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ABSTRACT 
 
Local binary pattern (LBP), fast and simple for 
implementation, has shown its superiority in face and 
palmprint recognition. To extract representative features, 
“uniform” LBP was proposed and its effectiveness has been 
validated. However, all “non-uniform” patterns are clustered 
into one pattern, so a lot of useful information is lost. In this 
study, the authors propose to build a hierarchical multiscale 
LBP histogram for an image. The useful information of 
“non-uniform” patterns at large scale is dug out from its 
counterpart of small scale. The main advantage of the 
proposed scheme is that it can fully utilize LBP information 
while it does not need any training step, which may be 
sensitive to training samples. Experiments on one public 
face database and one palmprint database show the 
effectiveness of the proposed method. 
 

Index Terms— LBP, multiscale, face recognition, 
palmprint recognition 
 

1. INTRODUCTION 
Biometrics refers to the study of methods for recognizing 
humans based on one or more physical or behavioral traits 
[1]. As a complementary or supplementary method to 
traditional person authentication, biometrics gets more and 
more popular. Among different biometric traits, face and 
palmprint recognition receive great amount of attention in 
the past decade. They can get high recognition rate and are 
user friendly.  

How to extract discriminant information from an image 
is one of the key components for biometrics system. There 
are many different algorithms proposed in the past, such as 
principal component analysis (PCA) [2], Gabor phase 
encoding [3], and local binary pattern (LBP) [4-9] for 
feature extraction. Among them, LBP based method has 
shown its superiority in face [4-7] and palmprint [8-9] 
recognition. LBP was originally proposed as a texture 
descriptor. It owns many advantages, such as it is simple to 
implement and fast to compute [10].  

It has been validated that “uniform” patterns play an 
important role in texture classification [10]. “Uniform” 

patterns also showed its superiority in face and palmprint 
recognition [4-5, 8-9]. Incorporating “uniform” idea, many 
patterns, which are not “uniform” patterns, are clustered into 
one “non-uniform” pattern. By this way, many discriminant 
but “non-uniform” patterns fail to provide useful features. 
And, the percentage of “non-uniform” patterns increases as 
the radius increases, so much information is lost. Recently, 
some works were proposed to address this issue. Many 
“non-uniform” patterns are isolated from the “non-uniform” 
cluster [6-7]. However, such methods are learning based 
algorithms, which require some training samples to discover 
useful “non-uniform” patterns. Thus, the recognition 
performance may be related with the training samples.  

In this paper, we propose a hierarchical multiscale LBP 
algorithm for face and palmprint recognition. The LBPs for 
biggest radius is firstly extracted. Then, for those “non-
uniform” patterns, the counterpart LBPs of smaller radius is 
extracted. Among the new LBPs, those “non-uniform” 
patterns is further proceeded to extract "uniform" patterns in 
even smaller radius. The procedure is iterated until the 
smallest radius is proceeded. The proposed scheme could 
fully utilize the information of “non-uniform” LBPs of 
bigger radius. Furthermore, this hierarchical scheme is 
totally training free which are not sensitive to the training 
samples.  

The rest of the paper is organized as follows. Section 2 
reviews the LBP. Section 3 presents the proposed 
hierarchical multiscale LBP method. Sections 4 shows 
experimental results on one face database and one palmprint 
database. Section 5 gives the conclusion and future work. 

 
2. BRIEF REVIEW OF LBP 

LBP [10] is a gray-scale texture operator that characterizes 
the local spatial structure of the image texture. Given a 
central pixel in the image, a pattern code is computed by 
comparing it with its neighbours: 
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where gc is the gray value of the central pixel, gp is the value 
of its neighbors, P is the total number of involved neighbors 
and R is the radius of the neighborhood. Suppose the 
coordinate of gc is (0, 0), then the coordinates of gp are 
(R*cos(2πp/P),R*sin(2πp/P)). Fig. 1 gives examples of 
circularly symmetric neighbor sets for different 
configurations of (P,R). The gray values of neighbours that 
are not in the center of grids can be estimated by 
interpolation. 
 

 
 
Figure 1: Circularly symmetric neighbour sets for different (P, R). 

 
Suppose the texture image is of size N×M. After 

identifying the LBP pattern of each pixel (i, j), a histogram 
is built to represent the whole texture image: 
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where K is the maximal LBP pattern value. The U value of 
an LBP pattern is defined as the number of spatial 
transitions (bitwise 0/1 changes) in that pattern 
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For example, the LBP pattern 00000000 has a U value 
of 0 and 01000000 has a U value of 2. The uniform LBP 
patterns refer to the patterns which have limited transition or 
discontinuities (U≤2) in the circular binary presentation 
[10]. It was verified that only those “uniform” patterns are 
fundamental patterns of local image texture [10]. In practice, 
the mapping from ,P RLBP  to 2

,
u
P RLBP  (superscript “u2” 

means that the uniform patterns have a U value of at most 
2), which has P*(P-1)+3 distinct output values, is 
implemented with a lookup table of 2P elements.  

The dissimilarity of sample and model histograms is a 
test of goodness-of-fit, which could be measured with a 
nonparametric statistic test. In this study, the dissimilarity 
between a test sample S and a class model T is measured by 
the chi-square distance: 
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where N is the number of bins, Sn and Tn are the values of 
the sample and model images at the nth bin. 
 

3. HIERARCHICAL MULTISCALE LBP 
The performance of single LBP operator is limited. 
Multiscale or multiresolution could represent more image 
feature under different settings. Traditionally, LBP features 
of different scale are extracted first, and then the histograms 
are concatenated into a long feature. Joint distribution could 
contain more information, but it suffers from huge feature 
dimension.  

As shown in Section 2, (2P -P*(P-1)-2) “non-uniform” 
patterns are clustered into one “non-uniform” pattern. By 
applying this scheme, much information is lost. And, as the 
radius increases, the percentage of “non-uniform” pattern 
increases. For example, Table I shows the percentage of 
“non-uniform” patterns in palmprint images. 
 
Table I. Percentage (%) of “non-uniform” patterns in PolyU 
palmprint database [13]. 
 R=1 R=2 R=3 
P=8 15.82 23.68 29.86 

 
As shown in Table I, around one third information is 

wasted by using previous method. To extract more useful 
feature from the image, some works were proposed to dig 
out information from these “non-uniform” patterns [6-7]. 
However, such methods require a training step to learn 
which patterns are useful. The recognition accuracy may be 
dependent on the training samples. 

Fig. 2 shows an example. The pattern of a bigger radius 
is “non-uniform”, but its counterpart in a smaller radius is 
“uniform”. Thus, it is possible to classify the “non-uniform” 
patterns according to their counterpart of smaller radius. 

 

 
 
Figure 2: Binary Patterns of different radius of a local region. Solid 
circles represent 1 while hollow circles mean 0. 
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session were used for training, and the other three images 
for testing. The second experiment exchanges the training 
and testing sets. Table III lists the recognition accuracy for 
different methods on two experiments.  

 
Table III. Recognition accuracy (%) of different methods. 

Method Accuracy 
(1st Experiment) 

Accuracy 
(2nd Experiment) 

PCA 68.89 79.79 
DICA 99.72 95.83 
Single scale LBP 
(R=2, P=8) 

87.5 81.46 

Traditional 
multiscale LBP 
(R={2,3,4}, P=8) 

97.78 94.79 

Proposed 
multiscale LBP 
(R={2,3,4}, P=8) 

98.89 96.67 

 
Similar findings as Table II could be found from Table 

III, such as both multiscale schemes could significantly 
improve the recognition accuracy and the proposed 
multiscale scheme is better than traditional one.  

The proposed scheme could not get better result than 
DICA in the first experiment, but, it can get around 1% 
improvement in the second experiment. This is mainly 
because DICA is a training based method in feature 
extraction, thus it requires many training samples to learn 
representative features. It can get good results when the 
training sample is enough, however, it may fail to get good 
enough features when fewer training samples are provided. 
This is why DICA get around 4% drop from 4 training 
samples per subject to 3 samples per subject. As a training 
free method in feature extraction, the proposed method is 
more robust to the variation of training sample. As shown in 
Table III, it only gets around 2% drop from the first 
experiment to the second experiment. It is a very good 
property in many applications, as getting enough training 
samples is not a trivial issue.  

However, there is one disadvantage of the proposed 
scheme. The feature dimension of multiscale LBP is a little 
higher. For example, in AR database, the feature sizes of the 
proposed scheme and traditional multiscale are 2,625 
((3*59-2)*5*3) and 2,655 (3*59*5*3), respectively. It is 
much larger than PCA (418 for the first experiment and 100 
for the second experiment) and DICA (96 for the first 
experiment and 72 for the second experiment) [11]. 
Fortunately, 2,622 is not a big issue for current PC.  

 
5. CONCLUSION 

In this paper, to fully extract useful feature from an image, a 
hierarchical mutliscale LBP is proposed. It could dig out 
useful information from those “non-uniform” patterns. The 
main advantage of the proposed method could maintain the 
training free property during feature extraction, which is 
very important for some applications. Its effectiveness is 
shown in one palmprint and one face database. Compared 

with traditionally multiscale LBP, the proposed method 
could get more than 1% improvement. It could also get 
better result than those training based methods, when the 
training samples are not enough. 

The feature size of multiscale LBP is a little high. How 
to reduce the feature size but get good performance in 
recognition will be our future work. 
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