Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks
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Abstract

Accelerating deep neural networks (DNNs) has been attract-
ing increasing attention as it can benefit a wide range of ap-
plications, e.g., enabling mobile systems with limited com-
puting resources to own powerful visual recognition ability.
A practical strategy to this goal usually relies on a two-stage
process: operating on the trained DNNs (e.g., approximating
the convolutional filters with tensor decomposition) and fine-
tuning the amended network, leading to difficulty in balanc-
ing the trade-off between acceleration and maintaining recog-
nition performance. In this work, aiming at a general and
comprehensive way for neural network acceleration, we de-
velop a Wavelet-like Auto-Encoder (WAE) that decomposes
the original input image into two low-resolution channels
(sub-images) and incorporate the WAE into the classification
neural networks for joint training. The two decomposed chan-
nels, in particular, are encoded to carry the low-frequency in-
formation (e.g., image profiles) and high-frequency (e.g., im-
age details or noises), respectively, and enable reconstructing
the original input image through the decoding process. Then,
we feed the low-frequency channel into a standard classifi-
cation network such as VGG or ResNet and employ a very
lightweight network to fuse with the high-frequency channel
to obtain the classification result. Compared to existing DNN
acceleration solutions, our framework has the following ad-
vantages: i) it is tolerant to any existing convolutional neu-
ral networks for classification without amending their struc-
tures; ii) the WAE provides an interpretable way to preserve
the main components of the input image for classification.

Introduction

Deep convolutional neural networks (CNNs) (LeCun et al.
1990; Krizhevsky, Sutskever, and Hinton 2012) have been
continuously improving the performance of various vision
tasks (Simonyan and Zisserman 2014; He et al. 2016; Long,
Shelhamer, and Darrell 2015; Lin et al. 2017a; Chen et al.
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Methods | top-Sem. | CPU(ms) | GPU(ms) | #FLOPs
VGG16 (224) 11.65 1289.28 6.15 15.36B
VGG16 (112) 15.73 34073 (3.78x) | 1.57(3.92x) | 3.89B

Ours 11.87 | 411.63(3.13x) | 2.37(2.59%) | 4.11B

Table 1: The top-5 error rate (%), execution time on CPU
and GPU, FLOPs of VGG16-Net with 224 x 224 and 112 x
112 as input, and our model on the ImageNet dataset. B de-
notes billion. The error rate is measured on single-view with-
out data augmentation. In the brackets are the acceleration
rates compared with the standard VGG16-Net. The execu-
tion time is computed with a C++ implementation on Intel i7
CPU (3.50GHz) and Nvidia GeForce GTX TITAN-X GPU.

2016; Chen, Guo, and Lai 2016), but at the expense of sig-
nificantly increased computational complexity. For example,
the VGG16-Net (Simonyan and Zisserman 2014), which
has demonstrated remarkable performance on a wide range
of recognition tasks (Long, Shelhamer, and Darrell 2015;
Ren et al. 2015; Wang et al. 2017), requires about 15.36 bil-
lion FLOPs!' to classify an 224 x 224 image. These costs can
be prohibitive for the deployment on ordinary personal com-
puters and mobile devices with limited computing resources.
Thus, it is highly essential to accelerate the deep CNN3s.
There have been a series of efforts dedicated to speed
up the deep CNNs, most of which (Lebedev et al. 2014;
Tai et al. 2015) employ tensor decomposition to acceler-
ate convolution operations. Typically, these methods con-
duct two-step optimization separately: approximating the
convolution filters of a pre-trained CNN with low-rank de-
composition, and then fine-tuning the amended network.
This would lead to difficulty in balancing the trade-off be-
tween acceleration rate and recognition performance, be-
cause two components are not jointly learned to maximize
their strengths through cooperation. Another category of al-
gorithms that aim at network acceleration is weight and ac-
tivation quantization (Rastegari et al. 2016; Cai et al. 2017;
Chen et al. 2015), but they usually suffer from an evident
drop in performance despite yielding significant speed-up.
For example, XNOR-Net (Rastegari et al. 2016) achieves
58x speed-up but undergoes 16.0% top-5 accuracy drop
by ResNet-18 on the ImageNet dataset (Russakovsky et al.
2015). Therefore, we present our method according to the

"FLOPs is the number of FLoating-point OPerations



following two principles: 1) no explicit network modifica-
tion such as filter approximation or weight quantitation is
needed, which helps to easily generalize to networks with
different architectures; 2) the network should enjoy desir-
able speed-up with tolerable deterioration in performance.

Since the FLOPs is directly related to the resolution of
input images, a seemingly plausible way for acceleration is
down-sampling the input images during both training and
testing procedures. Although achieving a significant speed-
up, it inevitably suffers from a drastic drop in performance
due to the loss of information (see Table 1). To address this
dilemma, we develop a Wavelet-like Auto-Encoder (WAE)
that decomposes the original input image into two low-
resolution channels and feeds them into the deep CNNs for
acceleration. Two decomposed channels are constrained to
have following properties: 1) they are encoded to carry low-
frequency and high-frequency information, respectively, and
are enabled to reconstruct the original image through a de-
coding process. Thus, most of the content from the original
image can be preserved to ensure recognition performance;
2) the high-frequency channel carries minimum information,
and thus we can use a lightweight network on it to avoid in-
curring massive computational burden. In this way, the WAE
consists of an encoding layer that decomposes the input im-
age into two channels, and a decoding layer to synthesize
the original image based on these two channels. A transform
loss, which includes a reconstruction error between the input
image and the synthesized image, and an energy minimiza-
tion loss on the high-frequency channel, is defined to opti-
mize the WAE jointly. Finally, we feed the low-frequency
channel to a standard network (e.g., VGG16-Net (Simonyan
and Zisserman 2014), ResNet (He et al. 2016)), and employ
a lightweight network to fuse with the high-frequency chan-
nel for the classification result.

In the experiments, we first apply our method to the
widely used VGG16-Net and conduct extensive evaluations
on two large-scale datasets, i.e., the ImageNet dataset for
image classification and the CACD dataset for face identi-
fication. Our method achieves an acceleration rate of 3.13
with merely 0.22% top-5 accuracy drop on ImageNet (see
Tabel 1). On CACD, it even beats the VGG16-Net in per-
formance while achieving the same acceleration rate. Sim-
ilar experiments with ResNet-50 reveal that even for more
compact and deeper network, our method can still achieve
1.88 x speed-up with only 0.8% top-5 accuracy drop on Im-
ageNet. Note that our method also achieves a better trade-
off between accuracy and speed compared with state-of-the-
art methods on both VGG16-Net and ResNet. Besides, our
method exhibits amazing anti-noise ability compared with
the standard network that takes original images as input.

Related Work

Tensor decomposition. Most of the previous works for
CNN acceleration focus on approximating the convolution
filters by low-rank decomposition (Rigamonti et al. 2013;
Jaderberg, Vedaldi, and Zisserman 2014; Lebedev et al.
2014; Tai et al. 2015). As a pioneering work, Rigamonti et
al. (Rigamonti et al. 2013) approximate the filters of a pre-
trained CNNs with a linear combination of low-rank filters.

Jaderberg et al. (Jaderberg, Vedaldi, and Zisserman 2014)
devise a basis of low-rank filters that are separable in the
spatial domain and further develop two different schemes to
learn these filters, i.e.,“Filter reconstruction” that minimizes
the error of filter weights and “Data reconstruction” that
minimizes the error of the output responses. Lebedev et al.
(Lebedev et al. 2014) adopt a two-stage method that first ap-
proximates the convolution kernels using the low-rank CP-
decomposition, and then fine-tunes the amended CNN.
Quantization and Pruning. Weight and activation quanti-
zation are widely used for network compression and accel-
eration. As a representative work, XNOR-Net (Rastegari et
al. 2016) binarizes the input to convolutional layers and fil-
ter weights, and approximates convolutions using primarily
binary operations, resulting in significant speed-up but an
evident drop in performance. Cai et al. (Cai et al. 2017) fur-
ther introduce Half-Wave Gaussian Quantization to improve
the performance of this method. On the other hand, pruning
the unimportant connections or filters can also compress and
accelerate deep networks. Han et al. (Han, Mao, and Dally
2015) remove the connections with weights below a thresh-
old, reducing the parameters by up to 13x. This method
is further combined with weight quantization to achieve an
even higher compression rate. Similarly, Li et al. (Li et al.
2016) measure the importance of a filter by calculating its
absolute weight sum and remove the filters with small sum
values. Molchanov et al. (Molchanov et al. 2016) employ
the Taylor expansion to approximate the change in the cost
function induced by pruning filters. Luo et al. (Luo, Wu, and
Lin 2017) further formulate filter pruning as an optimization
problem.
Network structures. Some works explore more optimal
network structures for efficient training and inference. Lin
et al. (Lin, Chen, and Yan 2013) develop a low-dimensional
embedding method to reduce the number and size of the fil-
ters. Simonyan et al. (Simonyan and Zisserman 2014) show
that stacked filters with small spatial dimensions (e.g., 3 x 3)
could operate in the same receptive field of larger filters
(e.g., 5 x 5) with less computational complexity. Iandola et
al. (Iandola et al. 2016) further replace some 3 x 3 filters
with 1 x 1 filters, and decrease the number of input channels
to 3 x 3 filters to simultaneously speed up and compress the
deep networks.

Different from the aforementioned methods, we learn
a WAE that decomposes the input image into two low-
resolution channels and utilizes these decomposed channels
as inputs to the CNN to reduce the computational complex-
ity without compromising accuracy. Compared with existing
methods, our method does not amend the network structures,
and thus it can easily generalize to any existing convolu-
tional neural networks.

Proposed Method

The overall framework of our proposed method is illustrated
in Figure 1. The WAE decomposes the input image into two
low-resolution channels that carry low-frequency informa-
tion (e.g., basic profile) and high-frequency (e.g., auxiliary
details), i.e., I}, and Iy, and these two channels are enabled
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Figure 1: The overall framework of our proposed method. The key component of the framework is the WAE that decomposes
an input image into two low-resolution channels, i.e., I;, and Iy. These two channels encode the high- and low-frequency
information respectively and are enabled to construct the original image via a decoding process. The low-frequency channel
is then fed into the a standard network (e.g., VGG16-Net or ResNet) to extract its features. Then a lightweight network fuses
these features and the high-frequency channel to predict the label scores. Note that the input to the classification network is

low-resolution; thus it enjoys higher efficiency.

to construct the original image through the decoding pro-
cess. Finally, the low-frequency channel is fed into a stan-
dard network (e.g., VGG16-Net or ResNet) to produce its
features, and a network is further employed to fuse these
features with the high-frequency channel to predict the clas-
sification result.

Wavelet-like Auto-Encoder

The WAE consists of an encoding layer that decomposes the
input image into two low-resolution channels and a decod-
ing layer that synthesizes the original input image based on
these two decomposed channels. In the following context,
we introduce the image decomposition and synthesis pro-
cesses in detail.

Image decomposition. Given an input image [ of size W X
H, it is first decomposed into two half-resolution channels,
i.e., I, and Iy, which is formulated as:

Ur,In] = Fe(l,WEg), (1
where Fp denotes the encoding process, and W g are its
parameters. In this paper, the encoding layer contains three
stacked convolutional (conv) layers with strides of 1, fol-
lowed by two branched conv layers with strides of 2 to pro-
duce Iy, and Iy, respectively. It is intolerable if this pro-
cess incurs massive computational overhead, as we focus on
acceleration. To ensure efficient computing, we utilize the
small kernels with sizes of 3 x 3 and set the channel numbers
of all intermediate layers as 16. The detailed architecture of
the encoding layer are illustrated in Figure 2 (the blue part).
Image synthesis. The decoding layer is employed to syn-
thesize the input image based on Iy, and Iz. It processes
I, and Iy to get the up-sampled images I’ and I’ i, sepa-
rately, and then simply adds them to obtain the synthesized
image I'. The process is formulated as:

Il:FDL(ILawDL)+FDH(IH7WDH)7 (2)
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Figure 2: Detailed architecture of the wavelet-like auto-
encoder. It consists of an encoding (the blue part) and a de-
coding (the green part) layers. “/2” denotes a conv layer with
a stride of 2 to downsample the feature maps, and conversely
“x2” denotes a deconv layer with a stride of 2 to upsample
the feature maps.

where Fp, and Fp,, are the transforms on Iy, and I, and
Wp, and Wp,, are their parameters. The decoding layer
has two branches that share the same architecture, with each
branch implementing one transform. Each branch contains a
deconvolutional (deconv) layer with a stride of 2 and three



stacked conv layers with strides of 1, in which the deconv
layer first up-samples the input images (i.e., I, and 1) by
two times, and the conv layers further refine the up-sampled
feature maps to generate the outputs (i.e., I’y and I’ ). We
set the kernel size of the deconv layer as 4 x 4, and those of
the conv layers as 3 x 3. The channel numbers of all the inter-
mediate layers are also set as 16. We present the detailed ar-
chitecture of the decoding layer in Figure 2 (the green part).

Encoding and decoding constraints

We adopt the two decomposed channels I, and Iy to re-
place the original image as input to the classification net-
work. To ensure the classification performance and simulta-
neously consider the computational overhead, I, and Iz are
expected to possess two properties as follows:

e Minimum information loss. I; and Iy should retain
all the content of the original image as the classification
network does not see the original image directly. If some
discriminative content is lost unexpectedly, it may lead to
classification error.

e Minimum [z energy. Iy should contain minimum in-
formation, so we can apply a lightweight network to it to
avoid incurring heavy computational overhead.

To comprehensively consider these two properties, we de-
fine a transform loss that consists of two simple yet effective
constraints on the decomposed and reconstructed results.
Reconstruction constraint. An intuitive assumption is that
if I;, and Iy preserve all the content of the input image,
they are enabled to construct the input image. In this paper,
we reconstruct image I’ from I, and Iy through the decod-
ing process, and minimize the reconstruction error between
input image I and reconstructed image I’. So the reconstruc-
tion constraint can be formulated as:

b= [ =I'|[3. 3)
Energy constraint. The second constraint minimizes the

energy of Iy and pushes most information to I, thus that
I preserves minimum content. It can be formulated as:

le =|11nll3- “)
We combine the two constraints on the decomposed and re-
constructed results to define a transform loss. It is formu-
lated as the weighted sum of these two constraints:

L =1L, + N, &)

where A is a weighted parameter, and it is set as 1 in our
experiments.

Image classification

The image classification network consists of a standard net-
work to extract the features f;, for I, and a fusion network
to fuse with Iy to predict the final label scores. Here, the
standard network refers to the VGG16-Net or the ResNet,
and we use the features maps from the last conv layer. The
fusion network contains a sub-module to extract features fr
for Iy. The sub-module shares the same architecture with
the standard network except that the channel numbers of all

the conv layers are divided by 4. fr is fed into a simple
classifier to predict a score vector sy, and it is further con-
catenated with fy to compute a score vector s, by a similar
classifier. The two vectors are then averaged to obtain the
final score vector s.

We employ the cross entropy loss as our objective func-
tion to train the classification network. Suppose there are N
training samples, and each sample /; is annotated with a la-
bel y;. Given the predicted probability vector p;

. exp(ss)
T C—1 ’
2 er—o €xp(sf)

where C'is the number of class labels. The classification loss
function is expressed as:

c=0,1,....,C—1, (6
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=

1(y; = c)logpe, (7)

where 1(-) is the indicator function whose value is 1 when
the expression is true, and 0 otherwise. We use the same loss
function for s, and sy and simply sum up them to get the
final classification loss L.

Discussion on computational complexity. As suggested
in (He and Sun 2015), the convolutional layers often take
90-95% computational cost. Here, we analyze the computa-
tional complexity of the convolutional layers and present an
up bound of the acceleration rate of our method compared
with the standard network. For a given CNN, the total com-
plexity of all the convolutional layers can be expressed as:

d
O miy-si-n-mi), ®)
=1

where d is the number of the conv layers, and [ is the index of
the conv layer; n; is the channel number of the [-th layer; s;
is the spatial size of the kernels and m; is the spatial size of
the output feature maps. For the standard network, as it takes
a half-resolution image as input, m; of each layer is also
halved. So the computational complexity is about % of the
standard network that takes original images as input. For the
sub-module in fusion network that processes I, the chan-
nel number of all the corresponding layers are further quar-
tered, so the computational complexity is merely about 6%1
of the original standard network. So the up bound of the ac-
celeration rate of our classification network compared with
the standard network can be estimated by UTll/M = 3.76.
However, as the decomposition process and additional fully-
connected layers could incur additional overhead, the actual
acceleration rate may be lower than 3.76.

Learning

Our model is comprised of the WAE and the classification
network, and it is indeed possible to jointly train them using
a combination of the transform and classification losses in
an end-to-end manner. However, it is difficult to balance the
two loss terms if directly training from scratch, inevitably
leading to inferior performance. To address this issue, the
training process is empirically divided into three stages:



Stage 1: WAE training. We first remove the classification
network and train the WAE using the transform loss L;.
Given an image, we first resize it to 256 x 256 and randomly
extract patches (and their horizontal reflections) with a size
of 224 x 224, and train the network based on these extracted
patches. The parameters are initialized with the Xavier al-
gorithm (Glorot and Bengio 2010) and the WAE is trained
using SGD algorithm with a mini-batch of 4, momentum of
0.9 and weight decay of 0.0005. We set the initial learning
rate as 0.000001, and divide it by 10 after 10 epochs.

Stage 2: Classification network training. We combine the
classification network with the WAE, and train the classifica-
tion network with the classification loss £.. The parameters
of the WAE are initialized with the parameters learned in
Stage 1 and are kept fixed, and the parameters of classifica-
tion network are also initialized with the Xavier algorithm.
The training images are resized to 256 x 256, and the same
strategies (i.e., random cropping and horizontal flipping) are
adopted for data augmentation. The network is also trained
using SGD algorithm with the same momentum and weight
decay as Stage 1. The mini-batch is set as 256, and the learn-
ing rate is initialized as 0.01 (0.1 if using ResNet-50 as the
baseline), which is divided by 10 when the error plateaus.
Stage 3: Joint fine tuning. To better adapt the decomposed
channels for classification, we also fine tune WAE and clas-
sification network jointly by combining the transform and
classification losses, formulated as:

L=L.+L, ©))

where v is set to be 0.001 to balance the two losses. The
network is fine tuned using SGD with the mini-batch size,
momentum, and weight decay the same as Stage 2. We uti-
lize a small learning rate of 0.0001 and train the network
until the error plateaus.

Experiments
Baseline methods

In the experiments, we utilize two popular standard net-
works, i.e., VGG16-Net and ResNet-50, as the baseline net-
works, and mainly compare with these baselines on image
recognition performance and execution efficiency. To further
validate the effectiveness of the proposed WAE, we imple-
ment two baseline methods that also utilize the decomposed
channels as input to the deep CNNs for classification.
Wavelet+CNN. Discrete wavelet transforms (DWTs) de-
compose an input image to four half-resolution channels,
i.e., cA, cH, cV, cD, where cA is an approximation to the in-
put image (similar to I7,), while cH, cV, cD preserve image
details (similar to If). Also, the original image can be re-
constructed based on cA, cH, cV, cD using an inverse trans-
form. Then, cA is fed into the standard network, and cH, cV,
cD is concatenated and fed into the final for classification.
Here, we use the widely used 9/7 implementation (Zhang et
al. 2011) for the DWT.

Decomposition+CNN. This method also uses an encoding
layer the same to that in our proposed WAE to decompose
the input image into two half-resolution ones, followed by
the classification network for predicting the class labels. But

it has no constraints on the decomposed channels, and it is
trained merely with the classification loss.

The classification networks in the two baseline methods
share the same structure with that of ours for fair compar-
isons. Both two methods are also trained with SGD with an
initial learning rate of 0.01, mini-batch of 256, momentum
of 0.9 and weight decay of 0.0005. We select the models
with lowest validation errors for comparison.

ImageNet classification with VGG16

We first evaluate our proposed method on VGG16-Net on
the ImageNet dataset (Russakovsky et al. 2015). The dataset
covers 1,000 classes and comprises a training set of about
1.28 million images and a validation set of 50,000 images.
All the methods are trained on the training set, and evaluated
on the validation set as the ground truth of the test set are not
available. Following (Zhang et al. 2016), we report the top-5
error rate for performance comparison.

Comparison with the original VGG16-Net We first
compare the classification performance and execution time
on CPU and GPU of our model and the original VGG16-
Net? in Table 2. The execution time is evaluated with a
C++ implementation on Intel i7 CPU (3.50GHz) and Nvidia
GeForce GTX TITAN-X GPU. We can see our model
achieves a speed-up rate of up to 3.13x with merely 0.22%
increase in the top-5 error rate. For the CPU version, our
model obtains an actual acceleration rate of 3.13x, close to
the up bound of the acceleration rate (3.76 ). The overhead
may come from the computational cost of the encoding layer
and additional fully-connected layers. For the GPU version,
the actual acceleration rate is 2.59x. It is smaller since an
accelerated model is harder for parallel computing.

Comparison with state-of-the-art methods ThiNet
(Luo, Wu, and Lin 2017) and Taylor® (Molchanov et al.
2016) are two newest methods that also focus on acceler-
ating deep CNNs, and they also conduct experiments on
VGG16-Net. In this part, we compare our model with these
methods and report the results in Table 2. Taylor presents
two models, namely Taylor-1 and Taylor-2. Our model
achieves better accuracy and speed-up rate than Taylor-1.
The speed-up rate of Taylor-2 is a bit higher than ours,
but it suffers an evident performance drop (3.63% increase
in top-5 error rate). ThiNet also presents two models,
i.e., ThiNet-GAP and ThiNet-Tiny. ThiNet-Tiny enjoys
a significant speed-up at the cost of a drop in accuracy
(6.47% increase in top-5 error rate), which is intolerant
for real-world systems. ThiNet-GAP can achieve a better
trade-off between speed and accuracy, but our model still
surpasses it in both speed and accuracy.

Comparison with the baseline methods To validate the
effectiveness of the proposed WAE, we also compare our

For a fair comparison, the top-5 error rate of the original
VGG16-Net is evaluated with center-cropped patches on resized
images. The same strategy is also used in ResNet-50.

3The execution time reported in Taylor paper are conducted on
a hardware and software platform that is different from ours. Thus
we merely present the relative speed-up rates for fair comparison.



Methods

| top-5 err. (%) | CPU (ms) | CPU speed-up rate [ GPU (ms) | GPU speed-up rate

VGG16-Net 11.65 1289.28 Ix 6.15 Ix
Wavelet+CNN 14.42 392.24 3.29% 2.30 2.67x
Decomposition+CNN 12.98 411.63 3.13x 2.37 2.59x
Taylor-1 13.00 - 1.70x - 2.20x
Taylor-2 15.50 - 2.10x - 3.40x
ThiNet-Tiny 18.03 116.25 11.25% 1.32 4.66 %
ThiNet-GAP 12.08 442.807 2.91x 2.52 2.44x
Ours 11.87 411.63 3.13x 2.37 2.59%

Table 2: Comparison of the top-5 error rate, execution time and speed-up rate on CPU and GPU of VGG16-Net, the two baseline
methods and the previous state of the art methods on the ImageNet dataset. The error rate is measured on single-view without

data augmentation.

Figure 3: Visualization results of the input image (a), the
sub-images (b) and (c) produced by our method and the sub-
images (d) and (e) produced by the “Decomposition+CNN”.

model with two baseline methods that use different decom-
position strategies in Table 2. It shows our model outper-
forms the two baseline methods by a sizable margin on
the classification performance while sharing comparable ef-
ficiency. Note that “Wavelet+CNN” runs a bit faster than
our method, as it uses the more efficient DWT for image
decomposition. However, it results in inferior performance,
and one possible reason is that directly separating the low-
and high-frequency information of an image may hamper
the classification result. Our model also decomposes the in-
put image into two channels, but it pushes most information
to the I, via minimizing the energy of Iz and are jointly
trained to better adapt for classification. We will conduct ex-
periments to analyze the classification performance merely
using Iz, and cA to give a deeper comparison later. To com-
pare the difference between our model and the “Decompo-
sition+CNN”, we visualize the decomposed channels gener-
ated by this method and ours in Figure 3. Without the con-
straints, the two decomposed channels share identical ap-
pearance, and fusing the classification results of them can
be regarded as the model ensemble. Conversely, the chan-
nels generated by our model are somehow complementary,
as Iy, retains the main content, while Iz preserves the sub-
tle details. These comparisons well prove the proposed WAE
can achieve a better balance between speed and accuracy.

Analysis on the decomposed channels Some examples
of the decomposed channels and the reconstructed images
are visualized in Figure 4. We can observe that I;, indeed
contains the main content of the input image, while Iy pre-
serves the details, e.g., edges and contours. It also shows

Input image

Figure 4: Visualization results of the I, Iy and the recon-
structed image.

excellent reconstructed results. These visualization results
finely accord with the assumption of our method.

Input ‘ cA ‘ Ip ‘ I ‘ Ir+1g
top-Serr. [ 1592 [ 1573 [ 1420 | 11.87

Table 3: Comparison of the top-5 error rate using I+,
11, I'r and cA for classification on the ImageNet dataset.

To provide deeper analysis of the decomposed channels,
we present the performance using the I, for classification.
We first exclude the fusing with Iz and re-train the classifi-
cation network with the parameters of WAE fixed. The top-5
error rate is depicted in Table 3. It is not surprising that the
performance drops, as Iy preserves the image details and
can provide auxiliary information for classification. We also
conduct experiments that use cA generated by DWT, and
IR generated by directly resizing the image to a given size,
for classification. Specifically, we first resize cA and Iy to
128 x 128, and randomly crop the patches of size 112 x 112
(and their horizontal reflections) for training. During test-
ing, we crop the center patch with a size of 112 x 112 for
fair comparisons. Although Iy, Ir and cA are all assumed
to possess the main content of the original image, the clas-
sification result using I, is obviously superior to those us-
ing I'r and cA. One possible reason is that the constraint on
minimizing the energy of I explicitly pushes most content
to I, so that I;, contains much more discriminative infor-
mation than [ and cA. These comparisons can also give



a possible explanation that our approach outperforms the
“Wavelet+CNN”.

Contribution of joint fine tuning step We evaluated the
contribution of joint fine tuning by comparing the perfor-
mance with and without it, as reported in Table 4. The top-5
error rates with fine tuning decreases by 0.34%. This sug-
gests fine tuning the network jointly can adapt the decom-
posed image for better classification.

Methods [ w/o FT | w/FT
top-5err. (%) | 1221 | 11.87

Table 4: Comparison of the top-5 error rate with and without
joint fine tuning (FT) on the ImageNet dataset.

ImageNet classification with ResNet-50

In this part, we further evaluate the performance of our pro-
posed method on ResNet. Without loss of generalization, we
select ResNet-50 from the ResNet family and simply use it
to replace the VGG-Net as the baseline network. Then it is
trained from scratch using a similar process as described in
the Sec. of Learning. Because ResNet is a recently proposed
network architecture, few works are proposed to accelerate
this network. Thus, we simply compared with the standard
ResNet-50, ThiNet in Table 5. ResNet is a more compact
model, and accelerating this network is even more difficult.
However, our method can still achieve 1.88x speed-up with
merely 0.8% increase in top-5 error rate, surpassing ThiNet
on both accuracy and efficiency.

Methods | top-5err. (%) | GPU SR | CPU SR

ResNet-50 8.86 1x 1x
ThiNet-30 11.70 1.30x -
Ours 9.66 1.73x 1.88x

Table 5: Comparison of the top-5 error rate and speed-up
rate (SR) of our model and ThiNet on ResNet-50 on the Im-
ageNet dataset.

CACD face identification

CACD is a large-scale and challenging dataset for face iden-
tification. It contains 163,446 images of 2,000 identities col-
lected from the Internet that vary in age, pose and illumi-
nation. A subset of 56,138 images that cover 500 identities
are manually annotated (Lin et al. 2017b). We randomly se-
lect 44,798 images as the training set and the rest as the test
set. All the models are trained on the training set and evalu-
ated on the test set. Table 6 presents the comparison results.
Note that the execution times are the same as Table 2. In this
dataset, our model outperforms the VGG16-Net (0.22% in-
crease in accuracy) and meanwhile achieves a speed-up rate
of 3.13 . Besides, our method also beats the baseline meth-
ods. These comparisons again demonstrate the superiority
of our proposed WAE. Remarkably, the images on CACD
are far different from those on ImageNet, and our method
still achieves superior performance on both accuracy and

efficiency. It suggests our model can generalize to diverse
datasets for accelerating the deep CNNss.

Methods | acc. (%)
VGG16-Net 95.91
Wavelet+CNN 94.99
Decomposition+CNN | 95.20
Ours 96.13

Table 6: Comparison of the accuracy of our model, VGG16-
Net and the baseline methods on the CACD dataset.

Noisy image classification

Generally, the high-frequency part of an image contains
more noise. Our model may implicitly remove some high-
frequency part by minimize the energy of Iy, so it may be
inherently more robust to the noise. To validate this assump-
tion, we add Gaussian noise of mean zero and different vari-
ances V to the test images, and present the accuracy of our
method and the original VGG16-Net on these noisy images
in Table 7. Note that both our model and the VGG16-Net
is trained with the clean images. Our model performs con-
sistently better than VGG16-Net over different noise levels.
Remarkably, the superiority of our model is more evident
when adding larger noise. For example, when adding noise
with a variance of 0.05, our model outperforms the VGG16-
Net by 10.81% in accuracy. These comparisons suggest our
method is more robust to noise compared to VGG16-Net.

Methods | VGG16-Net | Ours
V=0 95.91 96.13
V=0.01 90.22 91.16
Vv=0.02 80.00 83.85
V=0.05 45.10 55.91
V=0.1 14.31 23.88

Table 7: Comparison of accuracy (in %) on the image of our
model and VGG16-Net with gaussian noise of zero mean
and different variances on the CACD dataset.

Conclusion

In this paper, we learn a Wavelet-like Auto-Encoder, which
decomposes an input image into two low-resolution chan-
nels and utilizes the decomposed channels as inputs to the
CNN to reduce the computational complexity without com-
promising the accuracy. Specifically, the WAE consists of
an encoding layer to decompose the input image into two
half-resolution channels and a decoding layer to synthesize
the original image from the two decomposed channels. A
transform loss, which combines a reconstruction error that
constrains the two low-resolution channels to preserve all
the information of the input image, and an energy minimiza-
tion loss that constrain one channel contains minimum en-
ergy, are further proposed to optimize the network. In future
work, we will conduct experiments to decompose the im-
age into sub-images of lower resolution to explore a better
trade-off between accuracy and speed.
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