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Abstract 
 

Face recognition (FR) is an active yet challenging 
topic in computer vision applications. As a powerful 
tool to represent high dimensional data, recently sparse 
representation based classification (SRC) has been 
successfully used for FR. This paper discusses the 
dimensionality reduction (DR) of face images under the 
framework of SRC. Although one important merit of 
SRC is that it is insensitive to DR or feature extraction, 
a well trained projection matrix can lead to higher FR 
rate at a lower dimensionality. An SRC oriented 
unsupervised DR algorithm is proposed in this paper 
and the experimental results on benchmark face 
databases demonstrated the improvements brought by 
the proposed DR algorithm over PCA or random 
projection based DR under the SRC framework. 
 
1. Introduction 

 
Automatic face recognition (FR) has been, and 

remains being, one of the most visible and challenging 
research topics in computer vision, machine learning 
and biometrics. Although the facial images have a high 
dimensionality, they usually lie on a lower 
dimensional subspaces or sub-manifolds. Therefore, 
subspace learning and manifold learning methods have 
been dominantly and successfully used in appearance 
based FR [1-6]. Among various subspace analysis 
based FR methods, the classical Eigenfaces and 
Fisherfaces [1-2] algorithms are the most 
representative ones based on principal component 
analysis (PCA) and linear discriminant analysis (LDA), 
respectively. However, PCA and LDA consider only 
the global scatter of training samples and they fail to 
reveal the essential data structures nonlinearly 
embedded in high dimensional space. To overcome 
these limitations, the manifold learning methods were 

proposed by assuming that the data lie on a low 
dimensional manifold of the high dimensional space 
[3-4]. The representative manifold learning methods 
include locality preserving projection (LPP) [5], 
unsupervised discriminant projection (UDP) [6], etc. 

The success of manifold learning implies that the 
high dimensional face images can be sparsely 
represented or coded by the representative samples on 
the manifold. Very recently, an interesting work was 
reported by Wright et al. [7] by using the sparse 
representation (SR) technique for robust FR. In Wright 
et al.’s pioneer work, the training face images are used 
as the dictionary of representative samples, and an 
input testing image is coded as a sparse linear 
combination of these sample images via l1-norm 
minimization. The results in [7] clearly validated the 
effectiveness of SR techniques in FR, which can not 
only lead to high classification accuracy, but also well 
handle the problem of face occlusion.  

The dimensionality of the face images needs to be 
reduced before applying SRC. In [7], Randomfaces 
was proposed and compared with Eigenfaces and 
Fisherfaces for the dimensionality reduction (DR) in 
SRC based FR. The author claimed that it achieves the 
best performance with SRC in Yale-B and AR 
databases. However, Randomfaces, as a type of 
“universal” feature extractor, does not exploit the 
information in the specific training database, and 
hence may not be able to better capture the features of 
objects than the training based feature extractor such 
as Eigenfaces.   

In this paper, we investigate how to compute the 
optimal unsupervised DR matrix of the given dataset 
under the framework of SRC. Compared with PCA, 
our method minimizes the reconstructed error by 
imposing sparse constraints on the coefficients. The 
experimental results demonstrated that our method can 
achieve better performance than both Eigenfaces and 
Randomfaces by using SRC as the classifier. 



The rest of the paper is organized as follows. 
Section 2 briefly reviews SRC. Then proposed DR 
algorithm is presented in Section 3. Section 4 conducts 
experiments to validate the proposed method and 
Section 4 concludes the paper. 

 
2. Sparse Representation based 

Classification for Face Recognition 
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training samples of the ith object class, where si,j, 
j=1,2,…,ni, is an m-dimensional vector stretched by 
the jth sample of the ith class. For a test sample m∈y   
from this class, intuitively, y could be well 
approximated by the linear combination of the samples 
in Ai, i.e. 

, ,1
in

i j i j i ij
Aα

=
= =∑y sα , where 

,1 ,2 ,[ , ,..., ] i

i

nT
i i i nα α α= ∈iα   are the coefficients. 

Suppose we have K object classes, and let A=[A1,A2,…, 
AK] be the concatenation of the n training samples 
from all the K classes, where n=n1+n2+ nK. If we use A 
to represent the input test image y, there is y=Aα, 
where α=[α1;…,αi;…; αK]. Since y is from the ith class 
and y=Aiαi holds well, a naturally good solution to α 
will be that all the coefficients in αk, k=1,2,…,K and 
k≠i, are nearly zero and only the coefficients in αi have 
significant values. In other words, the sparse non-zero 
entries in α can well encode the identity of the test 
sample y. This is the essential idea of SR based 
classification (SRC) in [7]. 

The SRC algorithm presented in [7] is as follows. 
1. Normalize the columns of A to have unit l2-norm. 
2. Solve the l1-minimization problem: 

1 1 2
ˆ arg min . .s t A ε= − ≤y

α
α α α  

3. Compute the residuals 
( ) ( )1 2

ˆ , for 1, , .i ir A i kδ= − =y y α  

where ( ) : n n
iδ → α is the characteristic 

function which selects the coefficients associated 
with the i-th class. 

4. Output that identity(y)=argmin ri(y). 
 
3. Sparse Dimensionality Reduction  

 
The SRC scheme proposed in [7] is a very powerful 

classifier. As pointed out in [7], one important merit of 
SRC is that it is insensitive to DR or feature extraction. 
Even using random projection or direct down-
sampling for DR, robust recognition results can also be 
obtained by SRC. Nonetheless, in low dimension space 
a training based DR method such as PCA will lead to 
better FR performance under the framework of SRC. 
For example, with PCA for DR, a much lower 

dimensionality can be used in SRC than random 
projection while keeping similar FR accuracy. 
Therefore, it deserves to investigate the optimal DR for 
SRC based FR. This section presents an unsupervised 
algorithm to compute the desired projection matrix.  

Denote by 1m
k

×∈z   the k-th training sample of A 
and by ( 1)

1 1 1[ , , , , ] m n
k k k nD × −

− += ∈z z z z   the 
collection of training samples without the k-th sample, 
a projection matrix P, whose dimension is l×m, l<<m, 
is to be learned. By requiring P is orthogonal, i.e. 
PPT=I, we define the following objective function to 
determine P:  
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s.t.PPT=I   (1) 
where βk is the SR coefficient vector of zk over Dk; λ1 
and λ2 are scalar parameters. The first and second items 
on the right side of Eq. (1) are approximation and 
sparse constraints respectively; and the third item 
requires that the dataset A can be well reconstructed 
from the projected subspace by P. Eq. (1) is a joint 
optimization of projection P and SR coefficients {βk}. 
The minimization of J can be implemented by 
optimizing P and {βk} alternatively. The following 
algorithm describes the procedures. 

Step1. Initialize P. A good initialization of P can be 
obtained by applying PCA to A. Such an initialization 
can speed up the convergence of the optimization and 
lead to a robust solution.  

Step 2. Fix P, compute each βk. In computing βk, 
the objective function J is reduced to  
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Some standard convex optimization techniques or the 
method in [8] can be used to solve βk. 

Step 3. Fix Z, update P. Now the objective function 
is reduced to 
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Let Γ=[γ1,…, γn], γk=zk-Dk βk, Eq. (3) becomes 
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Since the last term 2
TA Aλ  has no effect on the solution 

of P, obviously P can be determined by applying SVD 
(singular value decomposition) to 2( )T TAAΓΓ λ− , i.e. 
P is composed by the l eigenvectors associated with 
the first l smallest eigenvalues of 2( )T TAAΓΓ λ− . 

Step 4. Go back to step 2 until J convergences or 
the maximum number iteration is reached. Finally 
output P.  
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Figure 1. Example of the convergence. 

 
The convergence of the proposed algorithm can be 

easily proved because in each iteration the objective 
function J will decrease. Here we give an example. Fig. 
1 shows the curve of J versus the iteration number for 
240 face images (6 images per subject) in the ORL 
face database. We see that J converges rapidly.   

 
4. Experimental results 

 
We evaluate the performance of the proposed DR 

method on three representative facial image databases: 
ORL, AR [11] and Extended Yale B [9-10]. We 
compare the proposed DR method with Eigenfaces and 
Randomfaces, which were employed and discussed in 
the SRC based FR in [7]. 

 
1) ORL database: The ORL database 

(http://www.cl.cam.ac.uk/research/dtg/attarchive/faced
atabase.html) contains images from 40 individuals, 
each providing 10 different images. In the experiment, 
the images are converted into the size of 56×46, with 
the first 6 images of each class for training and the 
remaining 4 images for testing. The parameters λ1 and 
λ2 in DR learning process and λ in SRC were selected 
to gain the best performance for each method. In the 
proposed DR learning process, λ1=0.05 and λ2=0.9. In 
the SRC process, λ=0.2, 0.15 and 0.1 for the proposed 
method, Eigenfaces and Randomfaces, respectively. 
The curves of recognition rate versus the dimension of 
features are illustrated in Fig. 2, and the maximal 
recognition rate of each method with associated feature 
dimension is listed in Table 1. From Fig. 2, it can be 
seen that the proposed DR method achieves the best 

rate in all dimensions and Randomfaces is not better 
than Eigenfaces. In addition, Table 1 shows that 
proposed method has the highest recognition rate 
(0.9625) with the least dimension (50). 
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Figure 3. Recognition rates by different methods versus 
feature dimension on the ORL database. 
 
Table 2.  The top recognition rates of different methods on 
the ORL database and the associated dimension of features. 

Feature Proposed Eigenfaces Randomfaces 
Rate 0.9625 0.9563 0.9500 
Dimension 50 70 200 

 
2)  AR database: The AR database consists of over 

4,000 frontal images from 126 individuals [11]. For 
each individual, 26 pictures were taken in two separate 
sessions. In the experiment, we resize the images to the 
size of 60×43 and choose a subset of the dataset 
consisting of 50 male subjects and 50 female subjects. 
For each subject, the seven images with only 
illumination change and expressions from Session 1 
were used for training, and the other seven images 
with only illumination change and expression from 
Session 2 were used for testing. Parameters λ in SRC 
and λ1 and λ2 in DR learning process were selected to 
gain the best performance for each of the competing 
methods. In the proposed DR learning process, λ1=0.03 
and λ2=1.5. In the SRC process, λ=0.005, 0.007 and 
0.003 for the proposed method, Eigenfaces and 
Randomfaces, respectively. Fig. 3 demonstrates the 
curves of recognition rate versus the dimension. The 
maximal recognition rate of each method with 
associated feature dimension is listed in Table 2, which 
shows the proposed DR methods can reach the highest 
rate (0.9099) with the least dimension (300). From Fig. 
3, we can again see that the proposed DR method has 
the highest recognition rate in the entire dimension 
while Randomfaces has the lowest recognition rate in 
the entire dimension. 

 
3) Extended Yale B Database: The Extended Yale 

B database consists of 2,414 frontal-face images of 38 
individuals, captured under various laboratory-
controlled lighting conditions [9-10]. For each subject, 

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html�
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html�


we randomly selected half of the images for training 
(i.e. 32 images per subject), and used the other half for 
testing, where the size of image is converted into 
54×48. In the SRC, λ=0.001 for eigenfaces and 
λ=0.005 for randomfaces with their best performance 
respectively. In the proposed DR training, we choose 
λ1=0.0005 and λ2=2, and in the SRC process we set 
λ=0.0005. Fig. 4 shows the three methods’ 
performance in SRC and Table 3 gives their best 
recognition rates. Similar conclusion to that in the 
previous experiments can be got form Fig. 4 and Table 
3, i.e. the proposed DR method can achieve the highest 
recognition rate with the least dimension. 
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Figure 3. Recognition rates by different features versus 
feature dimension on the AR database.  
 
Table 2.  The top recognition rates of different methods on 
the AR database and the associated dimension of features. 

Feature Proposed Eigenfaces Randomfaces 
Rate 0.9099 0.9099 0.8827 
Dimension 300 500 500 
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Figure 4. Recognition rates by different features versus 
feature dimension on the YaleB database.  

 
Table 3.  The top recognition rates of different methods on 
the YaleB database and the associated dimension of features. 

Feature Proposed Eigenfaces Randomfaces 
Rate 0.9844 0.9826 0.9743 
Dimension 500 500 500 

 
5. Conclusion 

 

In this paper, we discussed the dimensionality 
reduction (DR) of face images when using sparse 
representation based classifier (SRC) for classification. 
Our experiments on Extended Yale B, AR and ORL 
face databases demonstrated that the proposed DR 
algorithm has better performance than Eigenfaces and 
Randomfaces. It can achieve higher recognition rate 
under the same dimensionality than Eigenfaces and 
Randomfaces. The proposed DR algorithm is an 
unsupervised learning method. In the future, we will 
investigate how to introduce the class label 
information into the DR learning so that a supervised 
DR algorithm can be developed to learn a set of 
discriminative projection matrix under the framework 
of SRC. 
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