We evaluate the proposed DLSSVM algorithm
on the TB50 [31] and TB100 [32] benchmark datasets.
For detailed analysis, these sequences are annotated with
11 challenging attributes including illumination variation
(IV), scale variation (SV), occlusion (OCC), deformation
(DEF), motion blur (MB), fast motion (FM), in-plane rota-
tion (IPR), out-of plane rotation (OPR), out-of-view (OV),
background clutters (BC) and low resolution (LR).

Evaluation Protocol and Metrics. As suggested in [31],
we evaluate the tracking algorithms using three protocols:
one-pass evaluation (OPE), temporal robustness evaluation
(TRE), and spatial robustness evaluation (SRE) using pre-
cision and success rates. We present the main findings in
this manuscript and more results can be found in the sup-
plementary material.

4.2. Analysis of Proposed DLSSVM and Related
SSVM Trackers

We evaluate the DLSSVM method and the related track-
ers on the TB50 [31] dataset. Table 1 summarizes the char-
acteristics of those SSVM trackers. Table 2 shows the ex-
perimental results of those related SSVM trackers includ-
ing the run-time performance. The mean FPS (frames per
second) is estimated on a long sequence liquor with 1741
frames.

we denote the DLSSVM tracker without the unary rep-
resentation as DLSSVM-NU, and the method using 50,
100 and 500 support vectors as DLSSVM-B50 ,DLSSVM-
B100 and DLSSVM-B500, respectively. The DLSSVM
with multi-scale estimation is denoted as Scale-DLSSVM.

Analysis of DLSSVM tracker. Based on the results of
the DLSSVM-NU and DLSSVM-B100 methods using the
OPE, TRE and SRE protocols, it is clear that the explicit
feature map with the unary representation plays an impor-
tant role in robust object tracking. Overall, the DLSSVM
tracker is insensitive to different numbers of support vectors
(e.g., from 50 to 500). Furthermore, the Scale-DLSSVM
method obtain better accuracies than the DLSSVM scheme
at the expense of lower processing speed. In the follow-
ing, the DLSSVM tracker is referred to the one with 100
support vectors for evaluations against other state-of-the-art
tracking methods, unless specified otherwise.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

Scale−DLSSVM [0.608]

HCFT [0.605]

DLSSVM [0.589]

MEEM [0.576]

KCF [0.513]

TGPR [0.503]

SCM [0.499]

Struck [0.474]

TLD [0.437]

ASLA [0.434]

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of TRE

HCFT [0.618]

Scale−DLSSVM [0.615]

DLSSVM [0.610]

MEEM [0.586]

KCF [0.557]

TGPR [0.550]

Struck [0.514]

SCM [0.514]

ASLA [0.485]

CXT [0.463]

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of SRE

HCFT [0.565]

Scale−DLSSVM [0.565]

DLSSVM [0.545]

MEEM [0.533]

TGPR [0.487]

KCF [0.474]

Struck [0.449]

ASLA [0.436]

SCM [0.434]

TLD [0.410]

(c)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

HCFT [0.891]

Scale−DLSSVM [0.861]

MEEM [0.836]

DLSSVM [0.829]

KCF [0.741]

TGPR [0.705]

Struck [0.656]

SCM [0.649]

TLD [0.608]

VTD [0.576]

(d)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE

HCFT [0.878]

Scale−DLSSVM [0.857]

DLSSVM [0.856]

MEEM [0.831]

KCF [0.774]

TGPR [0.758]

Struck [0.707]

SCM [0.653]

VTD [0.643]

VTS [0.638]

(e)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of SRE

HCFT [0.848]

Scale−DLSSVM [0.811]

DLSSVM [0.783]

MEEM [0.773]

TGPR [0.693]

KCF [0.683]

Struck [0.634]

ASLA [0.577]

SCM [0.575]

TLD [0.573]

(f)

Figure 3. Average precision plot (top row) and success plot (bottom row) for the OPE, TRE and SRE on the TB50 [31] dataset. For
presentation clarity, only the top ten trackers with respect to the ranking score are shown in each plot.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

Scale−DLSSVM [0.563]

HCFT [0.562]

DLSSVM [0.541]

MEEM [0.530]

KCF [0.475]

Struck [0.459]

TGPR [0.458]

SCM [0.445]

TLD [0.424]

DLT [0.384]

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of TRE

Scale−DLSSVM [0.596]

HCFT [0.593]

DLSSVM [0.587]

MEEM [0.567]

KCF [0.524]

TGPR [0.514]

Struck [0.514]

SCM [0.468]

CSK [0.442]

TLD [0.440]

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of SRE

Scale−DLSSVM [0.529]

HCFT [0.529]

DLSSVM [0.509]

MEEM [0.502]

TGPR [0.443]

KCF [0.442]

Struck [0.437]

TLD [0.402]

SCM [0.400]

DLT [0.362]

(c)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

HCFT [0.837]

Scale−DLSSVM [0.805]

MEEM [0.781]

DLSSVM [0.767]

KCF [0.692]

TGPR [0.643]

Struck [0.635]

TLD [0.592]

SCM [0.572]

DLT [0.526]

(d)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE

HCFT [0.838]

Scale−DLSSVM [0.828]

DLSSVM [0.816]

MEEM [0.794]

KCF [0.720]

TGPR [0.701]

Struck [0.695]

TLD [0.600]

CSK [0.589]

SCM [0.583]

(e)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of SRE

HCFT [0.800]

Scale−DLSSVM [0.763]

DLSSVM [0.734]

MEEM [0.730]

KCF [0.640]

TGPR [0.626]

Struck [0.614]

TLD [0.556]

SCM [0.520]

DLT [0.499]

(f)

Figure 4. Average precision plot (top row) and success plot (bottom row) for the OPE, TRE and SRE on the TB100 [32] dataset. For
presentation clarity, only the top ten trackers with respect to the ranking score are shown in each plot.

Comparisons with Other SSVM trackers. We first im-
plement a linear SSVM tracker with the sub-gradient opti-
mization method [25], and refer it as the SSG tracker (i.e.,
a baseline SSVM tracker). The learning rate to update clas-

sifiers is manually selected without using the closed form
solution via (7) (i.e.,the step size in the four methods from
the bottom of Table 2 is manually set). As shown in Table 2,
although the SSG tracker uses the same high dimensional

features as the DLSSVM-NU tracker at a higher processing
rate, the tracking accuracy in all three indices is lower than
that of the Struck [8] method with a small margin.

Second, we implement the original Struck [8] method
and a linear Struck approach in MATLAB for fair compar-
isons. Note that Haar-like feature used by Struck [8] is not
proper for computing the explicit feature map of intersec-
tion kernel so we compare Struck and our method using our
feature representations. In addition, we also evaluate the
performance of the Struck method with a linear kernel with
(Linear-Struck) and without (Linear-Struck-NU) using the
explicit feature map.

For the Struck [8] method, we note that the linear Struck
method with high dimensional features (Linear-Struck-NU)
outperforms the original non-linear kernel Struck in terms
of both accuracy (all metrics) and speed, which suggests
that linear Struck with high dimensional feature is more
proper than Struck with Gaussian kernel for visual track-
ing. The DLSSVM tracker (i.e., DLSSVM-B100) performs
favorably against the Struck [8] and Linear-Struck meth-
ods in accuracy and speed. On the other hand, the exper-
imental comparisons between the SSG, Linear-Struck and
DLSSVM methods in Table 2 indicate that the linear SSVM
classifier with the step size in closed form solution is cru-
cial to robust object tracking. With simpler optimization
process, the proposed DLSSVM tracker performs favorably
against the Struck [8] method using non-linear and linear
kernels in terms of accuracy and speed. It indicates that
DCD optimization [20] used by our DLSSVM is better than
SMO [19, 4] used by Struck [8] for visual tracking.

4.3. Comparisons with State-of-the-Art Trackers

We evaluate the DLSSVM and Scale-DLSSVM track-
ers against the state-of-the-art methods on the TB50 [31]
and TB100 [32] datasets, where the results of 29 trackers
are reported. In addition, we include 6 most recent trackers
for performance evaluation. The HCFT [14] and DLT [28]
methods are developed based on hierarchical features via
deep learning. The STC [37] and KCF [10] schemes are
based correlations filters. Furthermore, the TGPR [7] and
MEEM [36] algorithms are developed based on regression
and multiple trackers. The precision and success rates for
the top ten trackers on the TB50 [31] and TB100 [32]
datasets are presented in Figure 3 and Figure 4.

The KCF tracker [10] exploits circulant matrix compu-
tations and achieves high run-time speed. In addition, the
recent method [13] shows that the performance of the KCF
method can be further improved by a more effective repre-
sentation based on color name attributes [12]. Overall, the
proposed DLSSVM tracker with simple color and spatial
features performs favorably over the KCF method in terms
of accuracy using all metrics.

The MEEM [36] tracking method uses a mixture of ex-

perts based on entropy minimization where a linear SVM
with twin prototypes [29] is used as the base tracker.
The proposed DLSSVM tracker performs well against the
MEEM method in most metrics except the OPE precision.
In addition, the Scale-DLSSVM method with multi-scale
estimation outperforms the MEEM tracker [36] in all met-
rics on both TB-50 and TB-100 datasets.

Compared to deep learning based methods, the proposed
DLSSVM method performs favorably against the DLT [28]
tracker on the TB50[31] and TB100 [32] datasets, and the
Scale-DLSSVM algorithm performs comparably against
the state-of-the-art HCFT [14] method which is based on
both correlation filters and hierarchical convolutional fea-
tures. We note that the proposed DLSSVM and Scale-
DLSSVM methods only use simple image features while
the HCFT method takes advantage of complex hierarchi-
cal convolutional features that requires offline training on a
large dataset. These experimental results show that the dual
linear optimization scheme used by the proposed SSVM
trackers is effective and efficient for robust object tracking.

5. Conclusions

In this paper, we propose an efficient and effective
SSVM formulation for robust object tracking via a dual lin-
ear SSVM optimization method and an explicit feature map.
By using linear kernels, we can easily update the primal
classifier and speed up the algorithm. With the dual SSVM
formulation, we derive a closed form update scheme for the
primal classifier which is critical for robust object tracking.
We approximate intersection kernel with the explicit feature
map to make non-linear decision by our linear SSVM classi-
fier for better performance. The DLSSVM tracking method
is further improved with multi-scale estimation to account
for large scale changes. Experimental results show that the
proposed DLSSVM tracker performs favorably against the
state-of-the-art methods on large benchmark datasets.

Acknowledgment

J. Ning and S. Jiang are supported in part by the Na-
tional Natural Science Foundation of China under Grants
61473235 and 31501228, the Fundamental Research Funds
for the Central Universities under Grants QN2013055,
QN2013062, Shaanxi Province Natural Science Foundation
under Grant 2015JM3110 and Science Computing and In-
telligent Information Processing of GuangXi Higher Edu-
cation Key Laboratory under Grant GXSCIIP201406. J.
Yang and M.-H. Yang are supported in part by the NSF CA-
REER Grant #1149783, NSF IIS Grant #1152576, and
a gift from Adobe. L. Zhang is supported by Hong Kong
RGC GRF grant (PolyU 152124/15E).

References
[1] S. Avidan. Support vector tracking. PAMI, 26(8):1064–1072,

2004.
[2] S. Avidan. Ensemble tracking. PAMI, 29(2):61–271, 2007.
[3] B. Babenko, M.-H. Yang, and S. Belongie. Robust ob-

ject tracking with online multiple instance learning. PAMI,
33(8):1619–1632, 2011.

[4] A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving
multiclass support vector machines with larank. In ICML,
2007.

[5] K. Cannons. A review of visual tracking. Dept. Comput. Sci.
Eng., York Univ., Toronto, Canada, Tech. Rep. CSE-2008-07,
2008.

[6] R. T. Collins. Mean-shift blob tracking through scale space.
In CVPR, 2003.

[7] J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning based
visual tracking with gaussian processes regression. In ECCV,
2014.

[8] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output
tracking with kernels. In ICCV, 2011.

[9] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Ex-
ploiting the circulant structure of tracking-by-detection with
kernels. In ECCV, 2012.

[10] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-
speed tracking with kernelized correlation filters. PAMI,
2014.

[11] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-
detection. PAMI, 34(7):1409–1422, 2012.

[12] F. Khan, R. Anwer, J. Weijer, A. Bagdanov, A. Lopez, and
M. Felsberg. Coloring action recognition in still images.
IJCV, 105(3):205–221, 2013.

[13] Y. Li and J. Zhu. A scale adaptive kernel correlation filter
tracker with feature integration. In ECCV Worksohps, 2014.

[14] C. Ma, J. Huang, X. Yang, and M.-H. Yang. Hierarchical
convolutional features for visual tracking. In ICCV, 2015.

[15] S. Maji and A. C. Berg. Max-margin additive classifiers for
detection. In ICCV, 2009.

[16] X. Mei and H. Ling. Robust visual tracking using l1 mini-
mization. In ICCV, 2009.

[17] X. Mei and H. Ling. Robust visual tracking and vehicle
classification via sparse representation. PAMI, 33(11):2259–
2272, 2011.

[18] Y. Pang and H. Ling. Finding the best from the second bests-
inhibiting subjective bias in evaluation of visual tracking al-
gorithms. In ICCV, 2013.

[19] J. Platt et al. Fast training of support vector machines using
sequential minimal optimization. Advances in kernel meth-
odssupport vector learning, 3, 1999.

[20] D. Ramanan. Dual coordinate solvers for large-scale struc-
tural svms. In http://arxiv.org/abs/1312.1743, 2014.

[21] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. (online)
subgradient methods for structured prediction. In ICAIS,
2007.

[22] D. A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learn-
ing for robust visual tracking. IJCV, 77(1-3):125–141, 2008.

[23] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof.
On-line random forests. In ICCV, 2009.

[24] L. Sevilla-Lara and E. Learned-Miller. Distribution fields for
tracking. In CVPR, 2012.

[25] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pe-
gasos: Primal estimated sub-gradient solver for svm. Math-
ematical programming, 127(1):3–30, 2011.

[26] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,
A. Dehghan, and M. Shah. Visual tracking: An experimental
survey. PAMI, 36(7):1442–1468, 2014.

[27] A. Vedaldi and A. Zisserman. Efficient additive kernels via
explicit feature maps. PAMI, 34(3):480–492, 2012.

[28] N. Wang and D. Yeung. Learning a deep compact image
representation for visual tracking. In NIPS, 2013.

[29] Z. Wang and S.Vucetic. online training on a budget of sup-
port vector machines using twin prototypes. In SADM, 2010.

[30] L. Wen, Z. Cai, Z. Lei, and S. Li. Online spatio-temporal
structural context learning for visual tracking. In ECCV,
2012.

[31] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In CVPR, 2013.

[32] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark.
PAMI, 37(9):1834–1848, 2015.

[33] R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. Hengel. Part-
based visual tracking with online latent structural learning.
In CVPR, 2013.

[34] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-
vey. ACM Computing Surveys, 38(4), 2006.

[35] R. Zabih and J. Woodfill. Non-parametric local transforms
for computing visual correspondence. In ECCV, 1994.

[36] J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking
via multiple experts using entropy minimization. In ECCV,
2014.

[37] K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang.
Fast tracking via dense spatio-temporal context learning. In
ECCV, 2014.

[38] K. Zhang, L. Zhang, and M.-H. Yang. Real-time compres-
sive tracking. In ECCV, 2012.

[39] X. Zhang, A. Saha, and S. V. N. Vishwanathan. Acceler-
ated training of max-margin markov networks with kernels.
Theoretical Computer Science, 519:88–102, 2014.

