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Abstract. This paper presents a novel and efficient method for locat-
ing deformable shapes in cluttered scenes. The shapes to be detected
may undergo arbitrary translational and rotational changes, and they
can be non-rigidly deformed, occluded and corrupted by clutters. All
these problems make the accurate and robust shape matching very dif-
ficult. By using a new shape representation, which involves a powerful
feature descriptor, the proposed method can overcome the above difficul-
ties successfully, and it possesses the property of global optimality. The
experiments on both synthetic and real data validated that the proposed
algorithm is robust to various types of disturbances. It can robustly de-
tect the desired shapes in complex and highly cluttered scenes.

1 Introduction

Point matching is a fundamental yet challenging problem in computer vision,
pattern recognition and medical image analysis, while non-rigid point matching
is particularly difficult due to the large number of possible non-rigid transfor-
mations of the template [1]. In this paper, we will address the following problem
under the non-rigid point matching framework: locating a deformable shape in
cluttered scenes. The shape may undergo arbitrary translational and rotational
changes, and it may be non-rigidly deformed, occluded and corrupted by random
or structured outliers. All these difficulties make shape matching a formidable
task. To overcome these problems, different methods have been proposed [2],
which can be classified as those based on local search and those based on global
search.

Methods based on local search. The iterated closest point (ICP) method
[3, 4] uses the closest points as the matched points, and it has variants [5, 6].
The robust point matching (RPM) method [1] uses deterministic annealing [7]
to recover a continuously relaxed point correspondence. The method in [8] uses
constraint projection based on quadratic programming to gradually recover the
point correspondence and uses clustering for speedup. The covariance driven
correspondence (CDC) method [9] uses the covariance of the transformation
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parameters to prune the possible false point correspondences. The methods in
[10, 11] convert point set registration to an image registration problem. These
local search methods are generally not rotation invariant and not robust to strong
outlier disturbances.

Methods based on global search. These methods can be further classified
as those based on spatial mapping and those based on point correspondence. For
the first category, solution space searching techniques such as genetic algorithm
[12], particle filtering [13] and particle swarm optimization [14] can be used
to recover the transformation. These methods need no initial coarse alignment
and are robust against clutter, but they require an explicit modeling of the
transformation and may become computationally expensive when the number of
transformation parameters becomes high, which makes them unsuitable for non-
rigid matching. The method in [15] constructs a global convex approximation to
the matching function and thus the transformations can be optimally recovered.
But the number of constraints for the method is usually very high which is
circumvented by using interior point methods.

For the second category, linear programming was employed in [16, 17] to
minimize both the feature matching cost and geometric distortion. Ant colony
optimization was employed in [18] for contour correspondence. Dynamic pro-
gramming (DP) was used to match chain-like or tree-like structures in [19, 20].
In [21], it was extended to match regions of a shape. Belief propagation was used
in [22] to match shapes where shapes with loops or holes are allowed.

Shape context (SC) [23] is a very informative feature descriptor. The SC of
a point is a measure of the distribution of other points relative to it. SC is very
discriminative and quite robust to various types of disturbances, which makes it
especially useful for non-rigid point matching. However, SC is rotation variant
in most applications (i.e. no significant rotations are allowed between two point
sets). Attempts at making SC rotation invariant are either susceptible to noise,
tend to degrade the discriminative power of SC (e.g. tangent directions were
used to determine the orientations of SCs in [23], distance between two SCs was
rendered rotation invariant by traversing all rotated versions of one of them and
retaining the minimum distance in [17] ) or imposing unnatural requirements on
point sets (e.g. the directions pointed at the mass center of a point set were used
as the orientations of SCs in [24]).

We propose in this paper a new approach to representing shapes and apply it
to rotation invariant non-rigid point matching. A shape is triangulated such that
the non-boundary edges are long enough and also DP can be used to find the best
embedding of the triangles in target point set. Then SC features are constructed
for vertices of the triangles whose orientations coincide with the directions of non-
boundary edges. The SC features constructed in this way are therefore rotation
invariant. To further improve our method’s robustness to outliers, we modify the
original SC distance measure in [23] such that the SC input belonging to the
template is used as a mask to reduce the influence of outliers on the SC input
belonging to the target.
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Compared with previous attempts at enabling SC rotation invariant, our
approach retains the discriminative power of SC, is robust to orientation dis-
turbances and appears natural. It shares similarities with the method in [21] in
that both approaches use triangulation to represent shapes and DP is used to
find the best embedding of triangles in target set. However, the method in [21]
is for deformable template matching in images, and the purpose of triangulation
is to introduce non-rigid deformation in template (constrained Delaunay trian-
gulation is adopted to achieve the maximum effect). In comparison, the purpose
of triangulation in our method is to render SC rotation invariant, where a dif-
ferent triangulation approach is adopted with the aim that the orientations of
SCs should be as robust to disturbances as possible.

The remaining of the paper is organized as follows. Section 2 introduces
briefly the shape representation. Section 3 presents a new SC distance measure.
Section 4 presents the energy function. Section 5 summarizes the algorithm.
Section 6 presents extensive experimental results and section 7 concludes the
paper.

2 Shape representation

We restrict ourselves to the cases where the template point set can be represented
as a simple polygon, which is a polygon without holes. We call the polygon the
boundary of the set. For a general point set, we obtain its boundary by solving
the traveling salesman problem [25]. We triangulate the template set such that:
1) its boundary edges are retained; 2) a point is chosen as the reference and the
rest points are connected to it (the resulting edges will be called frame edges
hereafter). This results in a fan-shaped triangulation. Fig. 1 shows two examples
of such triangulation.

Fig. 1. Examples of fan-shaped triangulation. The boundaries of the shapes are high-
lighted in blue, and the frame edges are indicated in black.

We then compute oriented SC [23] for each point except for the reference
point, whose positive x-axis is directed at the reference point. Oriented SCs con-
structed in this way are therefore rotation invariant. Due to the strong discrim-
inative nature of SC, our method’s robustness to various types of disturbances
is greatly enhanced.

Alternative ways of triangulation are possible, so why the fan-shaped trian-
gulation is preferred? The orientations of SCs coincide with the directions of
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frame edges in our method. We know that the longer an edge is, the less likely
its orientation will be affected by positional disturbances of the endpoints. More
specifically, assume the endpoints are xi = x̂i + ∆xi, i = 1, 2, where x̂i denotes
the noise free position and ∆xi denotes noise. The direction of the edge is

x2 − x1

‖x2 − x1‖ ≈
x2 − x1

‖x̂2 − x̂1‖ =
x̂2 − x̂1

‖x̂2 − x̂1‖ +
∆x2 −∆x1

‖x̂2 − x̂1‖
The second term comes from noise. Therefore the larger the length ‖x̂2− x̂1‖ is,
the less influence the noise will impose on the direction of the edge. Fan-shaped
triangulation provides a simple and effective solution to ensuring that the edges
determining the orientations of SC are long enough. We have also tested several
alternative triangulations such as the greedy heuristic based method, where a
shape is iteratively divided into two halves by choosing the longest interior edge
as the splitting line, but our experimental results demonstrated that fan-shaped
triangulation is more robust for point matching.

Based on the same consideration, the reference point in fan-shaped trian-
gulation is chosen such that the average distance from it to the rest points is
maximized.

3 Outlier resistant shape context distance

The SC of a point is defined as the distribution of other points relative to it
in log-polar coordinate and is quantified as a histogram. Consider two points, i
in template set and j in target set, their SCs are histograms hi(k) and h′j(k),
for k = 1, 2, . . . ,K, respectively. The χ2 test statistic was used to measure their
difference in [23]:

1
2

K∑

k=1

[hi(k)− h′j(k)]2

hi(k) + h′j(k)
(1)

This measure is effective when there are no outliers or the outliers are homoge-
neously distributed in target set. But it may become inadequate when there are
structured outliers in target set.

To tackle the above problem, based on the observation that the template
set is generally outlier free, let us consider the scenario where the only type of
disturbance is outliers in target set. If points i in template set and j in target set
correspond to each other, we would have hi(k) = h′j(k) for all k if there were no
outliers. Since there are outliers in target set, intuitively we can use sign(hi(k))
as a mask to reduce the influence of outliers on h′j(k), where

sign(x) =

{
1 if x > 0
0 if x = 0

This is accomplished by replacing h′j(k) with ĥ′j(k) = sign(hi(k)) · h′j(k). We
then normalize ĥ′j so that it can represent a distribution:

∑K
k=1 ĥ′j(k) = 1. We
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now define the outlier resistant shape context distance (ORSCD) between two
SCs hi and h′j as:

1
2

K∑

k=1

[hi(k)− ĥ′j(k)]2

hi(k) + ĥ′j(k)
(2)

Our experimental results showed that, compared with the original SC dis-
tance measure, ORSCD’s robustness to outliers is significantly improved while
its robustness to non-rigid deformation is only slightly weakened.

4 Energy function

Fan-shaped triangulation will result in a chain of connected triangles, where two
triangles are considered connected if they share a common edge, which meets
the prerequisite of DP. Therefore DP can be used to find the best embedding of
these triangles in target point set. In this section, we present the energy function
associated with the matching problem.

Suppose that the 2D template point set is X = {xi, 0 ≤ i ≤ n}, where the
sequence x0, x1, . . . , xn, x0 forms its closed boundary. Without loss of generality,
x0 is assumed to be the reference. Denote by Y = {yj , 0 ≤ j ≤ m} the point set
to be matched. The task of matching is to find a mapping φ : X → Y which
maps the ith point in X to the lith point in Y so that certain energy function
can be minimized.

The energy function used in our method is

E(φ) = Esc(φ) + λEbound(φ) + µEframe(φ) (3)

where the term Esc penalizes the SC distance between the matched points,
the term Ebound and Eframe require, respectively, that the lengths of boundary
and frame edges should be preserved during matching. The constants λ and µ
(λ ≥ 0, µ ≥ 0) serve to balance the weights of the three terms. (We assume that
the template point set is unit sized and choose λ = 1, µ = 0.5 in our method).
For non-rigid matching, a smaller µ allows for more non-rigid behavior of the
method.

The term Esc is defined as:

Esc(φ) =
n∑

i=1

Dsc[i, 0](li, l0) (4)

where Dsc[i, 0](li, l0) denotes the original SC distance [23] or ORSCD between
the oriented SC of xi and the oriented SC of yli . The positive x-axis of SC for
xi is directed at x0, and the positive x-axis of SC for yli is directed at yl0 . The
SC distances computed in this way are therefore rotation invariant.

The term Ebound is defined as:

Ebound(φ) =
n−1∑

i=0

Dbound[i, i + 1](li, li+1) (5)
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where Dbound[i, i+1](li, li+1) denotes the length difference between the boundary
edge (i, i + 1) in X and the candidate edge (li, li+1) in Y :

Dbound[i, i + 1](li, li+1) = |‖yli+1 − yli‖ − ‖xi+1 − xi‖| (6)

If the length of a boundary edge (i, i + 1) in X is close to 0, which often occurs
in contour matching, Dbound can be further simplified as:

Dbound[i, i + 1](li, li+1) = ‖yli+1 − yli‖ (7)

The term Eframe is defined as:

Eframe(φ) =
n∑

i=2

Dframe[i, 0](li, l0) (8)

where Dframe[i, 0](li, l0) denotes the length difference between the frame edge
(i, 0) in X and the candidate edge (li, l0) in Y . We use the χ2 test statistic [23]
instead of the Euclidean distance to measure the length difference:

Dframe[i, 0](li, l0) =
|‖yli − yl0‖ − ‖xi − x0‖|2
‖yli − yl0‖+ ‖xi − x0‖ (9)

This is based on the fact that shorter edges are less distorted than longer edges
under a non-rigid deformation. Therefore the length differences of shorter edges
should be penalized more than those of longer edges.

5 Algorithm

During initialization, oriented SC is constructed for each point in X with x0

serving as the reference, which has time complexity O(n) and space complexity
O(n). Oriented SC is then constructed for each point in Y with all the rest
points serving as possible references, which has time complexity O(m2) and space
complexity O(m2). Finally, distances between oriented SC features in both point
sets are computed, which has time complexity O(nm2) and space complexity
O(nm2).

In practice, the time of computing SC features for a point in Y with all
the rest points serving as possible references can be reduced by quantizing ori-
entation into M evenly distributed angles (M = 50 is chosen in our method):
0, 1

M 2π, . . . , M−1
M 2π, and only computing SC features with these angles as the

possible orientations. Then the SC features with all the rest points being possible
references are substituted by these SC features based on orientation proximity.
With this heuristic, the complexity of the initialization is essentially O(nm).

SC distances are then used in the optimization. The algorithm is an instantia-
tion of the well known DP technique. We compute the cost of the best placements
lj for j = 1, . . . , i − 1 as a function of the placements l0 and li, which is stored
in V [i, 0](li, l0). The algorithm is summarized as follows.
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Algorithm 1: Find the best embedding of a shape in a point set.

1. V [1, 0](l1, l0) = Dsc[1, 0](l1, l0) + λDbound[0, 1](l0, l1)
2. For i = 2, . . . , n, do

V [i, 0](li, l0)← minli−1 V [i− 1, 0](li−1, l0) + λDbound[i− 1, i](li−1, li) ;
V [i, 0](li, l0)← V [i, 0](li, l0) + Dsc[i, 0](li, l0) + µDframe[i, 0](li, l0)

3. Pick ln and l0 minimizing V [n, 0] and trace back to obtain the other optimal
locations.

The above procedure has time complexity O(nm3) and space complexity
O(nm2). We can speed it up based on two considerations: First, if the length
of a boundary edge (i − 1, i) in X is close to 0, given location li, the possible
candidates for li−1 should be those points near yli [21], because points that are
far from it will introduce too much distortion in the template (15 nearest points
are chosen in our method). Second, given location li, the possible candidates for
l0 should be those points which are close to the circle centered at yli and with
a radius equal to the length of the edge (i, 0) in X , because points that are far
from the circle will also introduce too much distortion in the template. With the
two heuristics, the complexity of the proposed algorithm is essentially O(nm).

6 Experimental results

We compare our method with 3 state-of-the-art methods: the local neighborhood
structure preserving (LNSP) method in [24], the Viterbi algorithm (VA) based
method in [26], and the linear programming (LP) based method in [16] where
we choose SC as the feature descriptor. VA and LP are not rotation invariant.
We render them rotation invariant by running them on 12 evenly distributed
angles and retaining the result with the minimum cost. The code of our method
is available at http://www4.comp.polyu.edu.hk/∼cslzhang/code.htm.

We implement the methods under Matlab version 7.6 on a PC with 2GHz
CPU and 2G memory. We use affine transformation to model a non-rigid spatial
mapping. Correspondence recovered by a method is used to solve for the affine
transformation. In the following, the transformed template point set is high-
lighted by red ∗ and point correspondences are indicated by black line segments.
First we use synthetic data to evaluate various aspects of the methods. Then we
compare the methods using data acquired from real images.

6.1 Experiments using synthetic data

Synthetic data can be designed to test specific aspects of a method. First, we use
the Chui-Rangarajan synthesized data sets [1] to test the methods’ robustness
against non-rigid deformation, noise in position and outliers. In each test, the
template shape is subjected to one of the above distortions to create a target
point set (for the latter two test sets, a moderate amount of deformation is
present). Two shapes, a fish and a Chinese character, shown in the left column
of Fig. 2, are used as the template shape respectively. 100 random target point
sets were generated for each setting within each series. The right 3 columns of
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Fig. 2. The template point sets (left column) and examples of target point sets in the
deformation, noise and outlier tests respectively (right 3 columns).

Fig. 2 show examples of target point sets in the 3 series of tests respectively. We
use the original SC distance measure in our method.

The means and standard deviations of the errors of the methods are shown
in Fig. 3, where error is defined as the mean of the Euclidean distances between
the affinely transformed template points and their ground truth target points.
It can be seen that the matching error of our method is in average compared
with the other methods for the deformation and noise tests, while considerably
lower than others for the outlier test. This demonstrates our method’s robustness
against various types of disturbances, especially for outliers.

The average running times of the methods are listed in Table 1. It can be
seen that our method’s running time is low when the number of points is low,
but increases much when the number of points becomes high (i.e. in the case of
outliers).

Table 1. Average Running Time (second)

Deformation Noise Outliers

LNSP 4.0622 5.1435 28.0950

LP 35.1288 35.4172 67.1175

VA 6.9798 7.0181 25.2389

Our method 7.1719 7.0601 36.5388

We then test the methods’ robustness against complex clutters. Two shapes
similar to the template shape but with different poses (the most similar one is
indicated in red in the figure) are mixed together to generate the target point
sets. Random outliers are then added to the target point sets. The aim is to
animate complex clutter. We use the original SC distance measure in our method.
Examples of shape matching by all the methods are shown in Fig. 4, It can be
seen that, in addition to non-rigid deformation and random outliers, the mixing
of similar shapes considerably complicates the matching problem. Despite the
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Fig. 3. Comparison of our method (red ©) with VA (green ¤), LP (blue ∗) and LNSP
(black 4) on the Chui-Rangarajan synthesized data sets. The error bars indicate the
standard deviation of the error over 100 random trials. Top row: fish tests. Bottom
row: Chinese character tests.

difficulties, our method works much better at matching the template shapes to
the correct target shapes than the other methods, validating the robustness of
our method against complex clutters.

6.2 Experiments on real data

We finally test the methods’ performance using data acquired from images. Ex-
amples of matching results by the competing methods are shown in Fig. 5, where
the template shapes are further randomly rotated (not shown in the figure) with
the aim at testing the methods’ abilities for solving rotations. It can be seen that
our method using ORSCD can successfully match to the correct shapes for all the
tests, while our method using the original SC distance measure fails for the 3rd
and 4th tests where similar shapes coexist in the same picture. This demonstrates
ORSCD’s robustness against structured outliers compared with the original SC
distance measure. In comparison, LP fails for the 1st and 3rd tests, VA only
succeeds for the 2nd test, and LNSP fails for all the tests. This clearly shows
our method’s potential for rotation invariant non-rigid shape matching arising
from real problems.

7 Conclusion

We proposed a novel and efficient method for representing and matching non-
rigid shapes. The representation is invariant to translational and rotational



10 Wei Lian and Lei Zhang

changes, and by using a powerful feature descriptor and a new feature distance
measure, it is also robust to non-rigid deformations and outliers. An algorithm
was then proposed to solve the point matching problem, which possesses global
optimality and is very robust against clutters. The proposed method was tested
by using both simulated and real data in comparison with 3 state-of-the-art
and representative methods. The results clearly demonstrated that the proposed
method has high capability in detecting and matching shapes in cluttered scenes.

In the future, we will apply the proposed method to matching other types of
rotation variant features such as local image patch and geometric blur.
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Fig. 4. Examples of point matching in case of complex clutter. The first row shows
the template shapes. The second row shows the mixture of two shapes which are
similar to the template shapes (the most similar ones are indicated in red) and random
outliers. The last 4 rows show the matching results by LNSP, LP, VA and our method
respectively.
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Fig. 5. Examples of point matching with data acquired from images. The first row
shows the images used to extract the template point sets (red ∗). The second row
shows the images used to extract the target point sets (blue +). Points are extracted
via Canny edge detector. The last 5 rows show the matching results by LNSP, LP, VA
and our method using the original SC distance measure and ORSCD respectively.


