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Abstract 

 
As a recently proposed technique, sparse representation 

based classification (SRC) has been widely used for face 
recognition (FR). SRC first codes a testing sample as a 
sparse linear combination of all the training samples, and 
then classifies the testing sample by evaluating which class 
leads to the minimum representation error. While the 
importance of sparsity is much emphasized in SRC and 
many related works, the use of collaborative representation 
(CR) in SRC is ignored by most literature. However, is it 
really the l1-norm sparsity that improves the FR accuracy? 
This paper devotes to analyze the working mechanism of 
SRC, and indicates that it is the CR but not the l1-norm 
sparsity that makes SRC powerful for face classification. 
Consequently, we propose a very simple yet much more 
efficient face classification scheme, namely CR based 
classification with regularized least square (CRC_RLS). 
The extensive experiments clearly show that CRC_RLS has 
very competitive classification results, while it has 
significantly less complexity than SRC.        
 

1. Introduction 
It has been found that natural images can be sparsely 

coded by structural primitives [1], and in recent years 
sparse coding or sparse representation has been widely 
studied to solve the inverse problems in various image 
restoration applications [2-3], partially due to the progress 
of l0-norm and l1-norm minimization techniques [4-6]. 

Recently, sparse representation has also been used in 
pattern classification. Huang et al. [7] sparsely coded a 
signal over a set of redundant bases and classified the signal 
based on its coding vector. In [8], Wright et al. reported a 
very interesting work by using sparse representation for 
robust face recognition (FR). A query face image is first 
sparsely coded over the template images, and then the 
classification is performed by checking which class yields 
the least coding error. Such a sparse representation based 
classification (SRC) scheme achieves a great success in FR, 
and it boosts the research of sparsity based pattern 
classification. Gao et al. [9] proposed the kernel sparse 

representation for FR, while Yang and Zhang [10] used the 
Gabor features for SRC with a learned Gabor occlusion 
dictionary to reduce the computational cost. Cheng et al. 
[11] discussed the l1-graph for classification, and Yang et al. 
[12] combined sparse coding with linear spatial pyramid 
matching for image classification. A recent review of 
sparse representation for computer vision and pattern 
recognition applications can be found in [13].   

In sparse representation based FR, usually we assume 
that the face images are aligned. Recently, sparse 
representation has been extended to solve the misalignment 
or pose change. The method in [14] is invariant to 
image-plane transformation. The method in [15] could deal 
with misalignment and illumination variation. In [16], Peng 
et al. studied how to simultaneously align a batch of 
linearly correlated images with gross corruption. 

Sparse representation (or coding) codes a signal y over a 
dictionary Φ such that y≈Φα and α is a sparse vector. The 
sparsity of α can be measured by l0-norm, which counts the 
number of non-zeros in α. Since the combinatorial 
l0-minimization is NP-hard, the l1-minimization, as the 
closest convex function to l0-minimization, is widely 
employed in sparse coding: 1

minα α  s.t. 2
ε− ≤y Φα , 

where ε is a small constant. Although l1-minimization is 
much more efficient than l0-minimization, it is still time 
consuming, and hence many fast algorithms were proposed 
to speed up the l1-minimization process. 

As reviewed in [17], there are five representative fast 
l1-minimization approaches: Gradient Projection, 
Homotopy, Iterative Shrinkage-Thresholding, Proximal 
Gradient, and Augmented Lagrange Multiplier (ALM). It 
was indicated that for noisy data, first order l1-minimization 
techniques (e.g., SpaRSA [18], FISTA [19] and ALM [20]) 
are more efficient, while for FR, Homotopy [21], ALM and 
l1_ls [22] are better for their accuracy and fast speed.  

Although SRC [8] has shown interesting results in FR 
and has been widely studied in the community, its working 
mechanism has not been clearly revealed yet. Most 
literature, including [8], emphasizes too much on the role of 
l1-norm sparsity in face classification, while the role of 
collaborative representation (CR), i.e., using the training 
samples from all classes to represent the query sample y, is 
much ignored. The l1-minimization makes the sparsity 
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based classification schemes such as SRC very expensive; 
however, is it really the l1-norm sparsity that makes SRC 
powerful for FR? Very recently some researchers have 
started to question the use of sparsity in image 
classification, such as [29-30].  

This paper devotes to analyze the working mechanism of 
SRC. We will explain why sparsity could improve 
discrimination, and more importantly, we will indicate that 
it is the CR, but not the l1-norm sparsity, that plays the 
essential role for classification in SRC. Consequently, we 
propose a new classification scheme, namely CR based 
classification with regularized least square (CRC_RLS), 
which has significantly less complexity than SRC but leads 
to very competitive classification results.  

Section 2 briefly reviews SRC. Section 3 analyzes sparse 
representation and CR. Section 4 presents the CRC_RLS 
scheme. Section 5 conducts extensive experiments, and 
Section 6 concludes the paper. 

2. The SRC scheme 
Table 1: The SRC Algorithm 

1. Normalize the columns of X to have unit l2-norm. 
2. Code y over X via l1-minimization 

( ) 1
ˆ arg min=α α α  s.t. 

2
ε− <y Xα         (1)

where constant ε is to account for the dense small 
noise in y, or to balance the coding error of y and 
the sparsity of α. 

3. Compute the residuals  
( ) 2

ˆi i ie = −y y X α                       (2)

where ˆiα  is the coding coefficient vector associated 
with class i.  

4. Output the identity of  y as 
( ) { }identity arg min i ie=y                  (3)

 
Denote by Xi ∈ℜm×n the dataset of the ith class, and each 

column of Xi is a sample of class i. Suppose that we have K 
classes of subjects, and let X = [X1, X2, …, XK]. Once a 
query image y∈ℜm comes, we code it as y≈Xα, where 
α=[α1;…,αi;…; αK] and αi is the coding vector associated 
with class i. If y is from the ith class, usually y≈Xiαi holds 
well, implying that most coefficients in αk, k≠i, are nearly 
zeros and only αi has significant entries. That is, the sparse 
non-zero entries in α can encode the identity of sample y. 
The procedures of SRC are summarized in Table 1. 

3. Sparse representation and collaborative 
representation 

From Table 1, we see that there are two key points in 
SRC. The first key point is that the coding vector of query 
sample y is required to be sparse, and the second key point 

is that the coding of y is performed collaboratively over the 
whole dataset X instead of each subset Xi. Suppose that y 
belongs to some class in the dataset, it was claimed in [8] 
that the sparsest (or the most compact) representation of y 
over X is naturally discriminative and thus can indicate the 
identity of y. It was also claimed that SRC is a 
generalization of the classical nearest neighbor (NN) and 
nearest subspace (NS) classifiers. The NN classifier 
represents y by each individual of the training samples; the 
NS classifier represents y by the training samples of each 
class; and SRC represents y collaboratively by samples of 
all classes. In this section, we first illustrate why sparsity 
makes representation more discriminative, and then discuss 
the collaborative representation involved in SRC.  

3.1. Why sparse representation? 

Denote by Φ∈ℜm×n a dictionary of atoms. If Φ is 
complete, then any signal x∈ℜm can be accurately 
represented as the linear combination of the atoms in Φ.  If 
Φ is orthogonal, however, often we need to use many atoms 
from Φ to faithfully represent x. If we want to use less 
atoms to represent x, we must relax the orthogonality 
imposed on Φ. In other words, we must allow more atoms 
to be involved in Φ so that we have more choices to 
represent x, leading to an over-complete dictionary Φ but a 
sparser representation of signal x. For example, it is 
well-known that redundant wavelet transforms have much 
better denoising performance than orthogonal wavelet 
transforms. The great success of sparse representation in 
image restoration [2-3] further validates this.  

In the scenario of FR, each class of face images often lies 
in a small subspace of ℜm. That is, the m-dimensional face 
image x can be characterized by a feature vector of much 
lower dimensionality. If we take the set of training samples 
of class i, i.e., Xi, as the dictionary for this class, in practice 
the atoms (i.e., the training samples) of Xi will be correlated. 
Assume that we have enough training samples for each 
class so that all the images of class i can be faithfully 
represented by Xi, then Xi is an over-complete dictionary1 
because of the correlation of training samples of class i, and 
we can conclude that a testing sample y of class i can be 
sparsely represented over dictionary Xi. 

Another important fact in FR is that all the face images 
are somewhat similar, while some subjects may have very 
similar face images. This implies that dictionary Xi and 
dictionary Xj are not incoherent but can be highly 
correlated. Let Xj = Xi +Δ. Using the NS classifier, for a 
query sample y from class i, we can calculate by least 
square method a vector 

2
arg mini i= −αα y X α . Let ei = 

 
1 More strictly speaking, it should be the dimensionality reduced 
dictionary of Xi that is over-complete. For the convenience of expression, 
we simply use Xi in the development.   
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y-Xiαi. Similarly, if we represent y by class j, there is 

2
arg minj j= −αα y X α  and we let ej=y-Xjαj. Suppose 

that Xi, Xj∈ℜm×n, if Δ is small such that 

1

( )
( )

n iF

i iF

σξ
σ

= ≤
Δ X
X X

 

where σ1(Xi) and σn(Xi) are the largest and smallest 
eigenvalues of Xi, respectively, then we have the following 
relationship between ei and ej (page 242, [28]): 

( ) { } ( )22
2

2

1 ( ) min 1,j i
i m nξ κ Ο ξ

−
≤ + − +

e e
X

y
  (4) 

where κ2(Xi) is the l2-norm conditional number of Xi. 
From Eq. (4), we can clearly see that if Δ is small, i.e., 

subjects i and j look similar to each other, then the distance 
between ei and ej can be very small. This makes the 
classification very unstable because a small disturbance can 
lead to ||ej||2<||ei||2, resulting in a wrong classification.  

The above problem can be much alleviated by imposing 
some sparsity on αi and αj. The reason is very simple. If y is 
from class i, it is more likely that we can use only a few 
samples (e.g., 5 or 6 samples) in Xi to represent y with a 
good accuracy. In contrast, we may need more samples 
(e.g., 8 or 9 samples) in Xj to represent y with nearly the 
same accuracy. Under a certain sparsity constraint, the 
representation error of y by Xi will be visibly lower than 
that by Xj, making the classification of y easier. The sparse 
representation of y by Φ can be formulated as 

2
min s.t.

p
ε− ≤y Φα α α                    (5) 

where ε is a constant and p can be 0, 1, or any other eligible 
sparsity metric.  

 

  
(a) 

 
(b) 

 
(c) 

Figure 1:  (a) The query face image (left: original image, right: 
the one after histogram equalization for better visualization); (b) 
some training samples from the class of the query image; (c) some 
training samples from another class. 
 

Let 2
e = −y Φα  and set p=0 in Eq. (5). We could plot 

the curve of e versus ε to illustrate why sparsity improves 

discrimination. Fig. 1(a) shows a testing face image from 
class 32 in the Extended Yale B database. Some training 
samples of class 32 are shown in Fig. 1(b). Some training 
samples of class 5, which looks similar to class 32, are 
shown in Fig. 1(c). We use the training samples of the two 
classes as dictionaries to represent the query sample in Fig. 
1(a), respectively, under different sparsity ε. The two “e vs. 
ε” curves are drawn in Fig. 2.    
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Figure 2: The curve of representation error versus the number of 
training samples in each class. 

 
From Fig. 2, we can see that when using only a few 

training samples (<3) to represent the query sample, both of 
the two classes have big error; when more and more 
training samples are involved, the representation error 
decreases. However, the discrimination ability of the 
representation error will also reduce if too many samples 
(>10) are used. Thus, the sparsity of coefficients should be 
considered. From the above analyses, we may have the 
following proposition for l0-norm sparsity: a query sample 
should be classified to the class which could faithfully 
represent it using less number of samples. 

In practice, if the number of training samples of each 
class is relatively big, we can represent the testing sample y 
class by class. Since l0-minimization is combinatorial 
NP-hard, l1-minimization with the following Lagrangian 
formulation is often adopted: 

( ) { }2

2 1
arg mini i λ= − +α y Xα α α                   (6) 

Both the representation error ei=||y-Xiαi||2 and the sparsity 
term ||αi||1 can be used to classify the sample. Later we will 
see that (please refer to the experimental results in Section 
5.2) actually the l2-norm can also be used to regularize αi, 
and the l1-norm and l2-norm lead to almost the same result.             

3.2. Why collaborative representation? 
In our discussion in Section 3.1, we assumed that there 

are enough training samples for each class so that the 
(dimensionality reduced) dictionary Xi is over-complete. 
Unfortunately, FR is a typical small-sample-size problem, 
and Xi is under-complete in general. If we use Xi to 
represent y, the representation error can be big, even when 
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y is from class i. Consequently, the classification will be 
unstable not matter the error ei or the sparsity ||αi||p or both 
of them are used for decision making. 

One obvious solution to solving this problem is to use 
more samples of class i to represent y. But where could we 
have these samples? Fortunately, one fact in FR is that face 
images of different classes share similarities. Some sample 
from class j may be very helpful to represent the testing 
sample with label i. In SRC [8], this “lack of samples” 
problem is solved by taking the face images from all the 
other classes as the possible samples of each class. That is, 
it codes the testing image y collaboratively over the 
dictionary of all samples X = [X1, X2, …, XK] under the 
l1-norm sparsity constraint.  

 One interesting point here is that after the collaborative 
representation (CR) with all classes, SRC classifies y 
individually (i.e., check class by class). For the simplicity 
of analysis, let’s remove the l1-norm sparsity term in Eq. (1), 
and then the representation becomes a least square problem: 
( ) 2

2
ˆ arg min= −αα y Xα . The associated representation 

ŷ = ˆi ii∑ X α  is actually the perpendicular projection of y 

onto the space spanned by X. In SRC, the reconstruction 
error by each class 2

2
ˆi i ie = −y X α  is used for 

classification. It can be readily derived that 
2

2
ˆi i ie = −y X α 2

2
ˆ= −y y 2

2
ˆ ˆi i+ −y X α  

Obviously, it is the amount *
ie ˆ||= −y 2

2ˆ ||iX α  that works 

for classification because 2

2
ˆ−y y  is a constant for all 

classes.  

 
Figure 3: Geometric illustration of the representation of y over X. 
 

Denote by ˆi i i=χ X α  and ˆi j jj i≠
= ∑χ X α . Fig. 3 

shows geometrically the representation of y over X. Since 
iχ  is parallel to ˆ ˆi i−y X α , we can readily have  

( ) ( )
2 2

ˆ ˆˆ|| ||
ˆsin , sin ,

i i

i i i

−
=

y Xy
χ χ y χ

α  

where ( ),i iχ χ  is the angle between χi and iχ , and ( )ˆ , iy χ  

is the angle between ŷ and χi. Finally, the representation 
error can be represented by 

*
ie = ( )

( )

2 2
2

2

ˆ ˆsin , || ||
sin ,

i

i i

y χ y
χ χ

                      (7) 

Eq. (7) shows that by using CR, when we judge if y 
belongs to class i, we will not only consider if the angle 
between ŷ  and iχ  is small (i.e., if ( )ˆsin , iy χ is small), 

we will also consider if the angle between iχ  and iχ  is big 
(i.e., if ( )sin ,i iχ χ  is big). Such a “double checking” 
makes the classification more effective and robust.  

One problem is that when the number of classes is too 
big, the least square solution ( ) 2

2
ˆ min= −αα y Xα  will 

become unstable. In SRC, the l1-norm sparsity constraint is 
imposed on α to make the solution stable. However, it is 
not necessary to use the strong l1-norm to this end. As we 
will see next, by using the much weaker l2-norm to 
regularize the solution of α, we can have similar 
classification results but with significantly lower 
complexity. In summary, it is the CR but not the l1-norm 
sparsity constraint that truly improves the FR performance. 

4. Collaborative representation based 
classification (CRC) 

Most of the previous works [8-13] emphasize the 
importance of sparsity for classification but do not 
investigate much the role of collaboration between classes 
in representing the query sample. Is it really the sparsity 
that improves the FR accuracy? Or is it the CR that truly 
helps FR? To answer this question, we propose here a 
simple CR based classification (CRC) scheme, and conduct 
experiments to give the answer in next section.  

In order to collaboratively represent the query sample 
using  X with low computational burden, we propose to use 
the regularized least square method. There is  

( ) { }2 2

2 2
ˆ arg min λ= − ⋅ +ρρ y X ρ ρ               (8) 

where λ is the regularization parameter. The role of the 
regularization term is twofold. First, it makes the least 
square solution stable, and second, it introduces a certain 
amount of “sparsity” to the solution ρ̂ , yet this sparsity is 
much weaker than that by l1-norm. 

The solution of CR with regularized least square in Eq. (8) 
can be easily and analytically derived as 

( ) 1
ˆ T Tλ

−
= + ⋅ρ X X Ι X y                        (9) 

Let ( ) 1T Tλ
−

= + ⋅P X X Ι X . Clearly, P is independent of y 

so that it can be pre-calculated as a projection matrix. Once 
a query sample y comes, we can just simply project y onto P 
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via Py. This makes CR very fast.  
The classification by ρ̂  is similar to the classification by 

α̂  in SRC (refer to Table 1). In addition to the class specific 
representation residual 

2
ˆi i− ⋅y X ρ , where  ˆiρ  is the 

coefficient vector associated with class i, the l2-norm 
“sparsity” 

2
ˆiρ  can also bring some discrimination 

information for classification. Therefore we propose to use 
both of them in classification. Based on our experiments, 
this improves slightly the classification accuracy over that 
by using only the representation residual. The proposed 
CRC with regularized least square (CRC_RLS) algorithm 
is summarized as follows.  

 
Table 2: The CRC_RLS Algorithm 

1. Normalize the columns of X to have unit l2-norm. 
2. Code y over X by  

ˆ =ρ Py  

    where ( ) 1T Tλ
−

= + ⋅P X X Ι X . 

3. Compute the regularized residuals  

2 2
ˆ ˆi i i ir = − ⋅y X ρ ρ                    (10)

4. Output the identity of  y as  
Identity(y) = argmini{ri}. 

5. Experimental results  
Considering the accuracy and efficiency, we chose l1_ls 

[22] to solve the l1-regularized minimization in SRC. All 
the experiments were carried out using MATLAB on a 3.16 
GHz machine with 3.25GB RAM. In the experiments of 
gender classification in Section 5.2, the parameter λ in 
CRC_RLS is set as 0.08. In FR, considering that when 
more classes (and thus more samples) are used, the least 
square solution of CR will be more unstable and thus higher 
regularization is required, we set λ as 0.001*n/700 in all FR 
experiments, where n is the number of training samples. 
The MATLAB code of CRC_RLS can be downloaded at 
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.  

Three face databases, including Extended Yale B [23] 
[24], AR [25], and large-scale Multi-PIE [26], are used to 
test the performance of CRC_RLS and its competing 
methods, including SRC [8], SVM, LRC (linear regression 
classification) [27] and NN. Note that LRC is actually an 
NS based method.   

5.1. The role of sparsity: l1 or l2? 
In this section, we study the role of sparsity in FR. Two 

representative face databases, Extended Yale B [23][24] 
and AR [25], are used (the experimental settings are 
described in Section 5.3). We use Eigenfaces of 
dimensionality 300 as the input facial features, and use all 
the training samples as the dictionary.  
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Figure 4: The recognition rates of SRC (l1-regularized 
minimization) and CRC_RLS (l2-regularized minimization) 
versus the different values of λ on the (a) AR and (b) Extended 
Yale B databases; (c) the coding coefficients of a query sample. 
 

The sparse coding of SRC in Eq. (1) can be equivalently 
written as  ( ) { }2

2 1
ˆ arg min λ= − +α y Xα α α . We test 

the performance of SRC (l1-regulazied minimization) and 
CRC_RLS (l2-regulazied minimization) by increasing the 
value of regularization parameter λ. The results on the AR 
and Extended Yale B databases are shown in Fig. 4(a) and 
Fig. 4(b), respectively. We can see that when λ=0, SRC and 
CRC_RLS fail. When λ is assigned a small positive value, 
e.g., from 0.000001 to 0.1, good results can be achieved by 
SRC and CRC_RLS. When λ is too big (e.g., >0.1) the 
recognition rates of both methods drop.  

From Fig. 4 we can have the following findings. First, 
with the increase of sparsity (>0.000001), no much benefit 
on recognition rate can be gained. Second, l2-regulazied 
minimization (i.e., CRC_RLS) could get higher recognition 
rates than l1-regulazied minimization (i.e., SRC) in a broad 
range of λ. This implies that l1-norm does not play the key 
role in face classification.  

Fig. 4(c) plots the query sample’s coding coefficients by 
SRC and CRC_RLS when they achieve their best results in 
the AR database. It can be seen that CRC_RLS has much 
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weaker sparsity than SRC; however, it achieves not worse 
results. Again, sparsity of the representation coefficients is 
useful but not that crucial for FR. What really crucial is the 
CR mechanism in both CRC_RLS and SRC.  

5.2. Gender classification 
In this section, we validate our claim in Section 3.1 that 

when the samples in each class are enough, there is no need 
to code the testing sample over the whole dictionary. We 
chose a non-occluded subset (14 images per subject) of AR 
[25] consisting of 50 male and 50 female subjects. Images 
of the first 25 males and 25 females were used for training, 
and the remaining images for testing. We used PCA to 
reduce the dimension of each image to 300. For this 2-class 
classification problem with enough training samples, we 
code the testing sample by each class’ dictionary, and then 
classify it based on both the representation error and 
coefficient sparsity. That is, the query sample y is classified 
to the class which gives the minimal 
( ) 2

2 1i ir λ= − +y y X α α   or ( ) 2 2

2 2i ir λ= − +y y X α α .  

The methods are then called L1R (for l1-regularized 
minimization) and L2R (for l2-regularized minimization). 

We compare L1R and L2R with the CRC_RLS, SRC, 
SVM, LRC and NN, and the results are listed in Table 3. 
One can see that L1R and L2R get the best results, which 
validates that coding on each class’ dictionary is more 
powerful than coding on the whole dictionary when the 
training samples of each class are enough, no matter l1- or 
l2-regularized minimization is used. CRC_RLS gets the 
second best result, about 1.4% higher than SRC.  

 
Table 3: The results of different methods on gender classification 
using the AR database.  

L1R L2R CRC_RLS SRC SVM LRC NN 
94.9% 94.9% 93.7% 92.3% 92.4% 27.3% 90.7% 

5.3. Face recognition 
The proposed CRC_RLS is then tested for FR. The 

Eigenface is used as the face feature. 
 
a) Extended Yale B Database: The Extended Yale B [23] 

[24] database contains about 2,414 frontal face images of 
38 individuals. We used the cropped and normalized face 
images of size 54×48, which were taken under varying 
illumination conditions. We randomly split the database 
into two halves. One half, which contains 32 images for 
each person, was used as the dictionary, and the other half 
was used for testing. Table 4 shows the recognition rates 
versus feature dimension by NN, LRC, SVM, SRC and 
CRC_RLS. It can be seen that CRC_RLS and SRC achieve 
very similar results in all dimensions (the difference of 
recognition rate is less than 0.5%). Since there are 

relatively enough (32 per class) training samples, all the 
methods have not bad recognition rates. 

 
Table 4: The face recognition results of different methods on the 
Extended Yale B database. 

Dim 84 150 300 
NN 85.8% 90.0% 91.6% 
LRC 94.5% 95.1% 95.9% 
SVM 94.9% 96.4% 97.0% 
SRC 95.5% 96.8% 97.9% 
CRC_RLS 95.0% 96.3% 97.9% 

 
2) AR database: As in [8], a subset (with only 

illumination and expression changes) that contains 50 male 
subjects and 50 female subjects was chosen from the AR 
dataset [25] in our experiments. For each subject, the seven 
images from Session 1 were used for training, with the 
other seven images from Session 2 for testing. The images 
were cropped to 60×43. The comparison of competing 
methods is given in Table 5. We can see that CRC_RLS 
achieves the best result when the dimensionality is 120 or 
300. The recognition rates of CRC_RLS and SRC are both 
at least 10% higher than other methods. This shows that CR 
does have much contribution to face classification. 

 
Table 5: The face recognition results of different methods on the 
AR database. 

Dim 54 120 300 
NN 68.0% 70.1% 71.3% 
LRC 71.0% 75.4% 76.0% 
SVM 69.4% 74.5% 75.4% 
SRC 83.3% 89.5% 93.3% 
CRC_RLS 80.5% 90.0% 93.7% 

 
Table 6: The face recognition results of different methods on the 
MPIE database. 

 NN LRC SVM SRC CRC_RLS 
S2 86.4% 87.1% 85.2% 93.9% 94.1% 
S3 78.8% 81.9% 78.1% 90.0% 89.3% 
S4 82.3% 84.3% 82.1% 94.0% 93.3% 

 
3) Multi PIE database: The CMU Multi-PIE database 

[26] contains images of 337 subjects captured in four 
sessions with simultaneous variations in pose, expression, 
and illumination. In the experiments, all the 249 subjects in 
Session 1 were used. For the training set, we used the 14 
frontal images with 14 illuminations 2  and neutral 
expression. For the testing sets, 10 typical frontal images3 
of illuminations taken with neutral expressions from 
Session 2 to Session 4 were used. The dimensionality of 
Eigenface is 300. Table 6 lists the recognition rates in three 
tests by the competing methods. The results validate that 
CRC_RLS and SRC are the best in accuracy, with at least 

 
2 Illuminations {0,1,3,4,6,7,8,11,13,14,16,17,18,19}. 
3 Illuminations {0,2,4,6,8,10,12,14,16,18}. 
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6% improvement than the other three methods.  
 
4) FR with real face disguise: As in [8], a subset from the 

AR database consisting of 1400 images from 100 subjects, 
50 male and 50 female, is used here. 800 images (about 8 
samples per subject) of non-occluded frontal views with 
various facial expressions were used for training, while the 
others with sunglasses and scarves (as shown in Fig. 5) 
were used for testing. The images were resized to 83×60. 
To handle the occlusion, SRC uses l1-norm to fit the coding 
error and the sparse coding model is: ( ) 1

ˆ arg min=α α α  

s.t. 
1

ε− <y Xα  [8]. Note that the use of l1-norm on the 

coding error increases much the complexity of SRC.     
The results are shown in Table 7. Although CRC_RLS is 

directly applied to the disguise face images, it gets the best 
result of FR with scarf disguise, outperforming SRC by a 
margin of 31%. For the case of FR with sunglasses, 
CRC_RLS is worse than SRC, but still better than SVM. 
We also partitioned the face image into 8 sub-regions for 
testing (the partition is the same as that in [8]). Then both 
the recognition rates of CRC_RLS and SRC are greater 
than 91%. These FR experiments with disguise again 
validate that CRC_RLS is very competitive. 

 

    
Figure 5: The testing samples with sunglasses and scarves in the 
AR database. 
 
Table 7: The results of face recognition with real disguise using 
the AR database. 

 Sunglass Scarf 
SVM 66.5% 16.5% 
SRC 
SRC (partitioned) 

87.0% 
97.5% 

59.5% 
93.5% 

CRC_RLS 
CRC_RLS (partitioned) 

68.5% 
91.5% 

90.5% 
95%

 
In all the above FR experiments, both CRC_RLS and 

SRC are better than NN and LRC because of the benefit 
brought by CR. On the other hand, the result of CRC_RLS 
is comparable to SRC, showing that the l1-norm 
regularization does not bring more benefit than the simple 
l2-norm regularization in FR.  

5.4. Running time 
At last, let’s compare the running time of CRC_RLS and 

SRC with various fast l1-minimization methods, including 
l1_ls [22], ALM [20], FISTA [19] and Homotopy[21]. We 
fix the dimensionality of Eigenface as 300. The recognition 
rates and speed of SRC and CRC_RLS are listed in Table 8 

(Extended Yale B), Table 9 (AR) and Table 10 (Multi-PIE), 
respectively. Note that the results in Table 10 are the 
averaged values of Sessions 2, 3 and 4.  

 
Table 8: Recognition rate and speed on the Extended Yale B 
database. 

 Recognition rate Time 
SRC(l1_ls) 0.979 5.3988 s   
SRC(ALM) 0.979 0.128   s 
SRC(FISTA) 0.914 0.1567 s 
SRC(Homotopy) 0.945 0.0279 s 
CRC_RLS 0.979 0.0033 s 
Speed-up 8.5 ~ 1636 times 

 
Table 9: Recognition rate and speed on the AR database. 
 Recognition rate Time 
SRC(l1_ls) 0.933 1.7878 s 
SRC(ALM) 0.933 0.0578 s 
SRC(FISTA) 0.6824 0.0457 s 
SRC(Homotopy) 0.8212 0.0305 s 
CRC_RLS 0.937 0.0024 s 
Speed-up 12.6 ~ 744.9 times 

 
Table 10: Recognition rate and speed on the MPIE database. 

 Recognition rate Time 
SRC(l1_ls) 0.926 21.2897 s 
SRC(ALM) 0.9195 1.76 s 
SRC(FISTA) 0.7955 1.636 s 
SRC(Homotopy) 0.9017 0.5277 s 
CRC_RLS 0.922 0.0133 s 
Speed-up 39.7 ~ 1600.7 times 

 
On Yale B, CRC_RLS, SRC(l1_ls) and SRC(ALM) 

achieve the best recognition rate (97.9%), but the speed of 
CRC_RLS is 1636 and 38.8 times faster than SRC(l1_ls) 
and SRC(ALM). For the experiments on AR, CRC_RLS 
has the best recognition rate and speed. SRC(l1_ls) is the 
second best but with the slowest speed. SRC(FISTA) and 
SRC(Homotopy) are much faster than SRC(l1_ls) but they 
have lower recognition rates. On Multi-PIE, CRC_RLS 
achieves the second highest recognition rate (only 0.4% 
lower than SRC(l1_ls)) but it is significantly (more than 
1600 times) faster than SRC(l1_ls). In this large-scale 
database, CRC_RLS is about 40 times faster than SRC with 
the fastest implementation (i.e., Homotopy) with more than 
2% improvement in recognition rate.  

From the results in the above three tests, we can see that 
the speed-up of CRC_RLS is more obvious as the scale (i.e., 
the number of classes or training samples) of face database 
increases. This implies that CRC_RLS is more 
advantageous in practical large-scale FR applications. 

6. Conclusion and discussions 
This paper revealed that it is the collaborative 

representation (CR) mechanism, but not the l1-norm 
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sparsity constraint, that truly improves the face recognition 
(FR) accuracy. We then presented a very simple yet very 
effective FR scheme, namely CR based classification with 
regularized least square (CRC_RLS). Compared with the 
l1-regularized sparse representation based classification 
(SRC), the l2-regularized CRC_RLS has very competitive 
FR accuracy but with significantly lower complexity. The 
extensive experimental results clearly demonstrated that 
CRC_RLS is up to 1600 times faster than SRC without 
sacrificing recognition rate.  

Apart from FR, our experiments on other types of signals 
(e.g., the human mouth odor signal classification for 
medical diagnosis) also showed that CRC or SRC works 
well. Statistically speaking, the norm (e.g., l1 or l2) imposed 
on the coding coefficient and coding error depends on the 
distributions of them (e.g., Laplacian or Gaussian). 
Nonetheless, more investigations are to be made to further 
study the CRC scheme for various pattern classification 
problems, and this is one of our main objectives in the 
future work.  
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