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Two Denoising Methods by Wavelet Transform ds,

Quan Pan, Lei Zzhang, Guanzhong Dai, and Hongcai Zhang

Abstract—Two wavelet-based noise reduction methods are discussed
here. First, we improve the tradtional spatially selective noise filtration Fig. 1. Dyadic wavelet transform.
technique proposed by Xuet al. Second, we introduce a new threshold-
based denoising algorithm based on undecimated discrete wavelet trans-
form. Simulations and comparisons are given.

Index Terms—Denoising, spatial correlation, threshold, undecimated
discrete wavelet transform.

I. INTRODUCTION

Wavelet transforms can decompose a signal into several scales that
represent different frequency bands, and at each scale, the position
of signal’s instantaneous structures can be determined approximately.
Such a property can be used for denoising.

In [2], a spatially selective noise filtration technique was proposed.
Based on the direct spatial correlation of wavelet transform at several
adjacent scales, a high correlation is used to judge if there is
a significant edge. The choice of noise power reference is very
important in implementation, and it was not shown in [2]. In thi . -
correspondence, we give the noise power reference and an estimjﬁl&?t'on that satlsflesm
of the standard deviation of original noise. In addition, we |nt_roduce Z ,&(21@/‘2(2];,) -1 ©)
some parameters and extract edges from coarse scales to fine scales
to improve the filtering performance. . . .

Another powerful approach to noise reduction was proposed b,YThe dygdlc wave!et tr_ansform 'S _redun(_jant. A.fast dlscrete_ algo-
Donohoet al. [3]-[5]. In the case of orthogonal wavelet transfornd! hm [1] is shown in Fig. 1. The filter; |s_o_bta|ned by pl_Jttlng
(OWT), Donoho made use of a threshold= o/2 log N for (2! — 1) zeros betwgen eac_h of E_he coefﬂments_ of the filfgs
all scales to obtain an ideal risk, but partly due to the lack (ﬁaerefore, the bandW|_dth af; is 1/2’ of the bgndW|dth Off. .
translation invariance of OWT, the results exhibit visual artifacts [gloil If WZ alzc_) want to |m]pos$] that the translatnlon parambé te_arles d
In this correspondence, a new threshtlth) = co,,, in the case of ong dyadic sequend@’), then more constraints must be impose

undecimated discrete wavelet transform (UDWT) is presented af constructing the wavelet. See Daubechies [6]-[8] for more details
out (bi-)orthogonal compactly supported wavelets. Mallat has given
. ab bi-)orth I I d I Mallat h i

why UDWT can suppress noise better than OWT is briefly |IIustrate§ie fast pyramid algorithm of (bi-)orthogonal wavelet transform
(OWT) (Fig. 2). Unfortunately, OWT is translation variant due to
subsampling. If we rotate the input signal by one position, then the
output signal at the first scale would be different. If the rotation were
The continuous wavelet transform can be defined as by two positions, then the output at the first scale would be the same
L [ TN ) except by one rotation, but the outputs at the second and higher
(Wyf)(b,a) = la| "2 / f(t)'d’<7) dt, feL*(IR) (1) scales would be different. Several methods can be used to overcome
o the dependence on the position of input signal. Here, we use the
wherea, b € L*(IR), anda # 0. To allow fast numerical implemen- undecimated discrete wavelet transform (UDWT), which was shown
tation, we impose that the scale parametevaries only along the in Fig. 3. It is noticeable that UDWT is almost the same as dyadic
dyadic sequencé2’), j € Z. A wavelety € L*(IR) is a dyadic wavelet transform because the (bi-)orthogonal wavelet can also be
wavelet if and only if there exist two strictly positive constants called dyadic wavelet.
and B so that

Fig. 3. Undecimated wavelet transform.

j=—oo

Il. DYALTIC WAVELET TRANSFORM AND
UNDECIMATED WAVELET TRANSFORM

i S i g2 Ill. THE STANDARD DEVIATION ¢, OF
VwelR, A< Z [0(2'w)]” < B. @ GAUSSIAN WHITE NOISE AT EACH SCALE

= From Fig. 1, suppos& is Gaussian white noise ~ N(0,4?). It
Equation (2) ensures thdt(¢#) can be recovered from its dyadicis easy to get the deviation 6f; = X = Go
wavelet transform. The reconstructed wavelgtt) may be any
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IV. SPATIALLY SELECTIVE NOISE FILTRATION (SSNF) TABLE |
) ) NEw ENTIRE FILTERING PROCESS IN THEWAVELET TRANSFORM
Xu et al. developed a SSNF technique in [2]. They used the DoMAIN DESCRIBED BY A “CONTROL FLOW” T YPE OF SCHEME

dyadic wavelet constructed by Mallat [1]. Based on the fact that
sharp edges have large signals over many wavelet scales and noigg, Save a copy of W (m,n) to WW (m,n).

will die out swiftly with scale, spatial correlatio@orr(m.n) is  pitialize the “spatial filter mask”: mask(I:Mn) to 0°s, mask(M+1.n) to 1’
defined to sharpen and enhance edges and significant features whilgoose A(m) and th(m) in advance.

suppressing noise and small sharp features
Loop for each wavelet scale m from Mto 1

-1
. {
Corri(m,n) = [[W(m+in) n=12,..N (65) k-0
i=0 Loop for the iteration process

whereW (m,n) denotes the wavelet transform data,is the scale
index, n is the translation indeX, < M —m + 1, and M is the total
number of scales. Usually, we seldct 2.

Compute the power of Corr,(m,n) and W(m,n):
PCorr(m) =) Corr,(m,n)*,PW(m) =Y W (m,n)’

The algorithm [2] is described briefly as follows. The filtered data Rescale the power of Corr, (m, n) to that of W (m, n).
is referred to adV,cw (771,, n): Loop for each pixel point n
1) Compute the correlatio@orr»(m, n) for every wavelet scale { '
m. NewCorr, (m,n)=Corr,(m,n) \| PW (m)/ PCorr(m)
% Yend loop n
2) Rescale the power ofCorra(m,n)} to that of {IWW(m,n)} Loop for cach pixel point n
and get{New Corg(m,n)}. {

Compare pixel values in NewCorr,(m,n) and W (m,n):

New Corg(m,n) = Corrz(m,n) JPI/’["’(m)/P Corr(m)
it [NewCorr,(m,n)| = A(m)W (m,n)|

{
where Extract edge information from W (m,n) and Corr,(m,n),
R and save it in the “spatial filter mask™
P Corr(m) = ZCOI’I’Q(m, n)” Corr,(m,n)=0.0, W(m,n) =0.0
n mask(m, n)=1, K=K+1
PW(m) = Z W(m, 71,)2. Tend }lggglnf
" }iterate until (PW(m) —th{(m)-(N - K)o, )S 0.05-PW (m)
3) If [NewCorg(m,n)| > |W(m,n)|, we accept the point as an mask(m, n)=mask(m, n).* mask(m+1,n)
edge. Pas§V (m,n) to Wyew(m,n), and reset¥ (m,n) and Apply the “spatial filter mask” to the save copy, W (m, n), at scalc m.
Corrz(m, n) to 0. Otherwise, we assuni& (m, n) is produced Save the filtered datato W, (m,n):
by noise and then retai (m,n) and Corrz(m, n). Loop for each pixel point n
4) Repeat 2) and 3) until the power &f (m,n) is nearly equal {
to some reference noise power at th¢h wavelet scale. } Knew(’m”) = mask(m, n).* WW (m,n)
end loop n

Finally, we get the vectoiV,.(m,n) and then reconstruct the yend loop m
signal. In [2], the reference noise power is not shown. Here, we give
a reference by supposing that original noise is white Gaussian.
It is well known that/PX/N is an asymptotically unbiased
estimation ofs for a sequenceX ~ N(0,0%), where PX = e can choos¢h(l) = 1.1-1.2, th(2) = 1.2-1.4, th(3) = 1.4-1.6
>, x(n)?, and N is the length of X. SupposeK points have and th(m) = 1.6-1.8 whenm > 3.
been extracted and thhl”(m,n) denotes the unextracted points in At fine scales, noise is dominating except some sharp edges. If
W(m,n). If W'(m,n) can be viewed as produced exactly by noisewe compare|New Cort(m,n)| with |W (m,n)| directly, then too
PW'(m)/(N - K) will be an asymptotically unbiased estimation ofmuch noise will be extracted as edges. To avoid this, we multiply

T (N = Ix’,')o?n can be taken as the reference noige power. |1 (m,n)| by a weight\(m) > 1 and impose that only when
Infact, W'(m,n) = W,(m,n)+W, (m,n), whereW(m,n) and [New Cork (m, n)| > X(m)|W(m,n)| can we extract¥ (m,n) as
Wi, (m. n) are the wavelet transform of true signals and, respectivelygges. In the simulations, we tak¢m) = [1.15,1.06,1,1,...,1],
noise. Then, we have and the results are satisfying.
PW'(m) = (N = K)- E{W'(m, n)z} The edges will appear at all scales; therefore, we can assume that

. B ., 5 o 5 if there is no edge to be extracted at coarser scales, then we will

= (N = K) - E{W,(m,n)" + Wy (m,n) not extract edge at finer scales at the corresponding indexes. Thus,
+ 2Wi(m,n)W,, (m,n)} we will extract edges from coarser scales to finer scales only at the
= (N - K)- E{W/(m, ,,,)2} + (N - K)- ol indexes that have been extracted as edges. This will avoid extracting
. , ) a lot of noise as edges at fine scales.
E{W{(m.n)*} is always positive(N — K)o, should not be the  The new algorithm is summarized in Table I, whe¥g denotes

reference noise power at coarse scales. We multiply— K)o2, the total number of scales.

by a factorth(m) to be a new reference, wheth(m) > 1. For

different signals,E{W.(m,n)*} will be different; thereforeth(rmn)

should vary. Fortunately, the filtering results are not sensitive

th(m), and we can choose a commd(m) to the general case. At fine wavelet scales, noise is dominating; thus,can be

E{W/(m,n)?} will increase with scale, whereas, decreases with estimated from the first two scales.

scale. At fine scalesy2, is dominating inPW'(m), but at coarse  If [NewCork(1,n)| > M1)|W(1,n)|, reset the corresponding

scales E{W!(m,n)?} will be dominating. Based on our experiencegdata in"¥ (1, ) to 0. Refer to the remainder & (1,n) asW (1, n).

to V. ESTIMATION OF THE STANDARD DEVIATION o
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Fig. 5. Recovered HeaviSine by SSNF (SMR= 7.08 db) and by new Fig. 7. Recovered Doppler by SSNF (SNR= 4.74 db) and by new SSNF

SSNF (SNRG = 11.54 db). (SNRG = 7.68 db).

SupposeK points are killed totally; thenﬁf(’l,n) can be roughly  Lack of a translation invariant will make denoising by OWT exhibit
considered to be produced by noise. Frem= o,./||g2|| and the Visual artifacts. In this correspondence, we describe UDWT and hard
asymptotically unbiased estimation of, i.e., PW(1)/(N — K), threshold [see (8)]. Although Donoho proved the optimality of soft

we can get threshold in theory, hard threshold has shown better results for certain
~ . applications [14].
&=/ PW(1)/(N=K)/|gn]- (6)
L _ Jw(m,n), w(m,n)>t(m)
VI. THRESHOLDBASED DENOISING BY UDWT w(m,n) = 0, w(m.n) < H(m) (8)

Threshold-based denoising was first proposed by Donoho [3]-[5].
It is very simple and of satisfying performance. It can be divideﬁle choose

. (m) = c-0.,, Wherec is a constant. It is well known that
into three steps:

for i.i.d. Gaussian nois& ~ N(0,¢?), athreshold = o, 20,30, ...

1) Transform the noisy signal into wavelet coefficiento. will suppress 68.26%, 95.44%, and 99.74% of its values. Therefore,
2) Employ a hard or soft thresholdat each scalex. by imposingc between 3-4, we will have good results. Donoho’s
3) Transform back to the original domain, and get the estimatggfeshold is varying withV, and when is too large, the threshold
signal. may oversmooth the signal.
In case of orthogonal wavelet transform (OWT), Donoho gave thewhy does UDWT do better than OWT on denoising? We will
following soft threshold: explain this briefly as follows. From Figs. 2 and 3, suppose that we

ne () = sgn(w)([w] — 1)+ ) only decompose white Gaussian noﬁéea_t _the first scale[._Sa,Wq]
and[Sa, Wo ] denote the wavelet coefficients for keeping even and
wheret = ¢4/2 log N, and N is the length of signal. odd index, respectively. For the case of OWT, we apply the same



3404

~
3 T T T

Noisy Signal

1t
0.
0 . . ) .
0 500 1000 1500 2000
Fig. 8. True Bumps and the noisy one (SNR7.72 db).
3 T . . T
Recovered Signal by SSNF
25
ot
1.5
Recovered Signal by New SSNF
at
0.5
0 ' ) . .
0 500 1000 1500 2000

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 1999

3, T : . .

True Signal

Noisy Signal

0 . . . .
0 500 1000 1500 2000

Fig. 10. True Blocks and the noisy one (SNR15.89 db).

w

T T T T

Recovered Signal by SSNF

Recovered Signal by New SSNF

—

0 1 1 1 1
0 500 1000 1500 2000

Fig. 9. Recovered Bumps by SSNF (SNR= 7.45 db) and by new SSNF Fig. 11. Recovered Blocks by SSNF (SNR = 10.32 db) and by new
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thresholdt to We andWoy, and after up-sampling, we have
N2 . N/2 .
Sa(w) =Y Sa(2)e ¥, Wea(w)= > Wa(2)e
=1

=1

N/2

So(w) =Y Sa (2l —1)e /T
=1
N/2 »

Woi (w) = Y Wo (21 — 1)e 731,

=1

SSNF (SNRG = 10.68 db).

Therefore, the reconstructed sign#l,
X (w) = uSi (w)Ho(w) + uWi (w)Go(w)

Lo e br
= EAXC(W)‘F Q‘Xo(vu)

i.e., X. = £X. + L X,. The deviation ofX, will be
21

2
o, = =0| +

1 1, 1 .
S E(XXu) € Soif+ 1(D(Xe) + D(X,)) = ol

If we use SNR as the measure of filtering performance, we can

X. and X, reconstructed bySe,Wa] and [Sa,Wo ], respec- See that UDWT will be better.
tively. X. and X, should have the same deviation.

X.(w) = Sq(w)H(w) + We (v)G(w
X,(w) = Sa (w)H(w) + Wo (w)G(w).

In the case of UDWT, we apply/2 to v,

1 1
uSi(w) = 5Se (w)+ §SQ (w)

. 1 1
uWi(w) = -We (w) + §W01(;u).

2

In practice, the noise is superimposed onto the signal. However,
in fine scales, the wavelet coefficients are dominated by noise except
some sharp edges, and the effect of signal can be ignored.

VIl. SIMULATION RESULTS

The simulations are made by using new SSNF method in this
section. Fig. 4 shows the true HeaviSine and the noisy version.
Fig. 5 shows the filtering results by the new method and the original
one. Figs. 6-11 show the results for Doppler, Bumps, and Blocks,
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Fig. 12. Recovered HeaviSine by OWT (SNR = 10.10 db) and by
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Fig. 15. Recovered Blocks by OWT (SNR = 5.23 db) and by UDWT
(SNRG = 14.85 db).

respectively. It can be seen that the new method is much better tﬁ%% improved SNNF method performs much better than the old

the old one for HeaviSine and Doppler. For Bumps and Blocks, tk?e:]e when signals are of good smoothness. This correspondence

presents a new threshold-based method by using UDWT. We illustrate
two methods are almost the same. iefly that by thresholding with UDWT, the standard deviation of
Figs. 12-15 are the denoising results by Donoho’s method (OW y y 9 '

[3], [4] and the new threshold method of this correspondené‘e ise would be smaller. Simulation results also show that the new

(UDWT). It can be seen that the new method is always bett?rethqd perf_orms better for typical signals. Comparing the SSNF
than Donoha’s echnique with the threshold-based method, the latter performs more
' c)s&mstisfactorily and needs less computation, whereas the former can

Compared with the SSNF technique, threshold-based meth . . .
. lyze edges satisfactorily and can be extended to edge detection,
perform better and need less computation. However, the SS o

age enhancement, and other applications.

technique can analyze edges well and can be easily extended to e'@g

detection, image enhancement, and other applications.
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Wavelet-Based Estimation of 1f-Type Signal
Parameters: Confidence Intervals Using the Bootstrap

Angelo M. Sabatini

Index Terms—Bootstrap, 1/f-type stochastic processes, wavelets. IIl. MoviNG BLOCKS BOOTSTRAP OFfBM TIME SERIES

A. Estimation Algorithm

I INTRODUCTION The parameters of a Gaussiarf lignal By (¢) are estimated from

In statistical signal processing, flype stochastic processes arey noisy time series[rn] composed ofV samples
regarded as useful models for phenomena, which exhibit long-term

dependencies among observations, and a statistical self-similarity rin] = B[]+ win]  n=0,--- N -1 @
property [1]. A popular model for ¥/type stochastic processes iswithout loss of generality, the sampling interval is assumed to
the fractional Brownian motion (fBm) [2]. The B, () is a zero- pe ynity; w[n] is modeled as a zero-mean white Gaussian noise
mean nonstationary Gaussian random process with the covariajg variances?2 uncorrelated with the signaB;;[n]. The discrete
function wavelet transform (DWT) is used in [1] to decompade] into a
o . . . collection of wavelet detail coefficients[»], which can be modeled,

Rpy(t,s) =EBn(t)Bu(s) = # [P+ 1527 = 1t = 5] at first approximation, as stationary, rtr?u[tu]ally uncorrelated, zero-mean

(1) random variables whose variances obey the power law

2

2 2577 2 .
with the Hurst exponent < H < 1. vardjin] =0 =02 + oy, J= Mg I ()
Since the statistics of self-similar processes are invariant to di@here 0<~<2R with v = 2H + 1; Ju and Ju are
tions and contractions of the time axis to within an amplitude facto,res ectively th_e finest ar’1d the coarse;t of theavailable scalesR,
orthonormal wavelet bases have been proposed as an apPropratRe order of regularity of the selected wavelet function. Provided
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