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Abstract: We propose a hyperspectral image compressor called BH which consid-
ers its input image as being partitioned into square blocks, each lying entirely within
a particular band, and compresses one such block at a time by using the following
steps: first predict the block from the corresponding block in the previous band, then
select a predesigned code based on the prediction errors, and finally encode the pre-
dictor coefficient and errors. Apart from giving good compression rates and being
fast, BH can provide random access to spatial locations in the image.

We hypothesize that BH works well because it accommodates the rapidly changing
image brightness that often occurs in hyperspectral images. We also propose an intra-
band compressor called LM which is worse than BH, but whose performance helps
explain BH’s performance.

1 Introduction

Each location in a hyperspectral image records the intensity of light received at many
different frequencies, both visible and invisible. These many frequencies make iden-
tifying the imaged substances easier [1], but increase the data size.

Several lossless hyperspectral image compressors compress a pixel by first predict-
ing it from pixels in other bands. In order to account for variations in image statistics,
the methods typically use more than one predictor. They can be roughly classified
according to where they use any given predictor:

on an entire band [2] is an example which also shows a principled way for choos-
ing the order in which to process bands.

on a subset of a band [3] uses each predictor on a row of pixels, [4] uses each
predictor on a set of square blocks, and [5] uses each predictor on an irregularly-
shaped (and usually not connected) region that lies within a single band.

on a single pixel [6] transmits side-information to indicate which of a small set
of predictors to use for any given pixel, while [7] and [8] design their predictors
anew for each pixel.
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Other approaches to hyperspectral image compression are vector quantization and
transform coding; [5, §2] briefly surveys many of these. We believe that linear pre-
dictive coding works well enough to be worth studying on its own, and often times
more-complicated methods use linear predictive coding as one of their parts, e.g. [5].

One of our contributions is a compressor called BH which belongs to the subset-of-
a-band category. BH uses each predictor on a single square block, and predicts only
from the corresponding block in the adjacent previous band. At least the predictive
part of BH is basically a variant of [3] and [7], as Section 2 discusses.

BH has a useful combination of several good properties: it gets good compression
rates; requires only about twice the time for compressing or decompressing as merely
reading or writing and byte-order swapping the original image; is relatively easy
to implement; could be implemented to compress the different spatial regions in the
image independently so that random access to them is easy; and could be implemented
to require the buffering of relatively small portions of the image—maybe 4.3 Mb while
compressing, and 112 Kb while decompressing.

Another of our contributions is a hypothesis—based on an observation about
hyperspectral image statistics—for why BH and similar methods work well. Finally,
we propose a compressor, called LM, that is in part based on this same observation
but that does only intra-band prediction. Overall LM is worse than BH, but LM’s
performance helps explain BH’s performance.

We’ll cover these subjects in the following order: First we’ll describe how BH and
LM work, then the proposed physical model that helps explain why they work, and
finally, experimental results supporting our claims.

2 The BH Compression Algorithm

Let x be an arbitrary hyperspectral image, and let xi,j,k denote the pixel in the ith
line, jth column, and kth band. In this paper, wavelength increases with k.

Suppose that each of the image’s bands is partitioned into blocks which are usually
square and B pixels on a side, except that near the image’s edges the blocks might
be smaller. Suppose also that the borders of each band’s blocks line up. Let xi,j,k be
a column vector containing the pixels in the block whose top left corner is at (i, j) in
band k. The exact order in which pixels are placed into xi,j,k doesn’t matter except
that it must always be the same.

BH compresses one block at a time. It compresses the stack of blocks covering a
given spatial location all at once, in order of increasing k. When compressing a block
in the first band, xi,j,0, the algorithm assumes that the previous block, call it xi,j,−1,
is all zeros. To compress xi,j,k the algorithm

1. computes the number g that makes g times xi,j,k−1 as similar as possible in the
least-squares sense to xi,j,k, namely

g
def
=

xT
i,j,k−1xi,j,k

xT
i,j,k−1xi,j,k−1

(1)
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2. produces a quantized version of g, called ĝ, with a uniform scalar quantizer that
has 1024 levels stretching from 0.1 to 3;

3. computes the error vector

ei,j,k

def
= ĝxi,j,k−1 − xi,j,k (2)

4. computes the mean absolute error,

M
def
= average{|ei,j,k|} (3)

5. applies to M a nonuniform scalar quantizer each of whose bins corresponds to
a different precomputed entropy code (Section 3 describes how to choose the
quantizer and codes);

6. transmits ĝ, transmits the bin number from Step 5 and, using the code from
Step 5, transmits the elements of ei,j,k.

BH uses the same quantizer and set of entropy codes for every image, and doesn’t
adapt them as it runs. To do decompression, BH simply receives ĝ and the bin
number, then uses the code corresponding to that bin number to uncompress the
elements of ei,j,k, and finally sets xi,j,k equal to ĝxi,j,k−1 − ei,j,k.

As mentioned, BH is particularly similar to [3], especially to [3]’s SE-o1B predictor
which predicts each pixel from its corresponding pixel in the previous band plus an
affine term. The major difference is that BH uses each predictor on a spatially
adjacent region of pixels which are likely to have similar characteristics, and not on
a very elongated region of pixels which aren’t. BH is also particularly similar to [7],
differing in that BH doesn’t do a predictor design for every single pixel. Finally, many
video compressors are similar to BH in that they compress blocks in the current frame
(band) by referencing blocks in the previous one. Some differences are that BH doesn’t
compensate for motion since there shouldn’t be any, and that BH first multiplies the
reference block by a scalar before subtracting it from the current block. [9] examined
the use of standard video compressors for lossy hyperspectral compression.

Excluding Step 6, BH requires about eight arithmetic operations per pixel. Specif-
ically, on a per block basis, Step 1 requires about 4B2 − 1 operations, Steps 3 and 4
each require about 2B2 operations and, for our quantizer implementations, Steps 2
and 5 require about 7 and 25 operations respectively on average. This doesn’t include
memory access, coding, and I/O times, which seem to be very significant, but because
counting their operations is more difficult we instead refer the reader to Section 6’s
experimental results.

BH’s random access capability comes about because the compression of a stack
of blocks corresponding to a particular spatial region, {xi,j,0, . . . , xi,j,β−1}, where β is
the number of bands in the image, doesn’t depend on pixels outside this stack.

BH’s small buffering capability comes about because during decompression BH
needs to keep just the data corresponding to a single stack in memory. Compression
also works on only a single stack at a time, but at least for frequency-sequential storage
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orders (like in [10]’s images) reading a whole row of stacks at once is convenient. [7]
could also be made to use small buffers by storing only the rows of the image that
are necessary for prediction, but their A&P methods would need to be redesigned.

3 The Training Process

The training process to find BH’s quantizer and set of entropy codes is as follows:
run the compression algorithm’s first four steps on some training data; collect the
resulting values of M and ei,j,k; sort the values of M , partition them into some number
n of contiguous equinumerous groups, and record the maximum (or minimum) values
of M in every group as the quantizer thresholds; design a code for each group’s
errors; and, finally, store the quantizer and codes with the rest of BH—in the current
implementation they’re compiled into the executable. Section 6’s experiments all use
a version of BH trained on the M and ei,j,k values from 18068 blocks, each 16 × 16
pixels in size except near the image’s edges, that were selected from random locations
in the Moffet Field radiance image [10].

We pick n and the block size B by trial-and-error. This is straightforward because
the algorithm’s performance doesn’t seem very sensitive to the choices for n and B
once they reach a particular range of values. Figure 1 shows an example of this for
block size. Here the overall compression rate doesn’t change much for blocks of size
8× 8 up to blocks of size 256× 256. The values we use in Section 6’s experiments are
B = 16 and n = 25.
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Figure 1: The total compression rate (top line) on the Cuprite image [10], the rate for
just the errors (middle line), and for just the overhead (bottom line). The quantizer
and entropy codes are kept fixed to the Moffet Field-trained ones described above.

[4]’s use of an equiprobable quantizer is similar to BH’s, while [11, §2.2] uses such
quantizers in a somewhat less related way. Other kinds of quantizers likely would
work as well.
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The current BH implementation uses canonical minimal redundancy codes as de-
scribed in [12], using their Table-Lookup method with x = 8 for decompression. Code
lengths for this design essentially come from the Kraft-coder algorithm with tree fill-
ing that [13] describes, although the ordinary Huffman algorithm would have worked
just as well.

4 The LM Compression Algorithm

Let wi,j,k, the context, be a vector of pixels that are all in band k, and that are taken
from some fixed set of locations near i, j. A simple compressor, call it LMi, predicts
xi,j,k from its context wi,j,k, using a predictor designed to be good at predicting the
previous few pixels at location i, j from the corresponding contexts in each of their
bands. LMi is basically a backward-adaptive version of [3], with the compression
proceeding first in the frequency direction. A more sophisticated compressor, call it
LM, trains several predictors each using a different kind of context, and then selects
the predictor that worked best on the past few pixels.

A more detailed description of LM is as follows. Let u vary from 1 to some number
r. Let w(u)i,j,k be one of r different contexts, chosen so that contexts with the same
index u but from different bands—e.g. w(u)i,j,k and w(u)i,j,m for m not equal to
k—take their pixels from the same spatial locations and in the same order. Also let
u index a set of positive integers {Mu}. Then to code the pixel at xi,j,k, LM

1. for each u forms and solves the equation




w(u)i,j,k−1
...

w(u)i,j,k−Mu


 au ≈




xi,j,k−1
...

xi,j,k−Mu


 (4)

for au in the least-squares sense.

2. picks the au that minimizes the error in predicting some number N of past
pixels, i.e. that minimizes

∥∥∥∥∥∥∥




w(u)i,j,k−1
...

w(u)i,j,k−N


 au −




xi,j,k−1
...

xi,j,k−N




∥∥∥∥∥∥∥
(5)

3. uses this au to predict xi,j,k, and selects a Golomb code based on (5) as in [14].
A slightly more flexible approach is to allow N to be different for this code
selection than it was for the au selection.

The decompressor can do these same steps since all of them depend only on pixels
that it has already seen.
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The motivation for LMi and LM is the idea that the nearby spectra, or maybe
some weighted average of them, are similar to the current one, and that the difficulty
is picking which weighted average to use.

It might seem at first that LM isn’t any more powerful than LMi, since one could
choose to let LMi’s context vector contain the pixels in the union of all of LM’s
contexts, and then least-squares would effectively pick a good subset. Unfortunately
a large context like that one would require more training data, but this data might
not be available if the image statistics change near i, j, k. [15]

5 A Hypothesis About Why BH Works

BH does well on a particular model which seems to fit hyperspectral images at least
to some extent. The model says that the spectra near any arbitrary location i, j in
the image are each the product of a constant underlying radiance spectrum v, and a
scalar brightness factor ci,j. In other words,

xi,j ≈ ci,jv for (i, j) ∈ R (6)

where R is a relatively small region of the imaged area. A rationale is that the ci,j takes
into account rapidly varying brightness changes due to changes in terrain inclination
and possibly other factors [1, p.12], leaving the components of the spectrum that vary
slowly—like the substance being imaged, the atmospheric effects, and the spectral
properties of the illumination—in v.

Visual inspection of groups of spectra selected from randomly-chosen locations in
some of the [10] images helps support this model, though this is somewhat subjective.
Figure 2 shows a common situation where adjacent spectra from a region in the Jasper
image follow (6) in that they have essentially the same shape, and vary mainly in
brightness. That’s at least the main trend; a point against this, which is observable
in the color version of Figure 2, is that the spectra occasionally change their relative
positions, especially near sharp transitions. The other common situation is when
spectra taken from a small region change their separation with increasing wavelength,
still having peaks and troughs in the same places, but it seems that these changes
are usually gradual enough that the model is still approximately correct over small
intervals of bands.

The standard Spectral Angle Mapper (SAM) algorithm [16, p.12-13] is also es-
sentially based on the idea of different brightness factors multiplying an underlying
spectrum (SAM ignores these brightness factors), although SAM doesn’t use the idea
that spatially nearby spectra are similar.

Now (6) is interesting because BH and similar methods can perfectly predict pixels
that follow it. To see this, let xi,j,k be a block of size B × B at an arbitrary location
in the image; let g be the minimizer, as in (1), of ‖gxi,j,k−1 − xi,j,k‖2; and let c be
a vector having B2 elements that contains the brightness factors for each of the B2

spectra in the block. If (6) holds for the block, with R containing the block’s B2

locations, then
‖gxi,j,k−1 − xi,j,k‖2 = ‖gcvk−1 − cvk‖2 (7)
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Figure 2: A set of 25 image spectra from near location 320,1020 in Jasper.

where vk−1 and vk are the k−1st and kth elements of the underlying radiance spectrum
v. Now by choosing g to equal vk/vk−1, (7) will be zero.

Instead of predicting across frequency bands like BH, LM predicts a spectrum from
an adaptively weighted combination of its neighbors. This ought to accommodate
(6), but it should also be able to accommodate more significant differences. One
disadvantage of LM is that, to the extent the model is true, BH has many data
samples (B × B different pixel pairs) to do its estimation while LM typically has
fewer.

Finally, Figure 1 suggests, as does direct examination of the underlying spectra,
that R is not necessarily all that small. The spectra appear similar to some extent
for even quite large blocks, although for large blocks there are more cases of spectra
having significant differences that the model doesn’t even approximately account for.

6 Experimental Results

Table 1 shows compression rates on the raw AVIRIS radiance images from [10]. The
image names are listed in the left-hand column, with the “AVG\l.a.” row denoting
the average excluding the Low Altitude image.

BG is a version of BH that uses Golomb coding, selecting the coding parameter
for each block based on the block’s errors as in [14]. LM (1/1) uses two first-order
predictors for every pixel—one predicting from the spectrum at i−1, j, and one from
the spectrum at i, j−1—and trains these on the previous two image bands. LM (5/1)
also used two predictors, a fifth order one and a first order one, training them on the
previous 30 and 2 image bands respectively. We chose these particular parameters as
the best performing ones out of many candidates.

The remaining results are from the literature. [5] uses vector quantization to clas-
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sify the image spectra, but then uses inter-band linear prediction. LPVQ’s predictor
[17] is based on vector quantization and isn’t linear. It’s somewhat similar to LM in
that it predicts within bands, and that the predictions in one band indirectly influence
the predictions in others. SLSQ-OPT[8] uses linear prediction based both on pixels
within and outside the current band. The standardized JPEG-LS’s results are from
[17].

[7] doesn’t generally have results broken down by image, but does quote 4.95 bits
per pixel as their best rate on the set excluding Low Altitude.

image BH BG LM (1/1) LM (5/1) [5] LPVQ SLSQ-
OPT

JPEG-LS

cuprite 5.12 5.15 5.49 5.28 4.68 5.11 4.94 7.66
jasper 5.23 5.25 5.51 5.42 4.62 5.67 4.95 8.38
low altitude 5.52 5.52 5.77 5.60 5.54 5.26 8.00
lunar lake 5.12 5.15 5.48 5.26 4.75 4.95 4.95 7.48
moffet 5.26 5.26 5.48 5.35 4.62 5.44 4.98 8.04
AVG 5.25 5.27 5.55 5.38 5.34 5.02 7.91
AVG\l.a. 5.18 5.20 5.49 5.33 4.67 5.29 4.96 7.89

Table 1: Comparison of Compression Rates. All values are in bits per (16-bit) pixel.

Table 2 shows BH’s compression and decompression speeds. It also has columns
for NULL, a trivial compressor that just writes (for “compression”) and reads (for
“decompression”) the image in its raw format, only doing conversion from big-endian
to little-endian order. We did these experiments on a commodity PC with a 2.53GHz
Pentium 4 with 753Mb of RAM, and an IDE hard drive with DMA turned on. In
implementing BH we did pay some attention to run-time—for example, by using our
own, simpler, I/O buffering rather than the one that comes with getchar() and
putchar().

The compression speed on Low Altitude seems anomalous. This probably has to
do with memory paging, which is necessary for Low Altitude and not for the others
because the current BH implementation buffers the entire image, and only in Low
Altitude’s case won’t this buffer fit into core memory.

image size BH NULL
Ct Dt Ct Dt

cuprite 579 58 51 29 22
jasper 678 68 64 34 29
low altitude 968 455 247 49 54
lunar lake 375 41 33 19 15
moffet 533 51 48 27 23

Table 2: The size of each image in megabytes, and the times in seconds for compressing
(in the Ct columns) and decompressing (in the Dt columns).

The current, not optimized implementations of LM take about 1030 seconds to
compress Cuprite in the (5/1) case, and about 590 seconds in the (1/1) case. Decom-
pression times are similar.
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[7]’s best method (as quoted in Table 1) compresses at 1150 Kb/s, and decom-
presses at 2860 Kb/s on an 800 MHz Pentium-III. Multiplying these speeds by 3 to
account for the differences in machine speed, which is optimistic, gives about 172 sec-
onds to compress Cuprite and about 70 seconds to decompress it. A different variant
in [7] that gets 5.10 bits/pixel would similarly require about 50 seconds to compress
Cuprite, and about 51 seconds to decompress it. [5] says that their method requires
1180 seconds, also on an 800 MHz PC, to compress an image. Although [5] doesn’t
give a time for decompression, it’s likely a lot faster since there’s no VQ design then.

The other papers don’t provide specific run times. LPVQ would seem to have
slow compression since it requires multiple unconstrained VQ designs. But LPVQ’s
forward-adaptive nature likely makes decompression about as fast as BH’s. SLSQ-
OPT seems like it would take a long time for both compression and decompression
since it needs to design an order-19 linear predictor for each pixel in either case.

7 Discussion

BH’s average compression rate is about 11% worse than [5]’s, the lowest-rate lossless
hyperspectral compressor that we’re aware of, but BH ought to be a lot faster. BH
also gets worse compression than SLSQ-OPT, but again ought to be much faster.

BH’s compression rates are more similar to [7]’s, especially to their faster methods.
It’s not surprising that [7] compresses better, because [7] designs a different predictor
for every pixel, and not just for groups of them like BH; but for this same reason [7]
should be significantly slower and it doesn’t seem to be. Some possible reasons for
this are the overly-optimistic adjustment for clock speed differences mentioned above,
that [7] codes some of the bands without prediction, and that I/O and memory access
is so significant—taking up at least 1/3 to 1/2 of the time in BH’s case according to
Table 2—that [7]’s extra few operations per pixel don’t matter much.

The major difference between BH and [5] is that [5] can accommodate spatial
differences in image statistics on a finer scale, since it groups together similar spectra
before doing prediction, while BH just uses a fixed partition into blocks. The rela-
tively small gap between BH’s and [5]’s performance seems to support the idea that
most of the ability to compress comes from being able to accommodate differences in
brightness. LM’s performance seems consistent with this as well since, as mentioned
in Section 5, LM can also accommodate spatial differences in radiance spectra on a
finer scale than BH, but in fact LM does a little worse.

Our final observation is that BG gets only about 1% worse compression than BH.
Implementing Golomb codes in a straightforward way is easier than implementing
canonical codes, but canonical codes can be somewhat faster.
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