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Abstract 
 

Conventional independent component analysis (ICA) 
learns the statistical independencies of 2D variables from 
the training images that are unfolded to vectors. The 
unfolded vectors, however, make the ICA suffer from the 
small sample size (SSS) problem that leads to the 
dimensionality dilemma. This paper presents a novel 
directional multilinear ICA method to solve those problems 
by encoding the input image or high dimensional data 
array as a general tensor. In addition, the mode-k matrix of 
the tensor is re-sampled and re-arranged to form a mode-k 
directional image to better exploit the directional 
information in training. An algorithm called mode-k 
directional ICA is then presented for feature extraction. 
Compared with the conventional ICA and other subspace 
analysis algorithms, the proposed method can greatly 
alleviate the SSS problem, reduce the computational cost in 
the learning stage by representing the data in lower 
dimension, and simultaneously exploit the directional 
information in the high dimensional dataset. Experimental 
results on well-known face and palmprint databases show 
that the proposed method has higher recognition accuracy 
than many existing ICA, PCA and even supervised FLD 
schemes while using a low dimension of features.  
 

1. Introduction 
How to find a suitable representation of the data is a key 

problem in pattern analysis, such as face recognition. Many 

subspace analysis methods (SAM) [1-4] have been 

proposed to represent the high-dimensional data into a 

compact low-dimensional space to extract faithfully the 

meaningful and unique structures embedded in the data. 

The most representative unsupervised SAM technique may 

be the principal component analysis (PCA) [1-2]. PCA 

exploits the second-order correlation of the training 

datasets but it ignores the higher-order statistical 

dependencies, which may contain more structural 

information of the 2D or higher dimensional data for the 

subsequent feature classification [3, 4]. 

Independent component analysis (ICA), as an extension 

of PCA, extracts a set of statistically independent 

components by analyzing the higher-order statistics in the 

training dataset [5]. Many schemes have been reported 

recently by using ICA for face representation and 

recognition [6-9]. These works can be generally classified 

into two groups: one is to study how to evaluate the 

performance of ICA [6-7] and the other is to study how to 

improve the performance of ICA in feature extraction and 

classification [8-9]. In those algorithms, linear algebra is 

used to extract the feature of independent components (IC). 

Thus they are hard to distinguish the statistic features arise 

from different factors, or modes, inherent to image 

formation, such as viewpoint, illumination, etc., [4]. To 

overcome this problem of different imaging factors, 

recently Vasilescu et al [4] used multilinear algebra to 

represent the datasets and extract ICs and they obtained 

better performance. 

However, all the above algorithms stretch the input 

image into a vector for IC extraction. The unfolded vector 

may lose some structural information embedded in image 

and will lead to a very high dimensionality of the data for 

the subsequent analysis. The available number of training 

samples is usually much smaller than the dimensionality of 

unfolded vector in practical applications. This is the so 

called small sample size (SSS) problem in SAM based 

pattern recognition. Some recent works have been taking 

the image directly as a two dimensional matrix or a 

high-order tensor for statistical learning and have obtained 

good results in biometric authentication [10-13]. However, 

few works have been reported for two dimensional matrix 

or tensor based ICA. Although a tensor representation is 

used in [4], the input image is still unfolded to a vector 

before applying ICA. 

In this paper, we investigate how to implement ICA by 

encoding the image as a 2
nd (or higher order) tensor, and 

propose a framework for IC extraction by using directional 

tensor image representation. The proposed method uses 

multiple interrelated subspaces corresponding to different 

tensor dimensions rather than one subspace as in traditional 

ICA for IC extraction. An efficient learning procedure is 

presented via a novel tensor analysis, called mode-k 
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directional ICA. Different from traditional tensor analysis 

that directly learns mode-k subspace from the mode-k 

tensor images, the proposed mode-k directional ICA learns 

the low-dimensional subspace from the mode-k directional 

images, which are formed by re-sampling and re-arranging 

the mode-k matrix of the original tensor. The mode-k 

directional images are viewed as the new subjects to be 

analyzed in the kth subspace. 

Compared with conventional ICA algorithms, the 

proposed method alleviates greatly the SSS problem and 

hence the dimensionality dilemma. In the proposed mode-k 

directional ICA, the dimensionality of variables is reduced 

to the kth dimension of the tensor image, while the sample 

size is increased by a large factor. On the other hand, more 

useful structural information embedded in training images 

is preserved and the directional information can also be 

embedded in the tensor representation. Experiments on 

UMIST and AR face databases and the palmprint database 

show that the proposed method achieves higher recognition 

accuracy while using a lower dimension of features. 

The remainder of this paper is organized as follows. 

Background and notations of ICA and multilinear algebra 

are presented in section 2. The multilinear directional ICA 

algorithm is presented in Section 3. Section 4 presents 

extensive experiments and Section 5 concludes the paper. 

2. Background and Notations 

2.1. Independent component analysis (ICA) 
In [3], Bartlett et al proposed two architectures for ICA. 

Here we use the architecture I. Denote by x a p-dimensional 

image vector, the ICA of x seeks for a sequence of 

projection vectors 
1 2
, , , qw w w�  (q<p) to maximize the 

statistical independence of the projected data. It can be 

expressed as follows: 
T�s W x                                      (1) 

where s denotes the ICs of x  and 
1
, , q� �� � �W w w�  is called 

the projection matrix. 

Various criteria, such as those based on mutual 

information, negentropy and higher-order cumulants, have 

been proposed for computing W  [5]. Among them the 

FastICA algorithm has been widely used in pattern 

recognition [5, 9]. Usually, PCA is implemented to whiten 

the data and reduce the dimensionality before applying 

ICA. 

Natural images are usually represented in the form of 

matrices (2nd order tensor) or higher-order tensors. 

Therefore it is not well suited to represent natural images 

using one-dimensional vectors. The image-to-vector 

transformation also leads to the SSS problem and the 

dimensionality dilemma. To address these problems in 

conventional ICA, we will propose a novel multilinear 

directional ICA scheme in Section 3.  

2.2. Multilinear algebra 
This section briefly introduces the concepts and 

notations of multilinear algebra [4, 14] that will be used in 

the following development.  

A tensor is a higher order generalization of a vector (1st 

order tensor) and a matrix (2nd order tensor) and it is a 

multilinear mapping over a set of vector spaces. Denote by 
21 KI I I� � �� ��A  a tensor of order K. The size of the kth 

dimension of A  is kI . An element of A  is denoted as 

1 Ki i�A  or 
1 Ki ia � , where 1 k ki I	 	 . In tensor terminology, 

matrix column and row vectors are referred to as mode-1 

and mode-2 vectors, respectively. For higher-order tensors, 

we have the following definitions. 

 

Definition 1. [14] (Mode-k matrixizing or matrix 

unfolding) The mode-k matrixizing or matrix unfolding of 

a Kth order tensor A  is a matrix 
 �
k kI I

k
��D � , 


 �j k jkI I�� . 
 �kD  is the ensemble of vectors in kI�  

obtained by keeping index ki  fixed and varying the other 

indices.  

 

Definition 2. [14] (Mode-k product) The mode-k product 

k� UA  of a tensor A  and a matrix k kI I '��U �  is a 
'

1 2 1 1k k k KI I I I I I� �� � � � � � �� �  tensor defined by 


 � 
 �
1 2 1 11 2 1 1 k k k K kk k K

k
k i i i i i i j ii i i j i i i � �� �

� � � � � � �� � � � � � � �� �U U� �� �A A  (2)                  

for all index values. The mode-k product is a type of 

contraction. 

 

Definition 3. [4, 14] (Mode-k vectors) The mode-k vectors 

of a Kth order tensor A  are the kI -dimensional vectors 

obtained from A  by varying index ki  while keeping the 

other indices fixed. The mode-k vectors are the column 

vectors of matrix 

 �


 �1 1 1k k k KI I I I I

k
� ���D � ��  resulted by mode-k 

matrixizing the tensor A .  

 

Definition 4. [14] (k-rank) The k-rank of tensor 
21 KI I I� � �� ��A , denoted by kR , is defined as the dimension 

of the vector space generalized by the mode-k  vectors. 

 

Definition 5. [4] The distance between tensors A  and B  

is defined as  


 �d �A,B A -B ,A -B                    (3) 

where 
1

1 11

, ,

1, , 1

K

k kk

I I

i i i ii i� �
�� �

� ��
A,B A B  denotes the inner 

product of tensors A  and B  with the same dimension. 
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3. Directional Tensor ICA 

3.1. Model of ICA with tensor representation 
Most existing ICA algorithms consider an image as a 

vector and thus have a very high dimension of feature 

space. As a result, these methods suffer from the SSS 

problem due to the dimensionality dilemma. Images can be 

more naturally represented as 2nd or higher order tensors. In 

this section, we study how to perform ICA with a general 

tensor representation of images. 

Given an arbitrary Kth order tensor 1 2 KI I I� � �� ��A , it 

can be expressed as follows [14] 

1 1 2 2 3 K K� � � � �U U U�S A                 (4) 

where tensor S , called the core tensor, governs the 

interaction between the matrices k kL I
k

��U �  ( k kL I� , 

k=1,2,…,K), which are called lower-dimensional 

independent subspaces. Matrix kU  contains the orthogonal 

vectors spanning the column space of the matrix 
( )kD  that 

resulted from the mode-k matrixizing of A . Our goal is to 

find K transformation matrices kU  such that the elements 

of S  are as independent as possible.  

The proposed model may seem similar to the model 

proposed by Vasilescu [4]. However, they are very 

different in essence. In model (4), A  denotes a high 

dimensional dataset (e.g. an image) that is represented in a 

tensor form rather than a vector as in [4]. It can thus 

alleviate significantly the SSS problem in SAM. The 

matrices kU  in the proposed model can be used to 

represent the mode-k dimension of tensor images with 

factors such as illumination, pose, etc.  

In this paper, we will propose a framework to estimate 

multiple subspaces kU   in (4) by obtaining the mode-k 

directional images from tensor A  and then viewing the 

mode-k vectors of the directional images as training 

samples. The method will be described detailedly in the 

following sub-sections. 

3.2. Mode-k directional image 
In subspace analysis with a tensor representation, the kth 

subspace, containing the kth dimension structural 

information of the tensor, can be directly calculated from 

the mode-k matrix obtained by unfolding the tensor using 

Definition 1. However, the mode-k matrixizing ignores the 

relationship between the current dimension and other 

dimensions, which is related to the image formation 

process and may be useful for classification. To solve this 

problem and improve the classification accuracy, we 

propose to use mode-k directional images to estimate the kth 

subspace. The mode-k directional image is defined and 

obtained from the original tensor as follows. 

Definition 6. (Mode-k directional image) Given a Kth order 

tensor 21 KI I I� � �� ��A , the mode-k (k=1,2,…,K) directional 

image is obtained as follows: 

i.) Obtain the mode-k matrix 
( )

k kI I
k

��D �  from tensor A  

via Definition 1. 

ii.) Re-sample and re-arrange the mode-k matrix 
( )kD  

along the 
kI -dimensional direction to generate the 

mode-k  directional image 

 �kB , as shown in Fig. 1. The 

integer parameter l controls the resulted directional 

image.  

 

Definition 7. (Mode-k directional vectors) The mode-k 

directional vectors of a Kth order tensor A  are the 

kI -dimensional vectors of directional image 

 �kB , i.e., 

mode-2 vectors of 

 �kB . 

 

When l is equal to 
kI , the mode-k directional image 


 �kB  is the mode-k matrix 
( )kD  and the re-sampling 

direction is of zero degree. When l is 1, the directional 

image 

 �kB  will be the diagonal image of 

( )kD . In Fig. 2, we 

show an examples when l is 2 and 4 for the 2nd order tensor, 

i.e. two dimensional image. The mode-1 and mode-2 

directional images of the original image (Fig. 2 (a)) are 

shown in Figs. 2 (b), (c), (d) and (e), respectively, where 

the value of l is 2 in (b) and (c), and is 4 in (d) and (e).   

By constructing the mode-k directional image, more 

directional information of the original tensor can be 

embedded. Compared with the mode-k matrix 
( )kD , 

mode-k directional image 

 �kB  will be able to employ the 

pixels along the 
kI -dimensional direction for training and 

feature extraction. Next in section 3.3 we introduce the 

mode-k directional ICA and then in section 3.4 we present 

the directional tensor ICA algorithm. 

3.3. Mode-k directional ICA 
Before introducing the directional tensor ICA, we first 

summarize the mode-k directional ICA of image A  as 

follows: 

i.) For k=1, 2,…, K, compute the mode-k matrixizing 

matrix 
( )kD  according to Definition 1. 

ii.) Form the mode-k directional image 

 �kB  according to 

Definition 6. 

iii.) Take the mode-k directional vectors (refer to 

Definition 7) of A  as training samples, and compute 

the matrix kU  in (4) by using the FastICA algorithm. 
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Dimensionality reduction in the linear case does not 

have a trivial multilinear counterpart. According to [4, 14], 

a useful generalization to tensor involves an optimal rank 

approximation which iteratively optimizes each of the 

modes of the given tensor. Each optimization step will 

involve a best reduced-rank approximation of a positive 

semi-definite symmetric matrix. This is a high-order 

extension of the orthogonal iteration for matrices. The 

proposed mode-k directional ICA algorithm avoids the 

iterative step in training. 

3.4. Directional tensor ICA algorithm 
With the above development, the multilinear directional 

ICA algorithm can be summarized as follows: 

i.) Input the original training dataset 1 2 KI I I
i

� � �� ��A , 

i=1,2,…, N, where N is the number of training samples 

and K is the order of tensor iA  . Set the dimensionality 

of the output tensor 1 2 Kl l l
i

� � �� ��S . 

ii.)  Training stage 

  For k=1, 2,…, K  

Calculate 
( )

i
k i�D A  using Definition 1; 

Form the directional image 
( )

i
kB  for 

( )

i
kD  by using 

Definition 6; 

Calculate the matrix kU  for 
( )

i
kB  using the 

mode-k ICA algorithm in section 3.3.  

End 

iii.)  Extract the ICs as follows:  

1 1i i K K� � �U U�S A ,   1,2, ,i N� �  

iv.) Extract ICs of the probe image *A : 

  *

1 1

*
K K� � �U U�S A  

v.)  Classification based on the distance (refer to Definition 

5) between iS  and *S . 

Note that the discriminability of each column of kU  is 

unknown in prior. In the experiments, we used the method 

proposed in [3] to rearrange the column of kU  to improve 

the classification accuracy and reduce the dimensionality of 

features. 

3.5. Discussions  
In the whitening stage of conventional ICA, the size of 

the covariance matrix will be 
1 1

K K

k k
k k

I I
� �

�   if we unfold a 

tensor 1 2 KI I I� � �� ��A  to a vector. Usually the training 

sample size 
1

K

k
k

N I
�
�  in most practical applications. It is 

hard to calculate accurately and robustly the statistics of the 

vector variable because the training sample size is much 

smaller than the dimensionality of the vector variable. In 

the proposed method, however, the size of the step-wise 

covariance matrix is k kI I� , which is much smaller than 

that of ICA. On the other hand, as described in section 3.3, 

the training samples are the mode-k directional vectors of 

A  and the number of them is 
j

j k

I N
�

� , which is much 

larger than kI . Therefore, the dimensionality dilemma is 

significantly alleviated. 

For a Kth order tensor, there are K projection matrices 

calculated in the proposed algorithm, which contain the 

structural information embedded in different tensor 

dimensions. The proposed multilinear ICA can conduct 

dimensionality reduction from different directions and 

extract effectively the directional features. In the training 

process, we form the directional image for the mode-k 

matrix to embed the directional information along the 

direction with 
kI -dimension. As we can see in the 

experiments, this novel processing can achieve higher 

recognition accuracy. 

4. Experimental Results 
In this section, we verify the performance of the 

proposed method on a palmprint database and two 

benchmark face databases, UMIST [15] and AR [16]. The 

proposed method is compared with both unsupervised 

methods, including PCA (Eigenfaces) [2], ICA [3], 2DPCA 

[10] and B-2DPCA [17], and supervised methods, 

including FLD [18], 2DFLD [19] and tensor-FLD [11]. In 

all the experiments, we consider the image as a 2nd order 

tensor (i.e. K=2) and used the nearest neighborhood 

classifier for classification. 

4.1. Palmprint database 
The used palmprint database (http://www.comp.polyu. 

edu.hk/~biometrics/) was collected from 50 people at 

different times. The palmprints from right-hand and 

left-hand of each person are treated as palmprints from 

different people. The resolution of the original palmprint 

images is 384�284. After preprocessing, the central part of 

the image, whose size is 128�128, is cropped for feature 

extraction and matching. Fig. 3 shows an example of the 

preprocessing result. 

In the experiment, we selected palmprint images from 

100 different palms for gallery with each palm having 6 

samples taken in two sessions. The samples from the first 

session were used for training, and the samples from the 

second session were used for testing. Thus, the total 

number of training samples and test images are both 300. 

Table 1 shows the top recognition accuracy of different 

schemes with the corresponding dimensionality of features. 

It can be seen that the proposed method is obviously 

superior to all the other unsupervised algorithms (PCA, 
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2DPCA, B-2DPCA and ICA) and even the supervised 

methods (FLD 2DFLD and Tensor-FLD) in recognition 

accuracy. However, the proposed method may need more 

features than conventional ICA. It can also be seen that 

with a suitable selection of parameter l (such as l=2, 4, 8) in 

the formation of the mode-k directional image, the 

recognition accuracy will be higher than that with the 

original mode-k image, i.e. when l=128. Empirically we 

found that in most experiments on palmprint and face 

databases, the highest classification accuracy can be 

achieved when l is 2.  

4.2. UMIST face database 
The UMIST database [15] is a multi-view face 

database, consisting of 575 images from 20 people and 

covering a wide range of poses from profile to frontal 

views. Fig. 4 shows some images of one subject. Each 

image is of size 112�92. In the experiments, the first 

nineteen samples of each person were used. Then we used 

the first p=1, 3, 6, 9 images for training and used the 

remaining images for testing. Table 2 lists the top 

classification accuracies of different algorithms and the 

associated number of features. We see clearly that the 

proposed method achieves much higher accuracy than the 

unsupervised methods PCA, ICA and 2DPCA, and even 

higher accuracy than the supervised methods FLD, 2DFLD 

and Tensor-FLD. The proposed method has the best 

classification accuracy when l is 2. 

4.3. AR face database 
In the AR database [16], the images of 120 individuals 

(65 men and 55 women) were taken in two sessions 

(separated by two weeks) and each session contains 13 

images. In our experiments, the facial portion of each 

image is manually cropped and then normalized to a size of 

50�40. The images from the first session with (a) neutral 

expression, (b) smile, (c) anger, (d) scream, (e) left light on, 

(f) right light on, and (g) both side light on were selected for 

gallery. Thus we have 840 images from 120 individuals. 

Fig. 5 shows some sample images of one subject. 

Two experiments were performed. In the first 

experiment, the four sample images per person with (a) 

neural expression, (b) smile, (c) anger and (d) scream in the 

first session were selected for training, and the other three 

images for testing. The second experiment exchanges the 

training and testing images. Table 3 lists the top 

classification accuracies of different algorithms and the 

associated number of features. We can have the same 

conclusion as in the previous experiments. 

Fig. 6 plots the recognition accuracy of the proposed 

method under different number of features in the first 

experiment. It can be seen that recognition accuracy of the 

proposed method will increase when the number of features 

increase, when the number of features is 86, it has the best 

accuracy (99.72%).   

5. Conclusion 
A general framework for independent feature extraction 

with tensor representation was proposed in this paper.  The 

proposed method learns multiple low-dimension subspaces 

to extract independent features. A novel mode-k directional 

image formation was used in training to better exploit the 

directional information in the mode-k matrix of the tensor. 

Then the mode-k ICA was presented to learn the subspaces 

via mode-k directional images and finally the multilinear 

directional ICA algorithm was presented to extract the IC 

features, which is also in a tensor form. Compared with the 

traditional ICA algorithms, the proposed method alleviates 

significantly the small sample size problem and can 

preserve better the structural information embedded in the 

tensor datasets. From the experiments on one palmprint 

database and two face (UMIST and AR) databases, it can 

be concluded that the proposed algorithm has higher 

classification accuracy than many existing unsupervised 

algorithms such as PCA, ICA and 2DPCA, and even 

supervised algorithms such as FLD, 2DFLD and 

Tensor-FLD.  

 

 

(c) (d) (e)(b)(a)
 

Figure 2.  Original image and transformed directional images. (a) Original 2nd order tensor image; (b) mode-1 directional image 
with l=2; (c) mode-2 directional image with l=2; (d) mode-1 directional image with l=4; (e) mode-2 directional image with l=4. 
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Table 1. Top recognition accuracies (%) and the associated dimensionalities on the Palmprint database by different schemes. 

Proposed method Method PCA ICA FLD 2DPCA B-2DPCA Tensor-FLD 2DFLD l=2 l=1 l=4 l=8 l=128 

Accuracy 88.00 92.00 94.33 94.00 94.33 99.00 78.00 99.33 95.33 99.00 99.00 98.67 

Dimension 109 39 96 2432 264 224 768 112 126 98 91 90 
 

Table 2. The recognition accuracies (%) of different schemes on the UMIST database. The values in parentheses are the 
corresponding number of features. 

Proposed method Training 
number PCA ICA 2DPCA B-2DPCA FLD Tensor-FLD 2DFLD 

l=2 l=4 l=92 

1 
57.50 

(18) 

52.78 

(17) 

59.72 

(672) 

61.94 

(60) 
-- -- -- 

66.11 

(27) 

70.28 

(20) 

63.89 

(36) 

3 
58.75 

(16) 

47.81 

(18) 

62.19 

(336) 

63.13 

(30) 

66.56 

(8) 

65.63 

(140) 

67.81 

(224) 

80.00 

(16) 

64.38 

(27) 

74.38 

(33) 

6 
58.85 

(46) 

57.69 

(50) 

66.92 

(336) 

70.00 

(42) 

79.23 

(10) 

76.15 

(72) 

76.54 

(448) 

80.00 

(14) 

76.54 

(18) 

78.01 

(22) 

9 
65.00 

(48) 

70.00 

(25) 

76.50 

(336) 

81.00 

(14) 

89.50 

(9) 

87.00 

(48) 

82.00 

(224) 

91.50 

(20) 

84.00 

(22) 

86.50 

(24) 

 

Table 3. The recognition accuracies (%) of different schemes on the AR database. The values in parentheses are the 
corresponding number of features. 

Proposed method Method PCA ICA 2DPCA B-2DPCA Tensor-FLD FLD 2DFLD
l=2 l=5 l=10 l=40 

First experiment 
68.89 

 (418) 

97.22 

 (99) 

97.78 

 (1300) 

96.67 

 (375) 

98.61 

(270) 

92.78  

(113) 

98.06 

 (1150) 

99.17 

 (108) 

99.44 

(91) 

99.72 

(96) 

98.89 

(91) 

Second experiment 
79.79 

(110) 

95.00  

(96) 

90.21 

(1000) 

91.04 

 (360) 

95.21 

(60) 

96.46 

 (79) 

95.63 

 (250) 

95.83 

 (72) 

95.21 

(99) 

94.38 

(88) 

94.38 

(88) 

 

 

Figure 1.  Mode-k directional image formation. 
 

 

 
Figure 3. Some preprocessed images (128�128) in the palmprint database. 
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Figure 4. Some sample images of one subject in the UMIST database. 

 
 

 
Figure 5. Some sample images of one subject in the AR database. 
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Figure 6. Recognition accuracy vs. number of features by the 
proposed method (l=10) on AR database. 
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