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ABSTRACT

Existing wavelet-based image denoising techniques all as-
sume a probability model of wavelet coefficients that has
zero mean, such as zero-mean Laplacian, Gaussian, or gen-
eralized Gaussian distributions. While such a zero-mean
probability model fits a wavelet subband well, in areas of
edges and textures the distribution of wavelet coefficients
exhibits a significant bias. We propose a context modeling
technique to estimate the expectation of each wavelet coeffi-
cient conditioned on the local signal structure. The estimated
expectation is then used to shift the probability model of
wavelet coefficient back to zero. This bias removal tech-
nique can significantly improve the performance of existing
wavelet-based image denoisers.

Index Terms— Context modeling, estimation bias, image
denoising, Bayesian shrinkage.

1. INTRODUCTION

Image denoising is a classic problem that has as long a his-
tory as the discipline of digital image processing, and still
remains to be an active research topic. A popular and effec-
tive methodology of image denoising is thresholding in the
wavelet domain, which was first proposed by Donoho [1].
Since this pioneer work, numerous thresholding-based tech-
niques have been developed. In particular, adaptive shrinkage
estimators with Bayesian approach have demonstrated good
performance [2][3][4][5][6]. In the design of adaptive shrink-
age estimators, a statistical model of the noise-free wavelet
coefficients is of central importance.

Based on the fact that the probability density functions
(PDFs) of wavelet coefficients in a wavelet subband are
sharply peaked at zero and heavy-tailed, current statistical
models characterize the wavelet coefficients using parametric
distributions, such as zero-mean Gaussian, Laplacian, and
generalized Gaussian. To better describe the heavy-tailed
PDFs, higher order marginal stastistical models, such as
Gaussian scale mixture model [3], mixture Laplacian model
[4], Gauss-Hermite model [5], and bivariate model [2], are
also proposed.

While the set of all wavelet coefficients in a particular
subband do have zero mean, in regions of edges and textures
the distribution of wavelet coefficients often exhibits a signif-
icant bias away from zero. This phenomenon was noticed by
researchers of image coding, and exploited in context-based
entropy coding of wavelet coefficients [7]. Similarly, in pre-
dictive coding the prediction residuals are not zero mean ei-
ther in different contexts [8]. Inspired by the success of con-
text modeling of coefficients in wavelet-based image coding,
we propose to estimate the expectation of each wavelet co-
efficient conditioned on the local signal structure. The esti-
mated expectation is then used to shift the probability model
of the wavelet coefficient back to zero. To estimate the expec-
tation, coefficients of similar contexts, which are not neces-
sarily spatially adjacent, are grouped. The expectation is then
estimated from these grouped coefficients. Context modeling
was used by Chang et al. to estimate the local signal vari-
ances when thresholding wavelet coefficients for denoising
[6]. But the authors still assumed zero mean of the context
model. In addition to making the context model more general
with arbitrary mean, we couple context modeling with over-
complete wavelet transform. This allows us to thoroughly
exploit high-order statistics of wavelet coefficients, with the
spatial resolution being maximum in all subbands. In order to
make context modeling in overcomplete wavelet bases com-
putationally tractable, we choose to form modeling contexts
in spatial rather than wavelet domain. Experimental results
show that the proposed context modeling technique of bias
removal can significantly improve the performance of the ex-
isting wavelet-based image denoisers.

The paper is organized as follows. Sec. II presents non-
zero mean context modeling of wavelet coefficients. Sec. III
presents bias removal of probability models for Bayesian de-
noising. Experimental results are presented in Sec. IV.

2. NON-ZERO MEAN CONTEXT MODELING OF
WAVELET COEFFICIENTS

It is well known that the overcomplete wavelet transform
(OWT) achieves better denoising performance than critically



sampled wavelet transform [9]. In this paper we adopt OWT.
At decomposition level k, the 2D OWT, as shown in Fig.1,
employs low-pass and high-pass filters Hk and Gk that are
generated by inserting zeros between two adjacent coeffi-
cients of corresponding original filters H0 and G0. The re-
stored image is obtained by first downsampling the denoised
subbands in horizontal and vertical direction, and then aver-
aging over all possible reconstructed versions of the image
signal.

Fig. 1. One stage of the 2D overcomplete wavelet transform.

It is a common practice in the fields of image coding and
denoising to model wavelet coefficients by heavy-tailed distri-
butions, such as zero-mean Laplacian, Gaussian, Generalized
Gaussian. Recent works investigate the higher order marginal
statistics of wavelet coefficients, as well as the dependency
between wavelet coefficients [2][3][4][5][6]. As pointed out
in the introduction, all existing probability models of wavelet
coefficients assume zero mean, which is the unfortunate over-
sight to be rectified by this work. To illustrate such a fact we
plot in Fig. 2 a part of the LH wavelet subband of test im-
age Barbara, and in Fig.3 the conditional sample histograms
in different contexts as marked in Fig. 2. It can be observed
from the figures that sample histograms conditioned on differ-
ent local patterns of edges and textures can differ significantly
from one the other and have means quite far away from zero.
This observation exposes a flaw of wavelet-based denoisers
that assume a zero-mean probability model.

In context modeling of wavelet coefficients, the problem
is to estimate the conditional probability

P (xk,θ(i, j)|Ck,θ(i, j)), (1)

where xk,θ(i, j) is the wavelet coefficient at the position (i, j)
of the subband of scale k and orientation θ, and Ck,θ(i, j)
is the context in which random variable xk,θ(i, j) takes its
value. To simplify the estimation task we use a parametric
model (e.g., Laplacian) for P (xk,θ(i, j)|Ck,θ(i, j)). Then the
problem is reduced to the estimation of the variance and mean
for each context Ck,θ(i, j).

Since OWT is used, each subband (k, θ) has the same
number of coefficients as the number of pixels. To take
into consideration all sample dependencies in both spatial
and frequency domains, context Ck,θ(i, j) should consist of

Fig. 2. A part of the LH subband in the 1st-level decomposi-
tion of image Barbara.

(A) µ = 62.97 (B) µ = -6.36 (C) µ = 83.52

(D) µ = -66.69 (E) µ = 85.64 (F) µ = -11.65

Fig. 3. Histograms of OWT coefficients conditioned on con-
texts A, · · · , F shown in Fig.2.

wavelet coefficients in a neighborhood of (i, j) in all sub-
bands Ck,θ(i, j), 1 ≤ k ≤ K, θ ∈ {LH, HL, HH} where
K being the total number of OWT decomposition levels. But
this formation of modeling context faces difficulties. First, the
context becomes a vector of very high dimensions. As such
context modeling directly in the OWT domain suffers from
the problem of context dilution. The second difficulty is high
computational complexity involved in computing Ck,θ(i, j).

On a second reflection, however, we can circumvent the
above difficulties by a simple switch of context space. Since
we need to amalgamate the OWT coefficients near spatial po-
sition (i, j) over all subbands as argued in the proceeding
paragraph, context Ck,θ(i, j) can be made the same for all k
and θ. Thus we form the context of xk,θ(i, j) directly in spa-
tial domain, using pixels in a neighborhood of (i, j), denoted
by C(i, j). Now the context modeling problem becomes to
estimate the mean and variance of P (xk,θ(i, j)|C(i, j)), not-
ing that each random variable in the set {xk,θ(i, j)}k,θ is con-
ditioned on the same spatial context C(i, j), regardless which



subband (k, θ) is in question. Such a switch of context space
from Ck,θ(i, j) to C(i, j) does not affect the outcomes of our
estimation because the distance between two spatial contexts
C(i, j) and C(m,n) is proportional to the distance between
the corresponding Ck,θ(i, j) and Ck,θ(m,n) in the OWT do-
main. Indeed, for the linear OWT operation Tk,θ(C(i, j)) =
Ck,θ(i, j), we have

‖Ck,θ(i, j)− Ck,θ(m,n)‖2 = ‖Tk,θ(C(i, j)− C(m,n))‖2
= (C(i, j)− C(m,n))′ T ′k,θTk,θ (C(i, j)− C(m,n))
= α ‖C(i, j)− C(m,n)‖2 ,

(2)
where αI = T ′k,θTk,θ is a constant.

To estimate the mean and variance of P (xk,θ(i, j)|C(i, j)),
we collect a sample set S(i, j) of coefficients xk,θ(m,n)
whose contexts C(m,n) are similar to C(i, j). The mean and
variance are then estimated from the sampled coefficients. In
practice, the sample set of coefficients xk,θ(m,n) is formed
such that

S(i, j) =
{

xk,θ(m,n)
∣∣∣‖C(m,n)− C(i, j)‖

2
< τ

}
, (3)

where τ is a threshold. Or alternatively, we can include in
S(i, j) those coefficients xk,θ(m,n) such that the context
C(m,n) is within the κth closest to C(i, j).

3. CENTERING OF PROBABILITY MODELS FOR
BAYESIAN DENOISING

Having estimated the mean of P (xk,θ(i, j)|C(i, j)), which is
nonzero in general, we need to cancel the bias by centering
P (xk,θ(i, j)|C(i, j)) at the origin. The centered probability
model is then used to drive the MAP estimator in the class of
wavelet-based Bayesian-type denoisers. Given a prior proba-
bility p(x) of wavelet coefficient x and assuming an additive
zero-mean Gaussian noise of variance σ2

n, the classic MAP
estimate of x can be obtained by solving the following equa-
tion [2]

d

dx

[
− (y − x)2

2σ2
n

+ log (p(x))
]

= 0. (4)

Four examples of the centering of existing probability
models for Bayesian denoising are given in this section.

3.1. Bias removal of Gaussian model

Let µ and σ2
x be the expectation and variance of the wavelet

coefficient, respectively. Then the bias removed Gaussian
density function p(x) is

p(x) =
1

σx

√
2π

exp
(

(x− µ)2

2σ2
x

)
. (5)

The corresponding Bayesian estimator is given by

x̂(y) =
σ2

x

σ2
x + σ2

n

y + (1− σ2
x

σ2
x + σ2

n

)µ (6)

3.2. Bias removal of Laplacian model

The bias removed Laplacian density function with expecta-
tion µ is

p(x) =
1√
2σx

exp

(
−
√

2 |x− µ|
σx

)
(7)

and the modified Bayesian estimator is

x̂(y) = sign(y − µ) ·max(|y − µ| −
√

2σ2
n

σx
, 0) + µ (8)

3.3. Bias removal of bivariate model

Let µ1 and µ2 be the expectations of the wavelet coefficient
and the parent coefficient, respectively. Then the bias re-
moved bivariate model is expressed as

p(x) =
3

2πσ2
x

exp

(
−
√

3
σx

√
(x1 − µ1)2 + (x2 − µ2)2

)

(9)
And the new bivariate estimator is given by:

x̂(y) =
max(0,

√
(y1 − µ1)2 + (y2 − µ2)2 −

√
3σ2

n

σx
)

(y1 − µ1)−1
√

(y1 − µ1)2 + (y2 − µ2)2
+ µ1

(10)
3.4. Bias removal of Gaussian Scale Mixture model

For the case of more sophisticated Gaussian scale mixture
model [3], similarly to the above, we first remove the esti-
mated conditional mean from noisy wavelet coefficients, then
apply the BLS-GSM estimator to process the mean-removed
noisy coefficients, and finally add the conditional mean back
to the denoised wavelet coefficients.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
context modeling technique for bias removal in wavelet-based
image denoising. Due to the space limit, we present only three
test images: Barb, Lena, and Foreman. Gaussian noises of
σn = 10, 20, 30, are added in our simulation. We report our
results for OWT of the well-known 9/7 wavelet with five lev-
els of decomposition in Table I, in which the mean-removed
Bayesian estimators are compared to their biased counter-
parts. In the table the estimators derived from zero-mean
Gaussian, Laplacian, Bivariate, Gaussian scale mixture mod-
els are labeled as Gauss-0, Lap-0, Bivar-0, and BLS-GSM-
0, respectively, while the corresponding mean-removed es-
timators are labeled by Gauss-µ, Lap-µ, Bivar-µ, and BLS-
GSM-µ. The results show that the mean-removed wavelet
denosiers significantly improve the performance of their zero-
mean counterparts. In some cases, the gain can be up to 1dB
or more. To assess the visual quality we also present sample
images in Fig. 4, where one can see that the edges and textures
in images denoised by the new methods are much sharper and
cleaner than those by the existing methods.



5. ACKNOWLEDGEMENT

This work is supported in part by National High Technol-
ogy Research and Development Program of China (NO.
2007AA01Z307), in part by NSFC (NO. 60736043, 60776795,
60672125, 60805012), in part by PCSIRT (NO. IRT0645).

Table 1. PSNR results of different methods.
Noise σn 10 20 30

Barbara
Gauss-0 33.46 29.48 27.17
Gauss-µ 34.27 30.68 28.37
Lap-0 33.35 29.43 27.18
Lap-µ 34.07 30.67 28.49
Bivar-0 33.29 29.43 27.26
Bivar-µ 34.08 30.65 28.57

BLS-GSM-0 33.49 29.49 27.23
BLS-GSM-µ 34.16 30.63 28.56

Foreman
Gauss-0 34.67 30.86 28.56
Gauss-µ 35.77 31.91 29.39
Lap-0 34.86 31.18 28.99
Lap-µ 35.90 32.26 29.86
Bivar-0 35.05 31.67 29.71
Bivar-µ 35.88 32.54 30.23

BLS-GSM-0 35.28 31.70 29.68
BLS-GSM-µ 35.96 32.51 30.29

Lena
Gauss-0 35.07 31.57 29.32
Gauss-µ 35.40 32.00 29.76
Lap-0 35.10 31.85 29.81
Lap-µ 35.35 32.23 30.16
Bivar-0 35.20 32.27 30.47
Bivar-µ 35.32 32.38 30.44

BLS-GSM-0 35.35 32.34 30.49
BLS-GSM-µ 35.40 32.38 30.43
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