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ABSTRACT

Local Binary Pattern (LBP) has been widely used in texture
classification because of its simplicity and computational
efficiency. Traditional LBP codes the sign of the local
difference and uses the histogram of the binary code to
model the given image. However, the directional statistical
information is ignored in LBP. In this paper, some
directional statistical features, specifically the mean and
standard deviation of the local absolute difference are
extracted and used to improve the LBP classification
efficiency. In addition, the least square estimation is used to
adaptively minimize the local difference for more stable
directional statistical features, and we call this scheme the
adaptive LBP (ALBP). By coupling the directional
statistical features with ALBP, a new rotation invariant
texture classification method is presented. Experiments on a
large texture database show that the proposed texture feature
extraction and classification scheme could significantly
improve the classification accuracy of LBP.

Index Terms— LBP, Rotation Invariance, LSE

1. INTRODUCTION

Texture analysis is an active research topic in the fields of
computer vision and pattern recognition. Generally
speaking, it involves four basic problems: classifying
images based on texture content; segmenting an image into
regions of homogeneous texture; synthesizing textures for
graphics applications; and establishing shape information
from texture cue [1].

In the early stage, researchers devoted themselves into
extracting statistical feature to classify texture images, such
as the co-occurrence matrix method [2] and the filtering
based methods [3]. These methods could achieve good
classification results if the training and testing samples have
similar or identical orientation. To meet some real
application requirements, rotation invariance is a critical
issue to be solved. Kashyap and Khotanzad [4] were among
the first researchers to study rotation-invariant texture
classification by using a circular autoregressive model.
Later, many other models were explored, including the
multiresolution autoregressive model [5], and hidden
Markov model [6]. Jafari-Khouzani and Soltanian-Zadeh
proposed to use Radon transform to estimate the texture
orientation and extract wavelet energy features for texture
classification [8]. Recently, Varma and Zisserman [9]
proposed a statistical learning based algorithm, where a
rotation invariant texton library is first built from a training

set and then an unknown texture image is classified
according to its texton distribution. Scale and affine
invariant texture classification is an active research topic,
and some pioneer work have been done by using fractal
analysis [11] and affine adaptation [10].

In [7], Ojala et al. proposed to use the Local Binary
Pattern (LBP) histogram for rotation invariant texture
classification. LBP is a simple but efficient operator to
describe local image patterns. The LBP based methods have
achieved good classification results on representative texture
databases. Since LBP could not fully represent the image
local spatial structure, the contrast (the variance of local
image) was proposed to combine with LBP for a joint
distribution [7]. However, the contrast has two main
limitations. First, contrast is an isotropic measurement,
while texture images may contain clear orientation. Thus the
contrast fails to represent such information. Second, contrast
needs a quantization procedure to combine with LBP. This
guantization step may fail to well represent the feature space
when the number of training samples is limited.

In this paper, we propose to incorporate the directional
statistical information for rotation invariant texture
classification. The distribution of local difference between
each pixel and its neighborhoods in each direction is
modeled by the mean and standard deviation. To reduce the
estimation error of local difference, an adaptive LBP
(ALBP) is developed using least square estimation (LSE).
Moreover, the coefficients of the LSE in the ALBP could
provide additional information for classification.

The rest of the paper is organized as follows. Section 2
briefly reviews the LBP. Section 3 presents the ALBP and
the directional statistical feature extraction. Section 4 reports
the experimental results on a representative texture database.
Section 5 gives the conclusion and future work.

2. REVIEW OF LOCAL BINARY PATTERN (LBP)
LBP [7] is a gray-scale texture operator that characterizes
the local spatial structure of the image texture. Given a
central pixel in the image, a pattern code is computed by
comparing its value with those of its neighborhoods:
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where g. is the gray value of the central pixel, g, is the value
of its neighbors, P is the total number of involved neighbors
and R is the radius of the neighborhood. Suppose the
coordinate of g. is (0, 0), then the coordinates of g, are given



by (Rcos(2rp/P), Rsin(2zp/P)). The gray values of
neighbors that are not in the center of grids can be estimated
by interpolation.

After the LBP pattern of each pixel is identified, a
histogram is built to represent the whole texture image. The
U value of an LBP pattern is defined as the number of
spatial transitions (bitwise 0/1 changes) in that pattern:
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The uniform LBP patterns refer to the patterns which
have limited transition or discontinuities (U<2) in the
circular binary presentation [7]. It was verified that only
those “uniform” patterns are fundamental patterns of local
image texture [7]. To achieve rotation invariance, a locally
rotation invariant pattern could be defined as:
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The dissimilarity of sample and model histograms is a
test of goodness-of-fit, which could be measured with a
nonparametric statistic test. In this study, chi-square
distance with the nearest neighborhood classifier is used as
it shows good result in texture classification [9].

3. ADAPTIVE LBP (ALBP) WITH DIRECTIONAL
STATISTICAL FEATURES
3.1. The directional statistical features
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Fig. 1. Similar LBP distributions but different directional (45°)
difference distributions. a)-c) original image, LgpsZ distribution
and |g.-gy| distribution. d)-f) is another example.

The LBP could achieve good texture classification results.
However, the local spatial structure could not be fully
represented by LBP. Therefore, in [7] the variance (VAR)
operator was proposed and used in joint with LBP:
P-1 P-1
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However, VARp ; has continuous values and it needs to
be quantized. This can be done by calculating the feature
distribution from all training images and then partitioning
the distribution into equally distributed K bins by cut values
[7]. The cut values obtained from training images are used
for the quantization of test images.
Because VAR is complementary with LBP, their joint
distribution could improve the accuracy of texture

classification. However, VARpr ignores the directional
information of local differences because it averages the
squares of local differences of the P neighbors from all P
directions. In addition, the quantization step may be
sensitive to the training samples. When the training samples
are less representative, the cut value may fail to partition the
feature space evenly.

Given a central pixel g. and its P circularly and evenly
spaced neighbors g,, p=0,1,...,P-1. The distributions of the
differences between g. and g, often vary with p, which
represents different orientations. Fig. 1 shows an example,
the two texture images have similar LBP distributions but
different distributions of local difference | g. — g, | We
calculate the mean and standard deviation (std) of | g.— g, |:
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Suppose the texture image is of size NxM. Where g.(ij) is
the center pixel at position (i) and g,(i,/) is neighborhood
of g.(iy) lying along orientation 2zp/P with radius R.
Obviously, », and o, are the first-order and second-order
directional statistics of | g. — g, | along orientation 2zp/P.
We denote by a=[u,,u4,....u,,] the mean vector and by
& =[oy,0,,...c,_,] the std vector. Fig. 2 shows an example.
We can see that with the rotation of the texture image, the
mean vector z and std vector & will shift accordingly.
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Fig. 2. An example to illustrate that when the image is rotated, the
statistical vectors z and std vector & will shift accordingly. Here
P=8and R=1.

The directional statistical features z and & carry useful
information for texture discrimination. Since they are
complementary to LBP, we can use them to weight the LBP
dissimilarity. As shown in Fig. 2, z and & are variant to
orientation changes. There are two possible ways to achieve
rotation invariance. 1) Given two z (or two &) from two
images, we could shift one of them so that the two vectors
have minimal distance. 1l) Find a dominant orientation for
each vector and shift the vector with respect to this
orientation. The dominant orientation could be evaluated by
the minimal element of the vector. Our tests show that the



second way has comparable alignment accuracy to the first
way but it has much less computational cost.
Denote by z, and &, the directional statistical feature

vectors from image S, and by z and &, the vectors from
the model 7. Suppose these vectors have been aligned by

either one of the two methods mentioned above. The
normalized distances between z, and z,, and &, and &, are

defined as
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where «, and «_ are standard deviation value of zand &

from training samples [12].
With 4, and «, , the weighted LBP dissimilarity is

defined as
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where D;pp(S,7) is the LBP histogram dissimilarity, ¢; and
¢, are parameters to control the weights and decay speed.
For simplicity, identical weights for two features are used
here, although better accuracy could be gotten if different
weights are used.
3.2. Adaptive LBP (ALBP)
To better use z and & to improve the texture classification
performance, intuitively we want to minimize the variations
of the mean and std of the directional differences. To this
end, an adaptive LBP (ALBP) scheme is proposed here to
minimize the directional difference along different
orientation. Specifically, we introduce a parameter w, so
that the overall directional difference |g—w,*g,| can be
minimized. The objective function is as follows:
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Clearly, the least square estimation (LSE) technique can
be used for such an optimization and the weight w, can be
easily computed as follows:

w,=22./(2)2,) (10)
where g =[g.(L1);g.(1,2);..;g.(N,M)] is a column vector

containing all the possible g.ij) pixels and
g,=g,1);:g,12);.;g,(N,M)] is the corresponding vector

(8)

for all g,(i,j) pixels.
Here each weight w, is estimated along one orientation 2zp/P
for the whole image. Finally, the ALBP is defined as:

ALBP, , = PZfs(gp *w, -g,)2" (11)
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Let w=[w,w,..w,,] be the ALBP weight vector.
Similar as z and &, the ALBP weight vector is also shifted
with the rotation of the image. We can align w of two
images using the same method as that for z and &.
3.3. ALBP with directional statistical features

With ALBP, the directional statistics in Egs. (5) and (6) can
be computed by:
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Now we have three vectors, the mean z, the std vector &
and the weight vector w», which could be used to improve
the performance of LBP. Denote by ( z, 5, , w,) the vectors

from image S, and by ( z,, 5, , ) the vectors from image T.

Suppose these vectors have been aligned. Similar to the
normalized distances between z, and z , and &, and &,

defined in (7), the normalized distance between w», and w,
can be computed as follows:

4, = S0 )P, (14)

where « is standard deviation value of # from training
samples [12].

Finally, the ALBP dissimilarity weighted by these
directional statistical features is defined as:

D/I(:LBP (S,T) = DALBP (S’T)*(1+Cl -G 'exp(_du /cz)
*(At e, - exp(=d, [¢,))*(L+ ¢, — ¢, -exp(-d, I c,))
where D, 5(S,T) is the ALBP histogram dissimilarity.

Similar as LBP based schemes, the proposed method
can be easily extended to multiscale scheme. For example,
the simple sum of matching distances under different scales
[7] could be used to further improve the accuracy.

4. EXPERIMENT RESULTS
This section presents the experimental results on public
texture databases to demonstrate the effectiveness of the
proposed method. Due to the limit of space, we only show
the results on the comprehensive CUReT database [13],
which is one of the largest databases for rotation invariant
texture classification.

We compare the proposed method with the state-of-the-
art LBP based schemes in [7] and the state-of-the-art
rotation invariant texture classification algorithm MR8 [9].
There are three LBP based feature extraction operators in
[7]: rBP*, VaR,, and the joint rBp;“?/v4R,, - In the
experiments, the quantization levels for y4r,, and
LBP}? |VAR,, , Were set as 128 and 16 bins as in [7]. In

MRS, 10 textons are clustered from each texture class using
training samples, and then a histogram based on the 61*10
textons is computed for each model and sample image.

To better illustrate the proposed approach, in the
experiments we list all the classification rates by using
4Lsp;2 (i.e. using Eq. (11)), rapr; (i.e. using Eq. (8)) and
4LBpr? (i.e. using Eq. (15)). For simplicity, we set

P.R
c1=c,=1 in the experiments, although better accuracy could
be achieved if these parameters are tuned appropriately. The
code of the proposed method can be downloaded at
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.
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The CURet database contains 61 textures, and each
texture has 205 images captured under different viewpoints
and illumination conditions. There are 118 images whose
viewing angles are less than 60°. Out of the 118 images, 92
images, from which a sufficiently large region could be
cropped (200*200) across all texture classes, are selected
[9]. Except for MRS, all the cropped regions are converted
to grey scale and the intensity is normalized to have a mean
of 128 and standard deviation of 20 to reduce the variance
of illumination [7]. For MR8, the image is normalized to
have an average intensity of 0 and a standard deviation of 1
[9].

The training set for each class was built by selecting the
first 23 images. Hence, there are 1,403 models and 4,209
testing samples. This setting is close to the situation with a
small number of and less comprehensive training sample
images. The classification results by different operators of
single scale and multiscale are listed in Table 1.

Table 1. Classification rate (%) using different schemes.

8,1+16,

P, R 8,1 16,3 24,5 34245
VARp g 44.7 39.2 37.0 47.9
LBP2| VARpg|  70.8 70.1 65.4 73.2
LBP;Y? 58.0 66.5 63.4 78.4
ALBP;? 57.4 67.3 65.5 78.0
LBPF;"? 64.7 71.6 69.1 80.5
ALBPF}"? 66.1 72.7 71.7 80.2

MR8 77.5

From Table 1 we could make the following findings.
First, the proposed directional statistical features are very
useful for texture classification. The Lgpr;? and 4LBPF;"*

schemes have much better result than rpp™? and 4LBp;"2.
Second, 4rppF;? achieves better result than Lppr; 2. The

improvement is more than 1% in classification rate. This
validates the effectiveness of the proposed ALBP scheme.
However, multiscale of 4.ppr; fails to get better result

than that of rgpr72 by the simple fusion scheme. Better

PR
accuracy is expected if an advanced fusion scheme is used.
Third, 4rppF;? has comparable result to rpp/2/yaR, .

while the former has a much smaller feature size than the
latter. For example, when P=24, the feature sizes are 98 (i.e.
26+24*3) for 4rppr;u? and 416 (i.e. 26*16) for rppy2/

VAR,, . Furthermore, 4rppr;«* does not need any

quantization step which may fail to represent the whole
feature space well when the training samples are not enough
and less representative. This is the main reason why
ALBPF; could get 2% improvement compared with zgp;"?

! V4R, , - Finally, by our experiments, using three scales
{(8,1)+(16, 3)+(24,5)}, araprr;:> could achieve better result

than the state-of-the-art algorithm, MR8. Meanwhile, the
feature dimension, only 198 (i.e.

10+8*3+18+16*3+26+24*3), is still much lower that of
MR8, which is 610.

5. CONCLUSIONS
LBP has been widely used in texture classification because
of its simplicity and efficiency. However, using the local
spatial structure feature alone may fail to describe some
texture patterns. In this paper, we proposed three kinds of
directional statistical features: the mean value and standard
deviation of the local directional differences, as well as the
adaptive coefficients to minimize the local differences.
These statistical features were used to weight the LBP
histogram distances for texture classification. Experimental
results on the comprehensive CUReT texture database
showed that our proposed feature extraction and matching
scheme achieves better result than the state-of-the-art
rotation invariant texture classification algorithms. In
addition, it has a smaller feature size.
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