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ABSTRACT 

The reconstruction of a high resolution (HR) image from its low resolution (LR) counterpart is a challenging problem. 
The recently developed sparse representation (SR) techniques provide new solutions to this inverse problem by 
introducing the l1-norm sparsity prior into the super-resolution reconstruction process. In this paper, we present a new SR 
based image super-resolution by optimizing the objective function under an adaptive sparse domain and with the 
nonlocal regularization of the HR images. The adaptive sparse domain is estimated by applying principal component 
analysis to the grouped nonlocal similar image patches. The proposed objective function with nonlocal regularization can 
be efficiently solved by an iterative shrinkage algorithm. The experiments on natural images show that the proposed 
method can reconstruct HR images with sharp edges from degraded LR images.  
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1. INTRODUCTION  
Image super-resolution aims to reconstruct a high resolution (HR) image from its degraded and down-sampled low 
resolution (LR) counterparts. It has wide applications in computer vision, image enhancement, medical imaging and high 
definition televisions. A typical image super-resolution process consists of LR image denoising, interpolation and 
deblurring, subjecting to a known imaging model of the LR image. The LR imaging process can be modeled by: 

= DH +y x n  (1) 
where H is a blurring operator that mimics the point spread function of a camera, D is a down-sampling operator, n is the 
noise introduced in the LR image generation, x is the target HR image, and y is the observed LR image. The 
reconstruction of the original HR image is a typical ill-posed inverse problem. This problem becomes even more 
underdetermined in the case that only one LR image is available. In this paper, we concentrate on the image super-
resolution from only a single image.  

Conventional linear interpolation based methods, such as bilinear, bicubic and cubic spline interpolators, reconstruct 
HR images with jaggy and zipping artifacts. To improve the linear interpolators, directional interpolators [1]-[3] have 
been proposed to perform the interpolation along the edge directions. Especially, in [3] Zhang and Wu optimize the 
interpolator based on the local covariance of the image signal and achieve state-of-the-art interpolation results. However, 
all these interpolation based approaches do not handle the blurring and noises in the LR images. Additional steps have to 
be carried out to remove the blurring and noises in the LR images. However, the separated denoising and deblurring 
steps do not sufficiently exploit the information hidden in the imaging model in Eq. (1).  

Another classical super-resolution approach is iterative back-projection (IBP) [4], which is designed based on the 
imaging model in Eq. (1). However, the IBP process involves much uncertainty in recovering the HR images, and hence 
chessboard and zipping artifacts are commonly observed in the reconstructed HR images by IBP algorithm. This mainly 
because IBP tries to find the x that could minimize 

2
DH−y x ; however, there could be many possible candidates of x 

that could make 
2

DH−y x  very small. In other words, the solution space of IBP is too big so that the resulting solution 
may not be the best one.  

To improve the performance of the IBP method, image prior knowledge that take into account the local image edge 
geometries and nonlocal image redundancies has been incorporated into the IBP process in [5] [6]. The regularized IBP 
techniques by bilateral filters [5] and nonlocal means based filters [6] can remove many artifacts of the HR images 
generated by the original IBP method. However, their performances are still not very satisfying in recovering fine image 



 

 

details and suppressing noises. To reconstruct more visually pleasing HR images, more prior knowledge of natural 
images should be used to reduce the uncertainty of the HR images. Typically, the regularized super-resolution can be 
formulated by solving the following minimization problem: 

2
arg min ( )DH Jλ− +

x
y x x  (2) 

where J(x) is a regularization term specifying the prior knowledge of the HR image and λ is a scalar balancing between 
the quadratic fidelity term and the regularization term. A well-known regularization prior is the minimum pixel intensity 
total variations (TV) [7]. The TV-regularized approaches favor the images with piecewise smooth edge structures in the 
solution space of x; however, the TV-based super-resolution techniques cannot recover image fine details and often have 
staircase artifacts. Other image priors, such as edge smoothness [8] and gradient profile priors [9] have been proposed for 
image super-resolution, yet the resulting edges look unnatural.  

A recently proposed image prior knowledge is sparsity of natural images. It assumes that a natural image can be 
sparsely represented in some specific domain (e.g. wavelet domain, Fourier domain), or it has a sparse expansion over a 
dictionary of atoms, i.e. x=Ψα and most of the coefficients in α are nearly zero. In general, the sparsity constrain on α is 
implemented by requiring that the l1-norm of α is small enough, i.e. ||α||1<t. The sparse representation (SR) techniques 
have been successfully applied to a series of inverse problems, including image deblurring [10], denoising [11] and 
compressive sensing [12]. In [13], the SR of the HR image over a learned dictionary was proposed to regularize the 
image super-resolution process. As a learning-based method, its performance relies on the training set, and the learning 
of a universal dictionary for SR is very complicated.  

In this paper, we present a new SR based model to reconstruct an HR image from its LR counterpart. The 
contributions of the proposed approach are twofold. First, we propose to adaptively estimate the sparse domain of the HR 
image patches using adaptive principal component analysis (PCA) via non-local similar patch grouping. Second, to 
further enhance the performance of the proposed approach, a nonlocal self-similarity quadratic constrain is also 
introduced to fully exploit the nonlocal image redundancies. Since both the two points use the non-local information of 
the image, we call the proposed method non-local regularized SR for image super-resolution. In addition, the proposed 
minimization problem with non-local regularizations can be efficiently solved by using a new family of numerical 
algorithms, called iterative shrinkage algorithms [14] [15].  

The rest of the paper is organized as follows. Section 2 presents the proposed algorithm in detail. Section 3 conducts 
experiments to validate the performance of the proposed method. Section 4 concludes the paper. 

   

2. THE PROPOSED IMAGE SUPER RESOLUTION APPROACH 
The sparsity prior of natural images in a specific transform domain is an effective constrain to refine the solution 

space of image super-resolution. Wavelet transform, DCT, curvelet and contourlet transforms are commonly used 
transforms for sparse image representation. However, these transforms use a fixed set of bases, which lack flexibilities in 
adapting to various complex local structures in natural images. Therefore, dictionary learning [16] techniques have been 
proposed to learn a universal over-complete dictionary of atoms so that the image can be sparsely coded via l1-norm 
minimization. However, for each image local patch, there are too many irrelative atoms in the universal dictionary, 
which degrades the effectiveness and efficiency of sparse representation (SR) and hence degrades the image 
reconstruction performance. It is of high demand that we could adaptively determine the sparse domain of each local 
patch.  

In [17] [18], the principal component analysis (PCA) technique was used to adaptively de-correlate the image local 
structures for noise removal. For each image block, a PCA transformation matrix is locally computed. To this end, a set 
of image blocks that are similar to the current image block is grouped and a PCA transform matrix is computed over the 
training dataset. The PCA transformation matrix actually defines a type of image local sparse domain because the image 
local patch can be well reconstructed by using only a few significant principal components. Different from the wavelet 
transform, DCT, etc, such a PCA transform is signal adaptive. In [16-17], state-of-the-art image denoising results have 
been obtained by thresholding in the adaptive PCA domains. Inspired by the work in [16-17], in this paper we propose to 
use the locally adaptive PCA transform as the adaptive sparse domain. On the other hand, the nonlocal self-similarity 
prior is used as regularization term in the SR based image reconstruction. Finally, an objective function will be 



 

 

constructed, which is an l1-norm and l2-norm compounded SR minimization problem. Fortunately, an efficient numerical 
algorithm can be readily obtained by using the recently developed iterative shrinkage (IS) techniques [14] [15].  

2.1 Adaptive sparse domain determination by local PCA transform  

To adaptively compute the sparse domain of each local patch, we model a local image patch as a vector variable and 
then calculate its statistics by using its available samples. Specifically, the adaptive PCA transformation method 
proposed in [17] [18] is used here to determine the adaptive sparse domain of each local patch. Denote by 

1 2[ , , , ]T
mx x x x=v L  a vector variable containing all pixel values within a w×w image patch. To compute the PCA 

transformation matrix of xv , a training dataset of it is needed. Denote by 
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a sample matrix of variable xv , where the ith row of sample matrix X, denoted by ,0 ,1 , 1i i i i nX x x x −⎡ ⎤= ⎣ ⎦L , is the 

sample vector of variable xi. The sample vector iX  is centralized as i i iX X μ= − , where iμ  is the mean of iX . Other 
rows of X can be centralized analogously and we denote by X  the centralized matrix of X. With X , the covariance 
matrix of X is calculated by 

1 TXX
n

Ω =  (4) 

The goal of PCA is to find an orthonormal transformation matrix P to decorrelate X , Y PX= , so that the covariance 
matrix of Y  is diagonal. Since Ω is symmetrical, by apply the SVD (singular value decomposition) to it, we have 

TΩ ΦΛΦ=  (5) 
where 1 2 mΦ φ φ φ= ⎡ ⎤⎣ ⎦L  is the m m×  orthonormal eigenvector matrix and { }1 2, ,..., mdiagΛ λ λ λ=  is the diagonal 
eigenvalue matrix with 1 2 ... mλ λ λ≥ ≥ ≥ . The terms 1 2, ,..., mφ φ φ  and 1 2, ,..., mλ λ λ  are the eigenvectors and eigenvalues 

of Ω. By setting TΡ Φ= , X  can be decorrelated, i.e. Y PX=  and 1 TYY
n

Λ = . An important property of PCA is that it 

fully de-correlates the original dataset X . Most of the energy of a signal will concentrate on a small subset of the PCA 
transformed dataset.  

To apply the block-based adaptive PCA transform for the given image, we need a set of training sample for each 
image patch xv  so that the PCA transformation matrix P can be computed. To this end, we can collect every possible 
image patches in a large window centered on xv . However, there can be many different image patches from the current 
one in the search area, which will deteriorate the estimation of the covariance and hence the PCA matrix. To exclude 
these irrelative training samples, a block matching method is used to select the image patches with similar spatial 
structures. The image patches whose Euclid distances to xv  are smaller than a predefined threshold are selected: 

2ix x τ− <v v . By such constraint, nonlocal image information can be used to compute the PCA transformation matrixes. 
The ordering property of PCA bases allows a good reconstruction of the image by using only a few principal components, 
which naturally provide an adaptive sparse domain of each local patch. By allowing the overlapping of the image 
patches, pixels in overlapped region will be transformed into different PCA domains. This forms a redundant 
representation of image signals, which is very helpful in suppressing noises.  

 

2.2 Sparse representation with adaptive sparse domain 

Since the problem of image super-resolution involves severe uncertainties, prior knowledge is required to regularize 
the solution. The proposed SR based image super-resolution using adaptive PCA transformations can be formulated by 

2 1
arg min i i

i

DH P xλ− + ∑ v

x
y x  (6) 



 

 

where ixv  is the vector of the ith image patch and Pi is the computed PCA transformation matrix of ixv . λ is a scalar that 
balances the l1-norm and l2-norm terms. A problem of (6) is that the computation of Pi requires that the image signal x 
should be estimated first. However, the estimation of x with Eq. (6) requires that Pi is available. This is a chicken and 
egg dilemma. To solve this problem, we initially reconstruct x by setting Pi as a wavelet transformation matrix. Once x is 
initialized, Pi can be estimated, and subsequently x can be updated by solving Eq. (6). With the updated x, the PCA 
transformation matrixes Pi can be further updated. These procedures can be iterated to alternatively optimize the 
reconstructed HR image and the transformation matrixes.  

 

2.3 Regularization with non-local self-similarity constraint 

The adaptive block-based PCA transformation can better characterize the various local image structures and hence an 
adaptive sparse representation can be achieved, which is very helpful to improving the image reconstruction 
performance. However, the estimated PCA transformation matrixes may not be very accurate due to the limited 
information of the original HR image. This will deteriorate the performance of the proposed approach. To improve the 
quality of the reconstructed HR images, more prior information should be incorporated.  

One important image prior is that natural images often contain repetitive patterns and structures throughout the 
image. Such non-local statistical redundancies can be very useful in enhancing the quality of reconstructed images. 
Actually, in the PCA-based adaptive sparse domain determination process, the non-local redundancy information has 
been already used for training dataset construction. Inspired by the success of the non-local means filtering for image 
denoising [19], we further introduce a nonlocal self-similarity quadratic constraint into the super-resolution process to 
fully exploit the nonlocal redundancies. With this quadratic constraint as another regularization term, the image super-
resolution model in Eq. (6) is lifted to: 

2 1
2

arg min i i
i j j i i

i j i

DH x x P xη γ λ− + − +∑ ∑ ∑
x

y x v v v  (7) 

where η is a scalar parameter to balance the non-local regularization term; i
jxv  is the jth similar (vectorized) block to ixv  in 

a nonlocal neighborhood; i
jγ  is the weight assigned to i

jxv . We use the block matching method to locate the similar 

blocks to ixv  in a large enough window: 
2

i
i jx x T− <v v , where T is a predefined threshold. The weights i

jγ  depend on the 

similarity between ixv  and i
jxv , which can be calculated by: 
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where h is a scalar controlling the similarity and ic  is the normalization factor. As in section 2.2, in Eq. (7) the selection 
of similar nonlocal neighbors and the computation of the weights require that an initial estimate of the original HR image, 
and then Eq. (7) can be iteratively solved. 

  

2.4 Numerical algorithm 

Eq. (7) is a minimization problem with compound regularization terms. For the convenience of expression, we can 
rewrite Eq. (7) in a matrix form as follows 

2 2 1
arg min ( )DH I A Pη λ− + − +

x
y x x x  (9) 

where P is form by all the Pi; A is a matrix of dimension of N N×  with N being the dimension of the target HR image. 
A is set as follows 

,  if  is the  similar neighbor to ,  and  are the locations of  and  
( , )

0,  otherwise

i m th m
j n m m nx j x i j x x

A m n
γ⎧⎪= ⎨
⎪⎩

v v v v

 (10) 

Eq. (9) can be expressed as 
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Since P is orthogonal, we have TP=x u . Then (11) can be rewritten as follows 

12
arg min TKP λ− +%

u
y u u  (13) 

Eq. (13) is a challenging large-scale compound l1-norm and l2-norm minimization problem. Conventional optimization 
techniques, such as steepest-descent, conjugate gradient and interior-point algorithms, are inefficient in solving this 
minimization problem. In this paper, we adopt the recently proposed iterative shrinkage algorithm [14] [15] to solve this 
minimization problem. We summarize the iterative algorithm for solving (13) in Algorithm 1. 

 

Algorithm 1 for solving Eq. (13) 

1 Initialization: initialize x by setting iP  as the wavelet transformation matrix; then A can be initialized, and set 
(0) 0=u . 

2 Iterate on k until convergence 
 (a) ( 1/ 2) ( ) ( )( )k k T T kK KP+ = + −%u u y u ; 
 (b) ( 1) ( 1/ 2)soft( , )k k μ+ +=u u , where soft( , )μ⋅  is a soft thresholding function with threshold μ . 
 (c) If mod( , ) 0k M = , update the PCA  transformation matrixes iP  and A in (13) using the improved estimate of the 

original HR image $
( 1) ( 1)k T kP
+ +=x u .  

 

In Algorithm 1, we update iP  and A in every M iterations to reduce the computational complexity.  

3. EXPERIMENTAL RESULTS 
In this section, we conduct experiments to verify the efficiency of the proposed technique for image super resolution. 

The degraded LR images are generated by first applying a blur kernel and then down-sampling. The blurring kernel in 
the simulations is a 7 7×  Gaussian filter with standard deviation of 1.6. We magnify the LR images by a factor of 3, 
which is common in the literature of super-resolution. We use 5 5×  HR image patches with overlap of 1 pixel between 
adjacent patches when transforming HR images into adaptive PCA domains. These 5 5×  patches are also used to locate 
the nonlocal similar neighbors. For color images, the proposed approach is only applied to the luminance component and 
bicubic interpolator is used for the chromatic components.  

We compare the proposed approach with some state-of-the-art image super-resolution approaches, including the 
iterative back-projection (IBP) [4], the softcuts based method in [8], and the SR based method in [13] 1. The visual 
results by these competing approaches are presented through Fig .1 ~ Fig. 3. From these figures we can see that the IBP 
method reconstructs the HR images with jaggy and chessboard artifacts. The HR images reconstructed by the SoftCuts 
based method remove most of such artifacts but they are over-smoothed and many image details are eliminated. The 
approach in [13] is competitive in visual quality. However, the reconstructed edges and textures by it are not smooth. 
Chessboard artifacts and noises can be observed in the edge regions. The reason is that it heavily relies on the training 
data and tends to generate inconsistencies between adjacent image patches. Without any exceptions, the proposed 
approach reconstructs the most visually pleasant HR images. The edges and textures reconstructed by our approach are 
much sharper and cleaner than others. Also, more image details are recovered by our approach.  
                                                 
1 We thank the authors of [8] and [13] for providing their code or experimental results.  



 

 

  In practical LR imaging process, noise is often introduced. To demonstrate the robustness of the proposed method to 
noise, we add the Gaussian noises with standard deviation of 5 to the simulated LR images. The HR images produced by 
the competing approaches are shown in Fig. 4 and Fig. 5. We can see that the IBP method magnify the noise since the 
back-projection process is very sensitive to noise. The noise is mostly removed by the Softcuts and the SR-based 
methods in [8] and [13]. However, the image details are also removed in their results. The proposed approach can well 
handle the super-resolution and denoising simultaneously. As shown in Fig. 4 and Fig. 5, not only the noises are well 
suppressed, but also sharp edges and textures are well preserved. The PSNR results of the reconstructed images in Fig. 
1~Fig. 5 are shown in Table 1, from which we can see that the PSNR values by the proposed method are much higher 
that others. 

4. CONCLUSION 
This paper presented a sparse representation (SR) based image super-resolution approach by maximizing the sparsity 

of the HR images in adaptive sparse domains. The sparse domain of an image patch was locally determined by applying 
principle component analysis (PCA) of the nonlocal similar image patches. The sparsity of the HR images was enforced 
by an l1-norm regularization term that penalizes the principle components of the image signals. In addition, a nonlocal 
similarity prior of natural images was also incorporated to exploit the nonlocal image redundancies. The proposed 
objective function with compound l1-norm and l2-norm regularization terms can be efficiently solved by an iterative 
shrinkage algorithm. Experimental results demonstrated that the proposed approach can reconstruct sharp edges and fine 
image details and is robust to noises.  
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(a) Original                               (b) Input LR image                          (c) Back-projection [4] 

   
(d) SoftCuts [8]                      (e) Sparse representation [13]                      (f) Proposed 

Fig. 1 Results on the Girl image with scaling factor 3. 



 

 

 

   
(a) Original                                (b) Nearest neighbor                       (c) Back-projection [4] 

   
(d) SoftCuts [8]                       (e) Sparse representation [13]                     (f) Proposed 

Fig. 2 Results on the Parrot image with scaling factor 3. 
 

 

Table 1 The PSNR (dB) results of the luminance components reconstructed by different methods. 

Images IBP [4] SoftCuts [8] [13] Proposed 

Girl 31.8 32.0 31.9 33.3 

Parrot 27.2 27.7 27.7 29.6 

Butterfly 23.7 25.2 23.8 26.9 

Noisy Parthenon 24.9 25.6 25.4 25.9 

Nosy Parrot 26.4 27.4 27.4 28.1 

 



 

 

   
(a) Original                                   (b) Input LR image                      (c) Back-projection [4] 

   
(d) SoftCuts [8]                       (e) Sparse representation [13]                      (f) Proposed 

Fig. 3 Results on the Butterfly image with scaling factor 3. 
 

 

   
(a) Original                                   (b) Input LR image                         (c) Back-projection [4] 

   
(d) SoftCuts [8]                       (e) Sparse representation [13]                      (f) Proposed 

Fig. 4 Results on the noisy Parthenon image with scaling factor 3. The standard deviation of Gaussian noise is 5.  

 



 

 

   
(a) Original                                   (b) Input LR image                      (c) Back-projection [4] 

    
(d) SoftCuts [8]                      (e) Sparse representation [13]                      (f) Proposed 

Fig. 5 Results on the noisy Parrot image with scaling factor 3. The standard deviation of Gaussian noise is 5.  
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