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ABSTRACT 
Local Binary Pattern (LBP) has been widely used in texture 
classification because of its simplicity and computational 
efficiency. Traditional LBP codes the sign of the local 
difference and uses the histogram of the binary code to 
model the given image. However, the directional statistical 
information is ignored in LBP. In this paper, some 
directional statistical features, specifically the mean and 
standard deviation of the local absolute difference are 
extracted and used to improve the LBP classification 
efficiency. In addition, the least square estimation is used to 
adaptively minimize the local difference for more stable 
directional statistical features, and we call this scheme the 
adaptive LBP (ALBP). By coupling the directional 
statistical features with ALBP, a new rotation invariant 
texture classification method is presented. Experiments on a 
large texture database show that the proposed texture feature 
extraction and classification scheme could significantly 
improve the classification accuracy of LBP. 
 

Index Terms— LBP, Rotation Invariance, LSE 
1. INTRODUCTION 

Texture analysis is an active research topic in the fields of 
computer vision and pattern recognition. Generally 
speaking, it involves four basic problems: classifying 
images based on texture content; segmenting an image into 
regions of homogeneous texture; synthesizing textures for 
graphics applications; and establishing shape information 
from texture cue [1].  

In the early stage, researchers devoted themselves into 
extracting statistical feature to classify texture images, such 
as the co-occurrence matrix method [2] and the filtering 
based methods [3]. These methods could achieve good 
classification results if the training and testing samples have 
similar or identical orientation. To meet some real 
application requirements, rotation invariance is a critical 
issue to be solved. Kashyap and Khotanzad [4] were among 
the first researchers to study rotation-invariant texture 
classification by using a circular autoregressive model. 
Later, many other models were explored, including the 
multiresolution autoregressive model [5], and hidden 
Markov model [6]. Jafari-Khouzani and Soltanian-Zadeh 
proposed to use Radon transform to estimate the texture 
orientation and extract wavelet energy features for texture 
classification [8]. Recently, Varma and Zisserman [9] 
proposed a statistical learning based algorithm, where a 
rotation invariant texton library is first built from a training 

set and then an unknown texture image is classified 
according to its texton distribution. Scale and affine 
invariant texture classification is an active research topic, 
and some pioneer work have been done by using fractal 
analysis [11] and affine adaptation [10].  

In [7], Ojala et al. proposed to use the Local Binary 
Pattern (LBP) histogram for rotation invariant texture 
classification. LBP is a simple but efficient operator to 
describe local image patterns. The LBP based methods have 
achieved good classification results on representative texture 
databases. Since LBP could not fully represent the image 
local spatial structure, the contrast (the variance of local 
image) was proposed to combine with LBP for a joint 
distribution [7]. However, the contrast has two main 
limitations. First, contrast is an isotropic measurement, 
while texture images may contain clear orientation. Thus the 
contrast fails to represent such information. Second, contrast 
needs a quantization procedure to combine with LBP. This 
quantization step may fail to well represent the feature space 
when the number of training samples is limited. 

In this paper, we propose to incorporate the directional 
statistical information for rotation invariant texture 
classification. The distribution of local difference between 
each pixel and its neighborhoods in each direction is 
modeled by the mean and standard deviation. To reduce the 
estimation error of local difference, an adaptive LBP 
(ALBP) is developed using least square estimation (LSE). 
Moreover, the coefficients of the LSE in the ALBP could 
provide additional information for classification. 

The rest of the paper is organized as follows. Section 2 
briefly reviews the LBP. Section 3 presents the ALBP and 
the directional statistical feature extraction. Section 4 reports 
the experimental results on a representative texture database. 
Section 5 gives the conclusion and future work. 

2. REVIEW OF LOCAL BINARY PATTERN (LBP) 
LBP [7] is a gray-scale texture operator that characterizes 
the local spatial structure of the image texture. Given a 
central pixel in the image, a pattern code is computed by 
comparing its value with those of its neighborhoods: 
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where gc is the gray value of the central pixel, gp is the value 
of its neighbors, P is the total number of involved neighbors 
and R is the radius of the neighborhood. Suppose the 
coordinate of gc is (0, 0), then the coordinates of gp are given 
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second way has comparable alignment accuracy to the first 
way but it has much less computational cost. 

Denote by Sμ  and Sσ  the directional statistical feature 
vectors from image S, and by Tμ  and Tσ  the vectors from 
the model T. Suppose these vectors have been aligned by 
either one of the two methods mentioned above. The 
normalized distances between Sμ  and Tμ , and Sσ  and Tσ  are 
defined as 
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where uκ and σκ are standard deviation value of μ and σ
from training samples [12]. 

With ud  and dσ , the weighted LBP dissimilarity is 
defined as 
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where DLBP(S,T) is the LBP histogram dissimilarity, c1 and 
c2 are parameters to control the weights and decay speed. 
For simplicity, identical weights for two features are used 
here, although better accuracy could be gotten if different 
weights are used.  
3.2. Adaptive LBP (ALBP) 
To better use μ  and σ  to improve the texture classification 
performance, intuitively we want to minimize the variations 
of the mean and std of the directional differences. To this 
end, an adaptive LBP (ALBP) scheme is proposed here to 
minimize the directional difference along different 
orientation. Specifically, we introduce a parameter wp so 
that the overall directional difference |gc–wp*gp| can be 
minimized. The objective function is as follows: 
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Clearly, the least square estimation (LSE) technique can 
be used for such an optimization and the weight wp can be 
easily computed as follows: 

( )T T
p p c p pw g g g g=                              (10) 

where [ ](1,1); (1, 2);...; ( , )c c c cg g g g N M=  is a column vector 
containing all the possible gc(i,j) pixels and 

(1,1); (1,2);...; ( , )p p p pg g g g N M⎡ ⎤= ⎣ ⎦  is the corresponding vector 
for all gp(i,j) pixels. 

Here each weight wp is estimated along one orientation 2πp/P 
for the whole image. Finally, the ALBP is defined as: 
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Let [ ]0 2 1, ,... Pw w w w −=  be the ALBP weight vector. 
Similar as μ  and σ , the ALBP weight vector is also shifted 
with the rotation of the image. We can align w  of two 
images using the same method as that for μ  and σ . 
3.3. ALBP with directional statistical features 
With ALBP, the directional statistics in Eqs. (5) and (6) can 
be computed by: 
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Now we have three vectors, the mean μ , the std vector σ  
and the weight vector w , which could be used to improve 
the performance of LBP. Denote by ( Sμ , Sσ , Sw ) the vectors 
from image S, and by ( Tμ , Tσ , Tw ) the vectors from image T. 
Suppose these vectors have been aligned. Similar to the 
normalized distances between Sμ  and Tμ , and Sσ  and Tσ  
defined in (7), the normalized distance between Sw  and Tw  
can be computed as follows: 
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where wκ  is standard deviation value of w  from training 
samples [12]. 

Finally, the ALBP dissimilarity weighted by these 
directional statistical features is defined as: 
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where DALBP(S,T) is the ALBP histogram dissimilarity. 
Similar as LBP based schemes, the proposed method 

can be easily extended to multiscale scheme. For example, 
the simple sum of matching distances under different scales 
[7] could be used to further improve the accuracy. 

4. EXPERIMENT RESULTS 
This section presents the experimental results on public 
texture databases to demonstrate the effectiveness of the 
proposed method. Due to the limit of space, we only show 
the results on the comprehensive CUReT database [13], 
which is one of the largest databases for rotation invariant 
texture classification.  

We compare the proposed method with the state-of-the-
art LBP based schemes in [7] and the state-of-the-art 
rotation invariant texture classification algorithm MR8 [9]. 
There are three LBP based feature extraction operators in 
[7]: 2

,
riu

P RLBP , ,P RVAR  and the joint 2
, ,/riu

P R P RLBP VAR . In the 
experiments, the quantization levels for ,P RVAR  and 

2
, ,/riu

P R P RLBP VAR  were set as 128 and 16 bins as in [7]. In 
MR8, 10 textons are clustered from each texture class using 
training samples, and then a histogram based on the 61*10 
textons is computed for each model and sample image.  

To better illustrate the proposed approach, in the 
experiments we list all the classification rates by using 

2riu
P,RALBP (i.e. using Eq. (11)), 2riu

P,RLBPF  (i.e. using Eq. (8)) and 
2riu

P,RALBPF  (i.e. using Eq. (15)). For simplicity, we set 
c1=c2=1 in the experiments, although better accuracy could 
be achieved if these parameters are tuned appropriately. The 
code of the proposed method can be downloaded at 
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.  



 

The CURet database contains 61 textures, and each 
texture has 205 images captured under different viewpoints 
and illumination conditions. There are 118 images whose 
viewing angles are less than 600.  Out of the 118 images, 92 
images, from which a sufficiently large region could be 
cropped (200*200) across all texture classes, are selected 
[9]. Except for MR8, all the cropped regions are converted 
to grey scale and the intensity is normalized to have a mean 
of 128 and standard deviation of 20 to reduce the variance 
of illumination [7]. For MR8, the image is normalized to 
have an average intensity of 0 and a standard deviation of 1 
[9].  

The training set for each class was built by selecting the 
first 23 images. Hence, there are 1,403 models and 4,209 
testing samples. This setting is close to the situation with a 
small number of and less comprehensive training sample 
images. The classification results by different operators of 
single scale and multiscale are listed in Table 1.  

Table 1. Classification rate (%) using different schemes. 

P, R 8,1 16,3 24,5 
8,1+16, 
3+24,5 

VARP,R 44.7 39.2 37.0 47.9 
2riu

P ,RLBP / VARP,R 70.8 70.1 65.4 73.2 
2riu

P ,RLBP  58.0 66.5 63.4 78.4 
2riu

P ,RALBP  57.4 67.3 65.5 78.0 
2riu

P ,RLBPF  64.7 71.6 69.1 80.5 
2riu

P ,RALBPF  66.1 72.7 71.7 80.2 
MR8 77.5 

 

From Table 1 we could make the following findings. 
First, the proposed directional statistical features are very 
useful for texture classification. The 2

,
riu

P RLBPF  and 2
,

riu
P RALBPF  

schemes have much better result than 2
,

riu
P RLBP  and 2

,
riu

P RALBP . 
Second, 2

,
riu

P RALBPF  achieves better result than 2
,

riu
P RLBPF . The 

improvement is more than 1% in classification rate. This 
validates the effectiveness of the proposed ALBP scheme. 
However, multiscale of 2

,
riu

P RALBPF  fails to get better result 
than that of 2

,
riu

P RLBPF  by the simple fusion scheme. Better 
accuracy is expected if an advanced fusion scheme is used. 
Third, 2

,
riu

P RALBPF  has comparable result to 2riu
P,RLBP / ,P RVAR , 

while the former has a much smaller feature size than the 
latter. For example, when P=24, the feature sizes are 98 (i.e. 
26+24*3) for 2

,
riu

P RALBPF  and 416 (i.e. 26*16) for 2riu
P,RLBP /

,P RVAR . Furthermore, 2
,

riu
P RALBPF  does not need any 

quantization step which may fail to represent the whole 
feature space well when the training samples are not enough 
and less representative. This is the main reason why

2
,

riu
P RALBPF could get 2% improvement compared with 2riu

P,RLBP

/ ,P RVAR . Finally, by our experiments, using three scales 
{(8,1)+(16, 3)+(24,5)}, 2riu

P ,RALBPF  could achieve better result 
than the state-of-the-art algorithm, MR8. Meanwhile, the 
feature dimension, only 198 (i.e. 

10+8*3+18+16*3+26+24*3), is still much lower that of 
MR8, which is 610. 

5. CONCLUSIONS 
LBP has been widely used in texture classification because 
of its simplicity and efficiency. However, using the local 
spatial structure feature alone may fail to describe some 
texture patterns. In this paper, we proposed three kinds of 
directional statistical features: the mean value and standard 
deviation of the local directional differences, as well as the 
adaptive coefficients to minimize the local differences. 
These statistical features were used to weight the LBP 
histogram distances for texture classification. Experimental 
results on the comprehensive CUReT texture database 
showed that our proposed feature extraction and matching 
scheme achieves better result than the state-of-the-art 
rotation invariant texture classification algorithms. In 
addition, it has a smaller feature size. 
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