
AN ADAPTIVE L1-L2 HYBRID ERROR MODEL TO SUPER-RESOLUTION 
 

Huihui Song a, Lei Zhang b, Peikang Wang a, Kaihua Zhang b and Xin Li c 
 

a Dept. of EEIS, University of Science and Technology of China, Hefei 230027, P. R. China  
b Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong  

c Lane Dept of CSEE, West Virginia University 
 

ABSTRACT 
 
A hybrid error model with L1 and L2 norm minimization 
criteria is proposed in this paper for image/video 
super-resolution. A membership function is defined to 
adaptively control the tradeoff between the L1 and L2 norm 
terms. Therefore, the proposed hybrid model can have the 
advantages of both L1 norm minimization (i.e. edge 
preservation) and L2 norm minimization (i.e. smoothing 
noise). In addition, an effective convergence criterion is 
proposed, which is able to terminate the iterative L1 and L2 
norm minimization process efficiently. Experimental results 
on images corrupted with various types of noises 
demonstrate the robustness of the proposed algorithm and its 
superiority to representative algorithms. 
 

Index Terms—Super-resolution, L1 norm, L2 norm, 
convergence criterion. 
 

1. INTRODUCTION 
 

Image interpolation and superresolution (SR) aims to 
reconstruct high-resolution (HR) images from their 
low-resolution (LR) counterparts [1-3, 9-10]. In particular 
multi-frame video SR could reproduce HR frames from a 
sequence of LR frames that have sub-pixel shifts [3]. In the 
past decades, SR reconstruction has been widely studied and 
various algorithms have been developed in applications such 
as image/video resolution enhancement, medical imaging, 
remote sensing and video surveillance, etc., [1]. Usually, the 
LR frames need to be previously registered via motion 
estimation, and the point spread function (PSF) estimation 
and photometric correction, etc., need to be performed in 
advance [2][3][5]. A mathematical model is then used to 
bridge the LR observations with the unknown HR scene. 
Finally, Maximum Likelihood (ML) estimation techniques 
are often used to solve the SR inverse problem to 
reconstruct the HR scene [2][5][6][7].    

Most of the existing ML estimators assume that the 
noise in the LR observations is Gaussian distributed [6][7]. 
However, for many real world image sequences, the 
Laplacian distribution is more accurate to model the 
impulsive noise (such as the salt and pepper noise) inside 
them [2][5]. Generally speaking, the ML estimators for 
signals with Gaussian distributed noise can be seen as mean 

filters, which have good performance at smoothing noise 
(but may smooth edges as well), while the ML estimators 
for signals with Laplacian distributed impulsive noise 
corresponds to the median filters, which has good 
performance at preserving the image edges (but may not be 
able to smooth out Gaussian additive noise) [2][4].  

Often the noise corrupted in real image sequence is a 
combination of additive Gaussian noise and impulsive 
Laplacian noise. In order to better suppress them in the SR 
image reconstruction process, in this paper we propose a 
hybrid error model which incorporates the advantages of the 
ML estimators for signals with Gaussian additive and 
Laplacian impulsive noise. The estimators are adaptively 
tuned according to the noise distribution. Note that in the 
iterative SR reconstruction process, the noise and its 
distribution will also change. Moreover, we propose an 
effective adaptive convergence criterion (ACC), which is 
able to terminate the iteration efficiently. The experiments 
demonstrate that the proposed method can effectively 
reconstruct the HR images from the LR frames, preserving 
well the image details while suppressing the noise. 

Section 2 introduces the background of the algorithm. 
Section 3 describes our method in detail. Section 4 presents 
experimental results and Section 5 concludes the paper. 

 
2. THE IMAGING MODEL 

 
In this paper, we adopt the following linear observation 

model for LR image formation [2][3] 
     ( ) ,  1,..., .k

k k k ky D H F x N k K= + =       (1) 
where K is the number of the LR frames, x is the HR frame, 
and y(k) is the kth LR frame. The matrices Dk and Hk represent 
the sensor spatial sampling and the system PSF, respectively. 
Fk is the geometric motion operator between y(k) and x, and 
Nk is the system noise. 

The motion model and the PSF need to be well 
estimated to register the LR images. The planar projective 
(8DoF) motion model [3] is very suitable to model planar 
objects captured from a variety of angles, even for the case 
that the camera centre rotates about its optical centre. The 
motions in small regions and short time sequences can also 
be adequately approximated by the 8DoF transform even 
when the true underlying motion of the overall scene is not 
completely described. The PSF can be decomposed into 



factors representing the blurring caused by camera optics 
and the spatial integration by CCD sensor. As in many 
literatures [3], here we set the PSF as an isotropic 2D 
Gaussian kernel with variance 2

PSFσ . 
 

     3. METHODOLOGY 
 

3.1. Problem Formulation 
 
The noise Nk in Eq. (1) is often assumed to be Gaussian or 
Laplacian distributed, and the corresponding HR ML 
estimate can be calculated by the following Lp norm 
minimization criterion [2] 
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where p = 1 corresponds to Laplacian distribution, and p = 2 
corresponds to Gaussian distribution. 

Since super-resolution is an ill-posed problem, the 
solution to Eq. (2) is not unique. Some regularization 
methods are often used to yield a stable solution. In [2], 
Farsiu et al. proposed a so-called Bilinear Total Variation 
(BTV) regularization method, which is not only 
computationally efficient, but also good at edge preservation. 
This regularization method is employed in the proposed 
hybrid error model.  

    
3.2. The Hybrid Error Model (HEM) 
 
The probability density functions (PDF) of Gaussian and 
Laplacian noise are respectively as follows 
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where r denotes an N-dimensional noise vector. The ML 
estimates of σG, mG, σL, and mL, denoted by ˆ ˆ ˆ ˆ, , ,G G L Lm mσ σ , 
can be computed as follows 
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We use the following generalized likelihood ratio test 
(GLRT) [5] to decide which noise model is preferable: 

ˆ ˆ( ; , ) 1.
ˆ ˆ( ; , )

G G G

L L L

P r m
P r m

σ
σ

>           (5) 

Combining Eqs.(3), (4), (5), and defining ˆ ˆ/L Gγ σ σ , we 

have 
              / 2 0.7602.eγ π> ≈               (6) 
Therefore, if the ratio γ > 0.7602, the Gaussian model is 
preferable to the Laplacian one, and vice versa. 

If the Gaussian model is selected, then in Eq. (2) the 
L2-norm is used, while if the Laplacian model is selected, 
then in Eq. (2) the L1-norm is used. Both the L2-norm and 
L1-norm minimization have their own advantages. The 
L2-norm for Gaussian noise model have a good performance 
of smoothing image, while the L1-norm for Laplacian noise 
model can well preserve the details of image, such as edges. 
In order to adaptively balance between the image smoothing 
and edge preserving, we define the following membership 
function for the Laplacian distribution, which adaptively 
changes according to the ratio γ (see the red curve in Fig.1).  

           1( ) .
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H γ
γ+ −

            (7) 

Obviously, the membership function corresponding to the 
Gaussian model is 1−H(γ) (see the blue curve in Fig.1). 

The objective function of the data term of our model is as 
follows: 
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where ( ) ( )k k
k k kr y D H F x= − . 

In order for a stable solution and for edge preservation, 
the Bilinear Total Variation (BTV) [2] is used here as the 
regularization term, whose objective function is as follows 
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where 0 < α < 1, P is a fixed parameter, l
xS  and m

yS are 
matrices accounting for the shift operations in the horizontal 
and vertical directions by l and m pixels, respectively. The 
final objective function is as follows 
               ,e rL L vL= +                    (10) 
where v is a regularization parameter that weights the first 
term against the second term. 

 The objective function in Eq. (10) can be solved by an 
iterative procedure. The reconstructed SR image in previous 

Fig.1. Membership functions of Gaussian model (blue solid
curve) and Laplacian model (red solid curve).   
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iteration is an initialization for the current iteration, and the 
reconstructed SR image will gradually become better. So the 
intensity of the noise in the reconstructed image will change 
during the iteration procedure. The ratio γ in Eq. (6) can be 
used to indicate this variance. The membership functions 
w.r.t the ratio γ, which correspond to the Gaussian and 
Laplacian models, respectively, can adaptively select which 
model is more suitable during the iteration procedure. 
 
3.3. Adaptive Convergence Criterion (ACC)  
 
We use the scaled conjugate gradient (SCG) algorithm [8] to 
optimize the objective function in Eq. (10), which is 
computationally efficient. Usually, the convergence is 
assumed to be reached by setting a maximum iteration 
number Nmax and comparing the values of the objective 
function between two successive iterations. However, this 
method is not general and sometimes difficult to choose 
proper threshold, which limits its application. Moreover, 
from experiments, we found it is unnecessary to stop until 
Nmax  is reached, since the reconstructed SR image can be 
good enough before Nmax  is reached.  

We propose an adaptive convergence criterion (ACC) by 
using the change of ratio γ in Eq. (6) as an indicator, which 
is robust and very efficient. If the absolute value variance of 
the ratio γ is successively less than a fixed threshold ε more 
than four times, the convergence is assumed to be reached. 

The pseudocode of the convergence algorithm is as 
follows. 
 

Algorithm of ACC 
While iteration times < Nmax, do 
      Compute the absolute value variance of γ during two 
successive iterations, i.e., abfγ = |γback − γforword|. 
      If abfγ  is successively less than ε more than four times 
         End iteration. 
      Else, continue until the iterations reach Nmax. 
 

4. EXPERIMENTAL RESULTS 
 

In the experiments we consider three common types of 
noise in SR: Gaussian noise, impulse noise (e.g. salt and 
pepper noise), and the mixed noise of them including 
estimation error. We name the L1-norm with BTV 
regularized method L1BTV [2], while the L2-norm with 
BTV regularized method L2BTV [3]. The code of the 
proposed method can be downloaded at 
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.  

In the first experiment, we validate the ACC (adaptive 
convergence criterion) algorithm by comparing it with the 
commonly used method in [3]. We added the salt and pepper 
noise to the Lena image with intensity of 0.08 and recover it 
using the L1BTV method. Fig.2 (a) shows the difference of 
the objective function (in Eq.(10)) between two successive 
iterations. When the maximum iterations Nmax is reached, the 
difference between the last two successive iterations is still 
greater than 10-2. In other words, the convergence cannot be 

reached if we set the threshold ε < 10-2. As Fig.2(c) shows, 
the difference of ratio γ can be very small before Nmax is 
reached. In this experiment, we set ε = 10-5, and according to 
the algorithm of ACC, iteration ends when the iteration 
number is 14. The reconstructed SR image by ACC is 
shown in Fig.2 (d), while the result by L1BTV is shown in 
Fig.2 (b) when Nmax is reached. The RMSE (root mean 
square error) of the two results are the same (7.05) but the 
proposed ACC method can save much computational cost.  

In the second experiment, we evaluated the performance 
of our method based on the L1-L2 hybrid norm by removing 
the Gaussian and the salt and pepper noises. A sequence of 
five LR frames is generated from the HR Lena image as 
follows. We applied random affine transformation (8DoF) 
and Gaussian blurring to the HR Lena image, and then 
down-sampled it with a factor of two. Finally, we added 
Gaussian noise and salt and pepper noise to the 
down-sampled images respectively. By adding different 
Gaussian noise, the signal-to-noise ratios (SNR) are 14dB, 
10dB and 7.6dB, respectively, while the salt and pepper 
noise have different densities of 0.06, 0.08 and 0.1. Table 1 
lists the RMSE results by the proposed hybrid error model 
(HEM) and the L1BTV method. It can be seen that the 
proposed method outperforms the L1-norm method in 
reducing noise. Fig. 3 shows the results by the two methods 
when the salt and pepper noise is added (density is 0.08). 

          
Table 1.The RMSE results 

Noise Gaussian  Salt&pepper  
14(dB) 10(dB) 7.6(dB) 0.06 0.08 0.1 

L1BTV 6.55 7.64 8.69 8.69 7.05 9.74 
HEM 6.24 7.31 8.46 8.09 5.59 7.72 
 

In the last experiment, a real benchmark video sequence 
(the Foreman sequence) with unknown camera PSF and 
transformation information is used to demonstrate the 
superiority of our method to the L2BTV and L1BTV 
methods. We extracted 5 frames (frames from 52 to 56) with 
size 144×176 from the video to reconstruct the middle 
frame (frame 54) with resolution enhancement factor of two. 
These 5 frames approximately follow the global 
translational and rotation motion model, both in the man and 
the background. For simplicity, we just estimated the three 
parameters of translation and rotation in the 8DoF matrix, 
i.e., the horizontal and vertical translations, and the angle of 
the rotation. We applied transformation with various scale 
parameters until the correlation between the middle and the 
aligned image is acceptable to compute the assumed scale 
parameters. The unknown camera PSF is assumed to be a 
normalized 5×5 Gaussian kernel with zero mean and 
variance 0.5, which can yield a good result in our 
experiment. The original middle frame is shown in Fig.4 (a). 
The results of the super-resolution reconstruction using the 
three methods are depicted from Fig.4 (b) to (d). In the three 
methods, we tuned parameters to get the best visual results. 
From Fig.4 (b), we can observe that the L2BTV method 



loses many subtle details (e.g. the eye part), and the L1BTV 
method yields some chessboard effects, while the HEM 
method can yield a smoother result without losing distinct 
details. This is the contribution of the adaptive adjustment of 
the L2-norm and the L1-norm. 

   
5. CONCLUSION 

 
This paper presented a novel hybrid error model for SR 
reconstruction, which combines the advantages of Gaussian 
model and Laplacian model. The hybrid error model 
integrates the Gaussian and Laplacian models by their 
corresponding membership functions, which are varying 
according to the noise intensity distribution during the 
iteration procedure. Moreover, an adaptive convergence 
criterion (ACC) was proposed, which can effectively and 
efficiently end the iteration. Comparisons with the L1BTV 
and L2BTV on images with different noises demonstrated 
the superiority of the proposed algorithm. 
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Fig. 3. Comparisons between L1BTV and our method on images with
salt and pepper noise. Left column: one of the LR images. Middle
column: result of L1BTV (RMSE = 7.05). Right column: result of our
method (RMSE = 5.59). Noise intensity is 0.08.    
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                    (c)                                (d)  
Fig.2. Demonstration of the effectiveness of ACC. (a): The difference
of objective function between two successive iterations. (c): The
difference of ratio γ between two successive iterations. (b): result
when Nmax is reached (RMSE = 7.05). (d): result of ACC (RMSE =
7.05). 

Fig. 4. Comparisons for the methods of L2BTV, L1BTV, and HEM.  

    (a) The 54th frame of the foreman sequence                   (b) result of L2BTV                           (c) result of L1BTV                             (d) result of HEM 


