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ABSTRACT

Most of the existing image interpolation schemes assume 
that the image is noise free. This assumption is invalid in 
practice because noise will be corrupted in the image 
acquisition process. The conventional way is to denoise the 
image first and then interpolate the denoised image. The 
denoising process, however, may smooth much the image 
details and introduce some artifacts, which could be 
amplified in the interpolation process. This paper presents a 
directional estimation scheme to implement denoising and 
interpolation simultaneously. For each noisy sample, we 
compute multiple directional estimates of it and then fuse 
them for a more accurate output. The estimation parameters 
computed in the denoising process can be subsequently used 
for interpolation. Compared with the schemes that perform 
denoising and interpolation in tandem, the proposed method 
can better reproduce the image fine structures and reduce 
much the interpolation artifacts.  

Index Terms — Interpolation, denoising, directional 
estimation, data fusion

1. INTRODUCTION 

Most of the existing interpolation [1-2] schemes assume that 
the original image is noise free. This assumption, however, 
is invalid in practice because noise will be introduced in the 
image acquisition process. One conventional way for noisy 
image interpolation is to denoise and interpolate the image 
in tandem. This strategy may not be able to yield satisfying 
result because some artifacts (blur, block effects, etc) will 
be introduced in the denoising process and they will be 
further amplified in the following interpolation stage.  

Actually, both denoising and interpolation are an 
estimation problem. Denoising is to estimate the pixels from 
the noisy measurements and interpolation is to estimate a 
missing sample from its neighbors. Therefore, one can 
implement denoising and interpolation simultaneously 
under an estimation framework.  

In [6], an algorithm of joint denoising and color 
demosaicking (which is a special case of interpolation) was 
proposed by using the total least square (TLS) technique. In 

[7], Zhang et al developed a directional filtering and 
wavelet based joint denoising and demosaicking scheme. To 
the best of the authors’ knowledge, few joint denoising and 
interpolation algorithms on gray level images have been 
proposed. A well designed joint denoising and interpolation 
method, however, can generate much less artifacts 
compared with the denoising first and interpolation later 
schemes.  

Since human visual system is sensitive to edge 
structures, edge preservation is crucial in both denoising 
and interpolation. The general principle is to denoise or 
interpolate along the edge direction, instead of across the 
edge direction [3-5]. In wavelet based denoising [8], the 
noisy image is decomposed into many directional sub-bands 
for further processing. In the interpolation method [3], Li et
al estimated the local covariance matrix, which can reflect 
the local directional information, from the low-resolution 
image, and used it to guide interpolation. Zhang et al [4] 
computed the directional estimates of the missing samples 
and then fused them for interpolation. Directional filtering 
and estimation have proved to be very effective to preserve 
the edges in image processing.   

This paper presents an algorithm to simultaneously 
estimate both the noisy and missing samples in an image. 
We bring the problems of denoising and interpolation into 
the same framework of signal estimation. For each noisy 
sample, we compute multiple estimates of it along different 
directions. Those directional estimates are then adaptively 
fused for a more accurate output. The directional estimation 
coefficients learned in the denoising process can be directly 
used for the interpolation of missing samples.  

This paper is organized as follows. Section 2 
formulates the problem. Section 3 describes detailedly the 
joint denoising and interpolation scheme. Section 4 presents 
the experimental results and Section 5 concludes the paper. 

2. PROBLEM FORMULATION 

In this paper, we consider image interpolation as to 
construct a higher resolution (HR) image, whose size is 
r N r M , from a lower resolution (LR) image, whose 
size is N M , where r is the interpolation factor. As in [3-
4], for the convenience of discussion and without loss of 
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generality, we focus on the case of r=2. Refer to Fig. 1, the 
black dots represent the LR pixels and the white dots 
represent the samples to be interpolated.  

Figure 1. The low resolution image (black dot) and the missing 
pixels (white dot) to be interpolated. 

Refer to Fig. 1, the pixels in the LR image are denoted 
as ( , )lI n m , n=1,2,…,N; m=1,2,…,M. The pixels in the HR 
image are denoted as ( , )hI i j , i=1,2,…,2N; j=1,2,…,2M. At 
the black dot positions, (2 1, 2 1) ( , )h lI n m I n m . In real 
applications, the available LR data are noise corrupted. We 
assume the noise is Gaussian additive: 

( , ) ( , ) ( , )l l
vI n m I n m v n m                      (1) 

where noise v  is zero mean with variance 2 . The 
conventional way to enlarge the noisy image is to denoise 
first and interpolate later. However, denoising will smooth 
the image and the following interpolation process may 
amplify many artifacts introduced in the denoising process. 
Therefore, new interpolation techniques for noisy images 
need to be developed.  

We first filter the noisy LR image l
vI  using a Gaussian 

low pass filter to obtain the smoothed image l . Most 
noise is removed in l  and we simply use the bicubic 
interpolator to interpolate l . Noise and much edge 
information is included in l l l

v vI . The final 
interpolation result of l

vI  is obtained by adding the 

interpolated images of l  and l
v . Next we focus on how 

to interpolate l
v . For the convenience of expression, we 

still use symbol l
vI  in the following development. 

This paper is to develop a joint denoising and 
interpolation scheme by modeling both two problems under 
the framework of signal estimation. For a noisy pixel 

( , )l
vI n m , we can take its estimate, denoted by ˆ ( , )lI n m , as 

the weighted average of ( , )l
vI n m  and its 8 nearest 

neighbors. For a missing HR sample ( , )hI i j , we can 
estimate it as the weighted average of its LR neighbors. 
Thus both denoising and interpolation are a problem of 
estimation and how to calculate the weights is the key issue 
in joint denoising and interpolation.  

3. JOINT DENOISING AND INTERPOLATION 

The whole joint denoising and interpolation algorithm can 
be divided into two stages. In the first stage, the weights to 
denoise the noisy LR pixels are calculated. In the second 
stage, the weights for interpolation will be directly obtained 
from the denoising weights and thus interpolation can be 
simultaneously accomplished. 

3.1. Denoising by Directional Estimation 

Let’s first consider how to estimate an LR pixel ( , )lI n m .
We use a 3 3 window here, i.e. ( , )lI n m  will be estimated 
from ( , )l

vI n m  and its 8 nearest neighbors. Certainly the 
eight weights can be computed together by using some 
optimal estimation techniques. However, the computation 
complexity may be very high. As we will see in Section 3.2, 
to accommodate the interpolation simultaneously, we divide 
the estimation of  ( , )lI n m  into several sub-problems. 

We divide the nine LR samples within the 3 3 window 
centered at location ( , )lI n m  into three groups: the four 
diagonal neighbors of ( , )l

vI n m , the four horizontal and 
vertical neighbors of ( , )l

vI n m , and the sample ( , )l
vI n m

itself. Each group can give an estimate of ( , )lI n m . The 
three estimates can then be fused for a better estimation.  

Let’s first discuss how to estimate ( , )lI n m  using the 
four diagonal neighbors. For the convenience of expression, 
we denote by 0s  the desired noiseless pixel ( , )lI n m , by 0

vs
the noisy measurement ( , )l

vI n m  and by 1
vs , 2

vs , 3
vs , and 4

vs
the four diagonal noisy neighbors of ( , )lI n m . The estimate 
of 0s , denoted by 0ŝ , is calculated as:   

4

0
1

ˆ v
i i

i

s a s                                    (2) 

Denote by 0 0ˆs s s  the estimation error of 0ŝ . The 

objective is then to minimize 2f E s . Differentiating f

with respect to ia  and letting them be zero, we obtain the 
optimal weights ia  as follows 

1a rR                                      (3) 
where 1 2 3 4

Ta a a a a , T
v vE s sR , 0 vr E s s

and 1 2 3 4

Tv v v v
vs s s s s .

To calculate a , we need to know R  and r . They can 
be estimated adaptively by using a window centered at 0

vs ,
i.e. ( , )l

vI n m . Suppose the size of the window is W W. For 
each pixel within the inner window of size (W-2) (W-2), 
there are four diagonal neighbors of it. Denote by 0

vS  the 
column vector containing all the measurements inside the 

( , )hI i j

( , )lI n m

(0, 0)
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inner block and by 0S  its unknown noiseless counterpart. 
Then we can form four sample vectors, denoted by 1

vS , 2
vS ,

3
vS  and 4

vS , containing the four sets of diagonal neighbors 

of 0
vS , respectively. Let 1 2 3 4

v v v vS S S SS . The 

covariance matrix R  can then be estimated by  
2/(W 2)TR S S                              (4) 

The element of r , 0( ) v
ir i E s s , can be estimated 

as 2
0( ) /(W 2)T v

ir i S S . However, 0S  is not available in 
practice. Fortunately, since the noise v  is white additive and 
uncorrelated with lI , we have 0 0( ) v v v

i ir i E s s E s s .

Thus r  can be estimated by 
2

0( ) /(W 2)v Tr S S                             (5) 
Now both  R  and r  are estimated and then the 

weights ia  can be calculated using (3). The estimate 0ŝ  is 
subsequently obtained using (2). The variance of estimation 
error of 0ŝ  can be calculated as 

2 2 1
0 0 0ˆ Te E s s E s r rR                 (6) 

where the variance of 0s  can be estimated as: 
2 2 2
0 0 0( ) /(W 2)v T vE s S S                   (7) 

Similar to what described above, the four horizontal 
and vertical neighbors of 0s  will also yield an estimate of it. 
At last, 0

vs  will give the third estimate of 0s . The three 
estimates can be fused for a more accurate estimate of 0s .

3.2. Fusion of Directional Estimates 

The optimal fusion of the three estimates of 0s  may cost 
much computation. To reduce the fusion complexity, here 
we use a simple linear weighting scheme.  

Denote by 0̂
is  and ie , 1,2,3i , the three estimates and 

the variances of estimation error that are calculated by (2) 
and (6), respectively. We fuse 0̂

is  as 

0ˆ
fs

3

0
1

ˆi
i

i

w s                                   (8) 

where the weights 
3

1
1i

i

w . Intuitively, if the variance ie

is high, then the corresponding weight iw  on 0̂
is  should be 

low. Therefore, we set the weights as 
3

1
i i i

i

w                                  (9) 

where 1i ie .

3.3. Simultaneous Interpolation 

           (a)     (b)              (c) 

Figure 2. Simultaneously interpolation of the missing HR 
pixels. (a) Diagonal, (b) horizontal and (c) vertical pixels.

As shown in Fig. 2, the missing HR pixels to be interpolated 
can be divided into three groups: the diagonal pixels, the 
horizontal pixels and the vertical pixels. For a missing 
diagonal HR pixel, denoted by h

dI , it has four diagonal 
denoised LR neighbors, denoted by l

kI , k=1,2,3,4, from 
which the missing HR pixel h

dI  can be estimated by using a 
linear combination of them: 

4

1

ˆh l
d k k

k

I I                                    (10) 

For each l
kI , we have a set of diagonal denoising 

weights ka , which are computed to offer an optimal 
diagonal estimate of l

kI . Those weights can be used to 

determine 1 2 3 4
T  because  also aims to 

offer a good diagonal estimate of h
dI . Therefore, we let 

be the average of the four sets of weights: 
4

1
k

k

a .

After interpolating the diagonal HR pixels, the 
horizontal/vertical HR pixels can then be interpolated. 
Referring to Figs. 2 (b) and (c), a horizontal/vertical HR 
pixel has two denoised LR neighbors and two interpolated 
diagonal HR neighbors (diamond dots). Similar to that of 
the diagonal HR pixels, the horizontal/vertical HR pixels are 
estimated by weighting the four neighbors. The weights are 
obtained by averaging the two sets of denoising weights 
associated with the two horizontal/vertical LR neighbors. 

4. EXPERIMENTAL RESULTS 

Experiments were performed to verify the proposed joint 
denoising and interpolation algorithm. For comparison, we 
first denoise the LR image using the sophisticated wavelet 
based scheme [8] and then interpolate them using the state-
of-the-art interpolation schemes [3-4]. The standard test 
images Barbara and Peppers (512 512) were employed in 
the experiments. The original images were downsampled to 
256 256 and added Gaussian white noise, from which the 
clean and zoomed images are to be interpolated.   

Table 1. PSNR results (dB) of the denoised and interpolated 
images by different schemes.  

Methods [8]+[3] [8]+[4] Proposed 
Barbara 22.02 23.70 22.89 
Peppers 30.26 30.23 29.48 
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       (a)              (b) 

      (c)              (d) 

Figure 3. (a) Original image Barbara; denoised and zoomed 
images by (b) [8]+[3]; (c) [8]+[4]; and (d) the proposed scheme. 

     (a)              (b) 

   (c)              (d)

Figure 4. (a) Original image Peppers; denoised and zoomed 
images by (b) [8]+[3]; (c) [8]+[4]; and (d) the proposed scheme. 

Fig. 3 shows cropped output images by different 
methods on the noisy Barbara image (PSNR=24.56dB) and 
Fig. 4 shows the cropped interpolation results on the noisy 
Peppers image (PSNR=24.66dB). Table 1 lists the PSNR 

results by the three schemes. Although the PSNR results by 
the proposed method are not higher than the other two 
schemes, we can see that the recovered images are much 
more visually pleasing. Many block effects and other noise 
caused artifacts appeared in other schemes are removed by 
the proposed joint denoising and interpolation scheme. 

5. CONCLUSION 

This paper presented a novel interpolation scheme for noisy 
images. Unlike the conventional schemes that perform 
denoising first and interpolation later, the proposed method 
treats both denoising and interpolation as an estimation 
problem and implements them under a unified framework. 
In addition, directional estimation and fusion were used for 
edge preservation. The experimental results validate that the 
proposed scheme can better suppress the many noise-caused 
artifacts in the enlarged image while preserving the image 
fine structures. 
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