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Abstract

A wavelet-based multiscale edge detection scheme is
presented in this paper. By multiplying the wavelet coeffi-
cients at two adjacent scales to magnify significant struc-
tures and suppress noise, we determined edges as the
local maxima directly in the scale product after an effi-
cient thresholding instead of first forming the edge maps
at several scales and then synthesizing them together,
which was employed in many multiscale technigues. It is
shown that the scale multiplication achieves better results
than either of the two scales, especially on the localization
performance. Experiments on natural images are com-
pared with the Laplacian of Gaussian (LOG) and Canny
edge detection algorithms.

1. Introduction

Edge detection is an essential process in image
analysis and many techniques have been proposed. Canny
[3] evaluated the detectors by three coteria: good
detection, good localization and low spurious response,
and he showed that the optimal detector for an isolated
step edge should be the first derivative of Gaussian.
Besides the shape of the detecter, another important
problem is to set a proper detection scale. As suggested by
Marr and Hildreth [2], multiple scales should be employed
to describe the variety of the edge structures.

Canny [3] used a fine-to-coarse feature synthesis
strategy to mingle the multiscale edge information based
on a set of predefined rules. Bergholm [4] combined the
multiscale edges in a coarse-to-fine tracking manner. The
RRES scheme of Lu and Jain [5] tends to be more
complex with so many knowledge rules and continuous
scale space. Considering that the synthesis of the
multiscale edges is intricate and itself an ill-posed
problem, Jeong and Kim [9] selected an optimal scale
adaptively for each of the pixels by minimizing an
objective function, but the results suffered from the
complicated shape of the function and the sensitivity to
the initial scale. Ziou and Tabbone [6] ran a subpixel
Laplacian operator at two scales and then recovered the
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edges with four-step edge models. Park et al. [7] divided
an image into several regions based on a discontinuity
measure calculated over a window and then selected
different resolution (i.e., scale) for each of the regions.

Wavelet analysis is naturally a multiscale and
multiresolution  analysis. Mallat and Zhong [11]
constructed a dyadic wavelet and the corresponding
dyadic wavelet transform (DWT) is equivalent to the
Canny edge detection. In wavelet domain, the edge
structures present observably at each subband while noise
decreases rapidly along the scales. With this observation,
Xu et al. [12] proposed a spatially selected filtening
technigue by multiplying the adjacent DWT scales to
enhance the significant structures. Sadler and Swami [13]
analyzed the multiscale product of DWT and applied it to
the step detection and estimation.

In this paper, we presented a scale-multiplication-
based edge detection scheme with the DWT. Two adjacent
subbands are multiplied as a product function. Unlike
many multiscale edge detectors, where the edge maps
were formed at several scales and then synthesized
together, our scheme determines edges as the Jocal
maxima in the product function after a thresholding. An
integrated edge map will be formed efficiently while
avoiding the ill-posed edge synthesis process. It will be
shown that much improvement is obtained on the
localization accuracy and the detection results are better
than with either of the two scales only.

2. The dynamic wavelet transform

A function w(x) is called a wavelet if its average is
equal to 0. Let é'j(x)=2"§(2”x) be the dilation of
function ¢(x) by dyadic scale 2/. The DWT of fix)
at scale 2/ and position x is

W S(x)=S*y(x) )

Where =+ denotes convolution operation, For the

details please refer to Daubechies [10] and Maliat [11].
Suppose @(x) is a differentiable smooth function whose

integral is 1 and converges to O at infinity. Let
w(x) = d6(x)/ dx , then
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W, [y = oy, =2 () *0,)x) @
W, f(x) is proportional to the first derivative of f(x)
smoothed by 8,(x)- The wavelet used in this paper is the

Mallat wavelet [11], whose 8(x) is a cubic spline that

approximates the Gaussian function closely. And then the
DWT is equivalent to the Canny edge detection.

In 2-D case, two wavelets should be utilized:
28(x, s
p'(x,y)= _"“*Eai Y, wixm = ——~93§‘ L)

Denote { (x,y)=2"¢(27/x,2/y) the dilation of
{(x,p) by 2/, the wavelet transform of f(x,y) at scale
2/ and position {x,y) hastwo components

Wi f(ny)=f*wiixy), Wifxy)=/+yl(xy) @)

3. The algorithm

3.1. Scale maultiplication
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Fig. 1. (a) Blocks g and its noisy version .
{b) The DWT of z. (c) The DWT of noisy . (d)
The product function P/ with j=1~3.

@ &

For signal structures, the DWT amplitudes would
increase or keep invariant when increasing the scale 2/,
On the contrary, those of noise will decay rapidly along
the scales. Directly multiplying the DWT at two adjacent
scales will amplify the edge structures and dilute the
noise. The scale product function of f(x) is defined as
the correlation of the DWT of f(x) at two adjacent

scales
P,f(x)= W f(x) W, flx) )
In Fig. 1 {a), a block signal g and its noisy version
£ are illustrated. Their DWT are given in Fig. 1 (b) and

(c). At the finest scale the wavelet coefficients are
almost dominated by noise. It can also be seen that at
small scales the step edges are better localized but some

noise may be falsely considered as edges. At the large
scales, edges can be detected more correctly but with the

_ decreasing of the accuracy of the edge location. In Fig. 1

(d), the product P}f ., j=1~3,are illustrated. Apparently

the step edges are more observable in p/ than in W[

3.2. Thresholding

We assert the edges as the local maxima in PlA
significant edge at x, will occur on both the adjacent
scales with the same sign, so that ij {x,) should be non-
negative. P/ should be thresholded to filter noise.

Let noise ¢~ N(0,0%) and W e(x)=£+y (x). For
expression convenience, we denote X J(x) =W, £(x) and
Y,(x)= PECX)=X,(x)- X,,(x} - X, ~N{0,67), where
o=l = |-l

Denote ¢ () the threshold applied to ¥ (x). It is
expected that ; () could suppress most of the noise,
ie., P(yj<;w(j))_>1.Nonnalize X, and X, as

X =X,lo,s X ,=X,/0,, 6
Define ]71,(1):,?}(,;).,?”();) and then

L=l vale® - V00 @
Let
V. 0={X,0)+X,(x))2 and
¥, (0 =(X,(x)-X,,(0))/2 (8)
Thus
V=Y.~ )

and 7 ~N(0,02,) and ¥~ N(0,07 ) with
] 2
G, = EJI(WJ (X)/u'l’; n + WJH(x)/“WJ*'") d »

- %JJ(%(X)/H%II-%H(x)/ll%u ar  (10)

Since there is a strong correlation between v, (x) and

Vialx)» 50 o),
L=t/ v,ule?
Ply, <1,(0)2 P2, <i.(D)=PF,.|< Jt.())
Setting ff_(;)y z4g, willleadto
P, | <o ONE. () 240, )>0.9999

and then
Ply; <t (216l | . lo%o}.)

> P57, | < VR DN 240, )1

In real applications, the input is f=g+g where g

is much larger than ! . Let

}, we have

is the original image and then W.f=Wg+We. At fine
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scales, w,e wiil be predominant in Wj f except for

some significant edge structures to be detected. Since the
contrast of image singularities and noise is greatly ampli-
fied in p/, threshold ¢ (j) will be much effective in

discriminating edges from noise. In our experiments a
setting of ¢ (j)=c- HV’J ” . H%H "o'zg'}v’ with ¢ =20
yields impressive results.
3.3. Two dimensions
In two dimensions, two correlation functions should be
definedin x and y directions.
Pl e,y =W, f 060 W, f(x,y)
P/ (x,y) =W} f(x,) W]\ f(x,9) an
Similar to 1-D case, for an edge point (x,, y,). both
P/ (x0,7,) and P/ (x,,y,) should be non-negative

but the orientation information of the gradient is lost,
which could be recovered from lef(me’o) and

W?f(x,,y,)- The modulus and angle of point (x,y) are
defined as

M I =E G+ PPy (2)
Sgﬂ(Wff(x,y))-\}Pf'z(x,y)} (13)

sgn(} £(x, )P/ (x,3)
An edge point is asserted wherever M}f(x,y) has a

A f{x,y)= arctan[

local maximum in the direction of the gradient given by
A, f(x,p)- Similar to section 3.2, let (! (), i=12,1s

6?-(0).) (14

D= e,
Where ¢ is a constant and

lwil= ”(W, (x,»))” dxdy (15)

o) =3V vyl on i sy 16)

¢ can be chosen around 20. By experimental experience,
setting the threshold applied to M, f(x,y) as

L (N =08xtl (N+2(7) 17

could achieve satisfying results.

4. Performance analysis

Fig. 2 (a} is a 256x256 isolated noisy step edge. We
find edges first at two adjacent scales by Canny edge
detection and then in the product of the two scales with
our scheme. The figure of merit F of Pratt [1] is used to
evaluate the performance

Na
ot 501 (18)
max{N,,N,} 45 1+ od? (k)
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Where N; is the number of the actual edges and w, is
the number of the detected edges. J(k) denotes the

distance from the kth actual edge to the corresponding
detected edge. @ is a scaling constant set to 1/5.

|
|
|
|

b
|
|
|

d)

{c) (
Fig. 2. Noisy step and its edge maps. (a) Noisy
step edge. (b) By scale multiplication. {c} By
scale 2. (d) By scale 2°.

Fig. 2 (c) and (d) arc the edge maps by small scale 2°
and large scale 2*. Fig. 2 (b) is the edge map by our
scheme. Denote by F, the figure of merit value of Fig. 2
(b) and F,. F, those of (¢) and (d). These values are
shown in Table [. As expected, F, is the greatest, which
means the best performance. F, is less than F, because
some false edges are caused by noise.

Next we focus on the localization accuracy of the three
edge maps. If the distance J(k) is not greater than 4
pixels, this edge 1s considered as a true edge. Denote by
N the total number of true edges that are detected, we
define the mean square distance as

l N
= =N (19
D ~,§" ()

Table |. The figure of merit values of the two
scales and their multiplication.
FP F‘I FZ
09929 | 0.9496 | 0.9877

Table I, The mean square distance values of the
two scales and their multiplication.
D, D, D,
0.1782 | 0.2271 0.2887

The smaller the D, the better the localization
accuracy will be achieved. Denote by p, the mean
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square distance of Fig. 2 (b} and D,, p, those of (c)
and (d). It can be seen from Table Ii that not only D, is
less than p, but also it is less than D, . Scale

muitiplication improves the - localization dccuracy
significantly while keeping high detection efficiency.

@ (b)
Fig. 4. (a) Noisy Lenna (SNR=16.34dB). (b) Edge
map by scale multiplication scheme.

(a) (b}
Fig. 5. By Canny.(a) ¢, =08-(b) o, =16.

(b)

(a) o '
Fig. 6. By LOG. (a) g, =16- (b) g, =24.

Next the Lenna image is used to validate the proposed
scheme. The Canny edge detection and LOG algorithms
are employed for comparison. In the two methods, the
standard deviation of the Gaussian function, T, is used

to adjust the width of the detection filter. In the proposed

scale multiplication based scheme by DWT, we toke the
small scale as 2* and then the large scaleis 2°.
Fig. 4 (a) is the 256x256 noisy Lenna

- (§SNR=16.34dB). Fig. 4 (b} shows the edge map by the
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scale multiplication scheme. Fig. 5 (a)~(b) show the edge
maps generated by Canny edge detection with
o,=0816 respectively. Fig. 6 (a)~(b) are the results by

LOG with o, =1624. From Fig. 5 and Fig. 6 it can be

seen that when scale is small, finer edges are detected as
well as many false edges. If the scale is enlarged, noise are
suppressed but some edges are also missed or dislocated
(such as the face and hair of Lenna). In Fig. 4 (b) much
better result is achieved. On the one hand, a rich class of
edges, even some fine ones missed by the other two
schemes at fine scale, are detected with better localization
through the scale multiplication. On the other hand, the
edge map is “clear”, which means that false edges are
suppressed well. The experiments on other benchmark
images export the similar results.
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