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ABSTRACT 
 
Face recognition (FR) is an active yet challenging topic in 
computer vision applications. As a powerful tool to 
represent high dimensional data, recently sparse 
representation based classification (SRC) has been 
successfully used for FR. This paper discusses the metaface 
learning (MFL) of face images under the framework of 
SRC. Although directly using the training samples as 
dictionary bases can achieve good FR performance, a well 
learned dictionary matrix can lead to higher FR rate with 
less dictionary atoms. An SRC oriented unsupervised MFL 
algorithm is proposed in this paper and the experimental 
results on benchmark face databases demonstrated the 
improvements brought by the proposed MFL algorithm over 
original SRC. 
 

Index Terms— Face recognition, sparse representation, 
metaface learning 
 

1. INTRODUCTION 
 
Automatic face recognition (FR) has been, and remains 
being, one of the most visible and challenging research 
topics in computer vision, machine learning and biometrics. 
Although the facial images have a high dimensionality, they 
usually lie on a lower dimensional subspaces or sub-
manifolds. Therefore, subspace learning and manifold 
learning methods have been dominantly and successfully 
used in appearance based FR [1-8], which includes 
Eigenface, Fisherface [1-3], locality preserving projection 
(LPP) [6], local discriminant embedding (LDE) [7], 
unsupervised discriminant projection (UDP) [8], etc.  

The success of manifold learning implies that the high 
dimensional face images can be sparsely represented or 
coded by the representative samples on the manifold. Very 
recently, an interesting work was reported by Wright et al. 
[9] by using the sparse representation (SR) technique for 
robust FR. In Wright et al.’s pioneer work, the training face 
images are used as the dictionary of representative samples, 
and an input testing image is coded as a sparse linear 
combination of these sample images via l1-norm 

minimization. The results in [9] clearly validated the 
effectiveness of SR techniques in FR, which can not only 
lead to high classification accuracy, but also well handle the 
problem of face occlusion. In addition, Yang et al. [18] 
proposed Gabor SR technique with much better 
performance. 

However, [9] use the original training samples as the 
dictionary. So an important issue that whether an optimal 
dictionary can be learned from training data needs to be 
further discussed. In [10], a set of “metagenes” are trained 
from the original gene expression data by using nonnegative 
matrix factorization and these “metagenes” provide a more 
robust clustering of the samples. Recently, in the field of 
image restoration a lot of efforts have been made on 
learning an over-complete dictionary of atoms from natural 
images and then using the learned dictionary for image 
analysis [11-13]. In face recognition, the original image 
samples have much redundancy as well as noise and trivial 
information that can be negative to the recognition. In 
addition, if the training samples are huge, the computation 
of SR will be time-consuming. So a more compact and/or 
robust set of bases, which are called metafaces in this paper, 
will be learned from the original images and then used as 
the dictionary to represent the input query image. The 
learned metafaces will be more representative for SR and 
more efficient in l1-norm minimization. 

The rest of the paper is organized as follows. Section 2 
briefly reviews SRC. Then proposed metaface learning 
algorithm is presented in Section 3. Section 4 conducts 
experiments to validate the proposed method and Section 5 
concludes the paper. 
 

2. SPARSE REPRESENTATION BASED 
CLASSIFICATIION FOR FACE RECOGNITION 
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samples of the ith object class, where si,j, j=1,2,…,ni, is an m-
dimensional vector stretched by the jth sample of the ith 
class. For a test sample m∈y  from this class, intuitively, y 
could be well approximated by the linear combination of the 
samples within Ai, i.e. 
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we have K object classes, and let A=[A1,A2,…, AK] be the 
concatenation of the n training samples from all the K 
classes, where n=n1+n2+ nK. If we use A to represent the 
input test image y, there is y=Aα, where α=[α1;…,αi;…; 
αK]. Since y is from the ith class and y=Aiαi holds well, a 
naturally good solution to α will be that all the coefficients 
in αk, k=1,2,…,K and k≠i, are nearly zero and only the 
coefficients in αi have significant values. In other words, the 
sparse non-zero entries in α can well encode the identity of 
the test sample y. The SRC algorithm [9] is summarized as 
follows. 

1. Normalize the columns of A to have unit l2-norm. 
2. Solve the l1-minimization problem: 
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where λ is a positive scalar number that balances the 
reconstructed error and coefficients’ sparsity. 

3. Compute the residuals 
( ) ( )1 2

ˆ , for 1, , .i ir A i kδ= − =y y α  

where ( ) : n n
iδ →α is the characteristic function 

which selects the coefficients associated with the i-th 
class. 

4. Output that identity(y)=argmin ri(y). 
 

3. METAFACE LEARNING 
 
Inspired by the success of metagenes in gene expression 
data analysis [10] and dictionary learning (DL) in image 
processing [11-13], we propose to learn a set of metafaces, 
denoted by Di, from the original training dataset Ai, and then 
use Di to replace Ai in the SRC based FR.  

For the convenience of expression, we denote by X=[x1, 
x2,…, xn] m n×∈  the training samples of the ith object class, 
with each column of X being a sample vector. We want to 
learn a dictionary of metafaces 

1 2[ , ,..., ] m p
pΓ ×= ∈d d d  

from X, where p≤n. It is required that each metaface dj, 
j=1,2,…,p, is a unit column vector, i.e.  1T

j j =d d . Our 

objective function in determining Γ is as follows:  
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where Λ is the representation matrix of X over the metafaces 
Γ, and parameter λ is a positive scalar number that balances 
the F-norm term and the l1-norm term.  

Eq. (2) is a joint optimization problem of the metafaces 
Γ and the representation coefficient matrix Λ. Like in many 
multi-variable optimization problems, we solve Eq. (2) by 
optimizing Γ and Λ alternatively. The optimization 
procedures are described in the following Algorithm 1.  
 

Algorithm 1. Meta-Face Learning 

Step 1. Initialize Γ. We initialize each column of Γ (i.e. each 
metaface) as a random vector with l2-norm 1. 

Step 2. Fix Γ and solve Λ. By fixing Γ, the objective 
function in Eq. (2) will be reduced to 
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1
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ΓΛ λ Λ= − +               (3) 

The minimization of Eq. (3) can be achieved by some 
standard convex optimization techniques. In this paper, 
we use the algorithm in [14]. 

Step 3. Fix Λ and update Γ. Now the objective function is 
reduced to 
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We can write matrix Λ as Λ=[β1;β2,…,βp], where βj, 
j=1,2,…,p, is the row vector of Λ. We update the 
metaface vectors one by one. When updating dj, all the 
other columns of Γ, i.e. dl, l≠j, are fixed. Then JΓ in Eq. 
(4) is converted into   
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= −∑d β , Eq. (5) can be written as  
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Using Langrage multiplier, 
j

Jd
 is equivalent to  
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where γ is a scalar variable. Differentiating 
,j
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respect to dj, and let it be 0, we have  
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So the solution of Eq. (7) under constrain 1T
j j =d d  is  
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where 
2

•  is the l2-norm.  

Using the above procedures, we can update all the 
metafaces dj, and hence the whole set Γ is updated. 

Step 4. Go back to step 2 until the values of JΓ,Λ in adjacent 
iterations are close enough, or the maximum number of 
iterations is reached. Finally, output Γ. 
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Figure 1. Example of the convergence of Algorithm 1. 

 
It is straightforward that the above MFL algorithm 

converges because in each iteration JΓ,Λ will decrease, as 



shown in Fig. 1. By using Algorithm 1, we can learn a set of 
metafaces Di for each class of face images Ai. Then all the K 
classes of metafaces can be concatenated into one dictionary 
D=[D1,…,Di,…,DK], which plays the role of A in Eq. (1). 

 
4. EXPERIMENTAL RESULTS 

 
We evaluated the performance of the proposed MFL on 
representative facial image databases: Extended Yale B [15-
16], ORL, and AR [17]. In our experiment, Eigenfaces was 
first applied to reduce the dimensionality of face images, 
and then SRC with the proposed MFL is compared with the 
original SRC [9]. In addition, as in [9], the benchmark 
nearest neighbor (NN) classifier using cosine distance was 
also used in the experiments as a reference. The code of the 
proposed method can be downloaded at 
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm. 
 

1) Extended Yale B Database: The Extended Yale B 
database consists of 2,414 frontal-face images of 38 
individuals, captured under various laboratory-controlled 
lighting conditions [15-16]. For each subject, we randomly 
selected half of the images for training (i.e. 32 images per 
subject), and used the other half for testing. In the SRC 
based FR, there is a parameter λ (refer to Eq. (1)) and we 
adjusted it to get the best performance. In original SRC 
without MFL, λ=5; and in SRC with MFL, λ=4 with 18 
metafaces of each class. Fig 2 shows the recognition rates 
versus the dimension of features. We can see that SRC with 
the proposed MFL consistently outperforms the original 
SRC method, while the classical NN method performs the 
worst. This validates that the proposed MFL algorithm can 
not only reduce the number of representation samples, but 
also make these samples more representative so that the 
classification accuracy can be improved. Table 1 lists the 
maximal recognition rate of each method and the 
corresponding dimensionality. We see that SRC with the 
proposed MFL achieves the highest rate.  
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Figure 2. Recognition rates by different methods versus feature 
dimension on the Extended Yale B with features of Eigenfaces. 
 
Table 1.  The top recognition rates (%) of different methods on the 
Extended Yale B database and the associated dimension of 
features. 

Method  SRC MFL NN 
Rate 97.09 97.62 92.43 
Dimension 504 504 504 

In MFL, different numbers of metafaces (i.e. parameter 
p), will lead to different FR results. Thus, it is necessary to 
test the classification performance by varying p. Fig. 3 plots 
the curve of recognition rate versus p when the dimension 
of Eigenface features is 504. From Fig. 3 we can see that 
SRC with MFL has better performance when p is between 
17 and 20. Particularly, on this database SRC with MFL can 
have satisfying recognition rate even when p is 8, a quarter 
of the number of samples (32) per class in SRC. 
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Figure 3. Recognition rates of SRC with MFL versus the number 
of metafaces per class on the Extended Yale B database. 
 

2) ORL database: The ORL database 
(http://www.cl.cam.ac.uk/research/dtg/attarchive/facedataba
se.html) contains images from 40 individuals, each 
providing 10 different images. In the experiment, we used 
the first 6 images of each class for training, and the 
remaining 4 images for testing. The parameters λ and p were 
selected to gain the best performance for each method. In 
original SRC, λ=0.5; and in SRC with MFL, λ=4  with p=4. 
The curves of recognition rate versus the dimension of 
features are illustrated in Fig. 4, and the maximal 
recognition rate of each method with associated feature 
dimension is listed in Table 2. 
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Figure 4. Recognition rates by different methods versus feature 
dimension on the ORL database with features of Eigenfaces. 
 
Table 2.  The top recognition rates (%) of different methods on the 
ORL database and the associated dimension of features. 

Method  SRC MFL NN 
Rate 95 96.25 94.37 
Dimension 40 140 110 

 
From Fig. 4 and Table 2 we can see that SRC with MFL 

outperforms the original SRC, and SRC with MFL by using 
the Eigenface features achieves the best recognition rate of 
96.25%, while the highest rate of original SRC with 



Eigenface features is 95%. Meanwhile, SRC with MFL use 
less dictionary atoms than SRC without MFL. 

 
3)  AR database: The AR database consists of over 4,000 

frontal images from 126 individuals [17]. For each 
individual, 26 pictures were taken in two separate sessions. 
In the experiment, we chose a subset of the dataset 
consisting of 50 male subjects and 50 female subjects. For 
each subject, the seven images with illumination change and 
expressions from Session 1 were used for training, and the 
other seven images with illumination change and expression 
from Session 2 were used for testing. Parameters λ and p 
were selected to gain the best performance for each of the 
competing methods. In original SRC, λ=0.005; and in SRC 
with MFL, λ=0.005 with p=7. It should be noted that since 
the training samples per class is very limited (7 in this 
dataset), in this experiment the MFL actually does not 
reduce the number of representation samples. However, 
from Fig. 5 and Table 3 we can see that the learned 
metafaces are more representative so that the classification 
can be more robust and accurate.   
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Figure 5. Recognition rates by different methods versus feature 
dimension on the AR database with Eigenfaces feature. 
 
Table 3.  The top recognition rates (%) of different methods on the 
AR database and the associated dimension of features. 

Method  SRC MFL NN 
Rate 91.14 91.86 71.29 
Dimension 500 300 500 

 
5. CONCLUSION 

 
In this paper, we discussed the metaface learning (MFL) of 
face images when using sparse representation based 
classifier (SRC) for classification. Our experiments on 
Extended Yale B, ORL and AR face databases 
demonstrated that the proposed MFL algorithm can not only 
have higher accuracy than original SRC but also have less 
dictionary size. In learning the metafaces of each class, only 
the samples within that class were used. Therefore, the 
proposed MFL algorithm in this paper is an unsupervised 
learning method. In the future, we will investigate how to 
introduce the class label information into the MFL process 
so that a set of discriminative metafaces can be learned. 
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