
ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Detachable Second-order Pooling: Towards High
Performance First-order Networks

Lida Li, Jiangtao Xie, Peihua Li, Member, IEEE and Lei Zhang, Fellow, IEEE

Abstract—Second-order pooling has proved to be more effec-
tive than its first-order counterpart in visual classification tasks.
However, second-order pooling suffers from the high demand of
computational resource, limiting its use in practical applications.
In this work, we present a novel architecture, namely detachable
second-order pooling network, to leverage the advantage of
second-order pooling by first-order networks while keeping the
model complexity unchanged during inference. Specifically, we
introduce second-order pooling at the end of a few auxiliary
branches and plug them into different stages of a convolutional
neural network. During the training stage, the auxiliary second-
order pooling networks assist the backbone first-order network to
learn more discriminative feature representations. When training
is completed, all auxiliary branches can be removed and only the
backbone first-order network is used for inference. Experiments
conducted on CIFAR-10, CIFAR-100 and ImageNet datasets
clearly demonstrated the leading performance of our network,
which achieves even higher accuracy than second-order networks
but keeps the low inference complexity of first-order networks.

Index Terms—Image classification, second-order pooling, first-
order networks.

I. INTRODUCTION

DEEP convolutional neural networks (CNNs) have been
widely used in tackling various computer vision prob-

lems, including visual object recognition [1], [2], [3], face
recognition [4], [5], [6], person re-identification [7], [8],
[9] and scene understanding [10], [11], [12], among others.
Tremendous efforts have been devoted to the design of CNN
architectures for boosting performance. It is widely acknowl-
edged that deeper and/or wider networks, such as ResNet [13],
Inception [14] and ResNeXt [15], could have higher represen-
tation learning capability. However, the increase of network
depth/width will also bring more overhead and difficulties for
network deployment.

Another factor affecting the learning capability of neural
networks is the pooling strategy. In recent years, global
second-order pooling (GSoP) networks [16], [17], [18], [19],
[20], [21] have attracted a lot of attentions. By replacing
the classical global average pooling (GAP) with covariance
pooling at the end of CNNs, significant improvement has
been reported on large-scale visual recognition tasks. For
example, ResNet-50 with GSoP surpasses ResNet-152 [21].
The GAP [22] calculates the first-order statistics (i.e., mean)
of individual channels without considering the interactions

L. Li and L. Zhang are with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong. E-mail: {cslli,
cslzhang}@comp.polyu.edu.hk.

J. Xie and P. Li are with the School of Information and Communi-
cation Engineering, Dalian University of Technology, China. E-mail: jiang-
taoxie@mail.dlut.edu.cn, peihuali@dlut.edu.cn

between channels, while the global covariance pooling com-
putes the second-order statistics of high-level convolutional
features by exploiting the pair-wise channel correlations, lead-
ing to stronger statistical modeling capability. Though the use
of covariance matrix to represent image statistics enhances
the nonlinear learning capability of networks, the required
computational complexity increases quadratically, significantly
higher than its first-order counterpart.

Either increasing the width/depth of networks or employing
covariance pooling will consume much more computational
resources. One interesting question is whether we can leverage
the advantage of second-order pooling in the first-order net-
works while keeping the model complexity unchanged. This
work attempts to solve this challenging problem. Inspired
by the knowledge distillation method [23], we propose a
novel architecture, called detachable second-order pooling
network (DSoP-Net), where the covariance pooling networks
assist the first-order network to learn more discriminative
representations during training; however, during the inference
stage, the covariance pooling networks can be removed and
only the trained first-order network is deployed. The proposed
DSoP-Net achieves significant performance gains without in-
troducing any additional cost. In particular, on the large-scale
ImageNet dataset [1], DSoP-Net achieves a top-1 error rate of
21.15% with a single ResNet-50 network.

The key idea of DSoP-Net lies in that a weak pooling
method (student) can learn from stronger ones (teachers).
Existing methods of this kind, such as knowledge distillation
[23], [24], [25], often explicitly minimize the discrepancy
between features produced by one or more teacher networks
and the student network. The success of such methods largely
relies on a pre-trained, high performance teacher network
as well as the skillful design of metrics to measure the
discrepancy differences so that the knowledge can be well
transferred. In contrast, in this paper we employ a simple yet
effective regularization term by applying the same criterion
used in the original first-order pooling to the second-order
one. As a result, no extra metric is needed and the knowledge
induced by covariance pooling can easily flow into the first-
order network.

Figure 1 presents an overview of DSoP-Net. During train-
ing, auxiliary branches are employed, each with a covariance
matrix based second-order pooling and an output header. This
allows us to learn spatial information at intermediate layers
by adjusting the channel correlations with deep supervision.
Once these auxiliary branches are plugged into the backbone
architecture at different stages, they actively cooperate with the
first-order pooling and its corresponding output header. The

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

Fig. 1: The proposed auxiliary second-order pooling networks (subnetworks within the dashed rectangular box) assist the
discriminative representation learning of the backbone first-order network. When deployment, we obtain a high-performance
first-order network by detaching the auxiliary branches.

network is optimized with the loss function that is composed
of the first-order output header and all extra second-order ones.
When training is completed, all auxiliary branches are re-
moved and only the backbone first-order network is preserved
for inference. The resulting DSoP-Net is very powerful, even
outperforming its second-order counterparts but with much
lower model complexity.

The rest of the paper is organized as follows. Section II
reviews some related works. Section III and Section IV
introduce our methods and present implementation details,
respectively. Section V shows experimental results of DSoP-
Net and Section VI concludes the paper.

II. RELATED WORK

Section II-A briefly reviews global pooling methods in
literature. Section II-B presents the use of auxiliary networks
in the training of backbone network. In Section II-C, we
discuss squeeze-and-excitation networks and its differences
from our DSoP-Net.

A. Global pooling

The CNN models learn discriminative features in an end-
to-end manner. At the end of the network, a global pooling
of convolutional features is often performed to represent the
whole image for classification. We briefly review the first-order
pooling methods [1], [22] and the high-order ones [16], [20],
[19], [17], [18], [21], [26], respectively.

First-order global pooling methods apply a unary operator
to each feature map and concatenate all outputs as the final
output. Lin et al. [22] first performed Global Average Pooling
(GAP) in a network by averaging final convolutional features
to obtain a vector descriptor. Thanks to this design, the

cost of high-dimensional dense layers in networks such as
AlexNet [1] and VGGNet [27] can be largely reduced. GAP
is widely adopted in mainstream CNN architectures, including
ResNet [13], DenseNet [28], ResNeXt [15], MobileNet [29],
and Inception networks [30], [31], [32]. Statistically, GAP
summarizes the first-order statistics (i.e., mean) of high-level
convolutional features, neglecting the higher-order statistics.

High-order global pooling algorithms aim at more discrim-
inative image representation. Most works in this category
exploit pairwise correlations between channels while some
ones, e.g., [26] , further consider higher-order interactions of
features. Bilinear CNN (B-CNN) [16], [20] and DeepO2P [33]
are pioneering works. Both of them compute covariance matrix
(or second-order moments) as the global image representa-
tions. MPN-COV [19] and its fast version [21] (i.e., iSQRT-
COV) have reported compelling performance on large-scale
visual recognition and fine-grained classification, significantly
outperforming the first-order networks. Unfortunately, the co-
variance representations are of hundreds of thousands of di-
mensions. In addition, computing high-order statistics is time-
consuming at both training and test stages compared to their
first-order counterparts. This limits the practical applications of
second-order networks, especially on resource limited devices.

Several methods have been proposed to improve the effi-
ciency of high-order global pooling methods. Compact Bi-
linear Pooling [34] compresses the full bilinear pooling and
achieves comparable performance with significantly reduced
parameters. In [19], [21], dimensionality reduction is per-
formed prior to second-order pooling. Moreover, [21] only
carries out basic matrix operations suitable for GPU to speed
up. Nevertheless, these second-order based methods are still
much slower than their first-order counterparts.

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

B. Auxiliary networks

Recently, a few methods have been proposed to employ
an auxiliary network for backbone network training. To the
best of our knowledge, the Inception network architecture
[30] is among the first works that utilize auxiliary branches
with carefully crafted design for classification and detection
tasks. Similarly, knowledge distillation in deep CNNs is an
effective approach to transferring the knowledge from more
powerful models into weaker ones for inference [23], [24].
Hinton et al. [23] proposed to transfer knowledge from an
ensemble of acoustic models into a smaller, distilled one for
easier deployment. Gupta et al. [24] transferred the learned
representations from a well labeled domain, obtaining large
performance boost by learning rich representations on the un-
seen domain. Recently, Yim et al. [25] introduced a sequential
flow between layers to distill knowledge. Furlanello et al.
[35] trained student models parameterized identically to their
teachers so that students can even outperform their teachers in
some small scale vision tasks.

C. Squeeze-and-excitation networks

Based on the prior that it is important to fuse both spatial
and channel-wise information at each layer, a lightweight
block, called squeeze-and-excitation (SE) Networks (short for
“SE-Net” in the rest of this paper), has been recently developed
in [36]. It first introduces extra GAP layers followed by con-
volutional and non-linear activation layers. Then, the spatial
features are adaptively adjusted along the channel dimension
regarding to the results computed from the last step. Though
SE-Net can improve much the performance, computation of
the correlations is required so that the extra layers cannot be
removed in the inference stage.

We argue that it is possible to design a detachable version
of SE-Net which can achieve equivalent or even better perfor-
mance. Actually, the re-calibration operation at the last step
of the original SE block can be approximated and replaced by
incorporating additional gradients computed based on channel
correlations during training, which are not required and can
be omitted in inference. In this paper, DSoP-Net is proposed
as the first attempt to reach this goal.

III. PROPOSED METHOD

Section III-A introduces our DSoP-Net in detail, and Sec-
tion III-B presents how we solve the issue of dimensionality
reduction in second-order pooling methods.

A. DSoP-Net

Inspired by the works of knowledge distillation [23], [25],
we propose to improve the first-order pooling network without
introducing extra parameters and computational cost during
inference. Our idea is to transfer the knowledge of second-
order pooling networks (teachers) to the first-order pooling
network (student) in the training stage, while the teacher
networks can be detached from the student in the inference
stage. To achieve this goal, existing knowledge distillation
frameworks often employ one or more metrics to properly

measure the discrepancy between the output of student and
teacher networks in the total loss; however, existing metrics,
such as p-norm, Kullback-Leibler (KL) divergence, Jensen-
Shannon (JS) divergence and Wasserstein divergence, are not
suitable to directly compute the distance between first- and
second-order pooling outputs.

We propose a simple yet effective solution without the need
of extra metrics required in knowledge distillation methods.
The auxiliary branch networks are introduced and attached
to the first-order pooling network to form a multiple output
network, where all outputs are identical to the original output
of the first-order network in one task. This allows us to reuse
the same criterion, e.g. cross-entropy loss in the classification
task, to measure the distance between output of any auxiliary
branch and the label. By summing the losses of auxiliary
branches into the total loss, knowledge and expertise of the
teacher networks can be taught to the student network by
computing the gradients of auxiliary branches w:r:t: the first-
order network.

To clearly illustrate the structure of DSoP-Net, we begin
with the structure of an auxiliary branch designed in DSoP-
Net, followed by the total loss and some discussions.

1) Structure of an auxiliary branch: Denote by yl the
output of the l-th layer of the backbone model. The i-th
auxiliary branch in DSoP-Net is made up of three parts,
including a number of convolution and non-linear activation
layers Si

a, a covariance-based second-order pooling layer Pi
a,

and task-dependent output Oi
a (please refer to Fig. 1). Before

introducing the general case of auxiliary branches, we first
discuss the case when there is only one auxiliary branch
inserted after the l-th layer during training, as shown in Fig.
2(c).

The first part of our auxiliary branch consists of convolu-
tional layers and non-linear activation layers Sa

1, which are
used to extract features from yl for second-order pooling. We
reuse the building block of the first-order pooling network,
such as bottlenecks of ResNet [13] or its variants [15], [37].
No down-sampling operation is performed so that the output
of this part has the same height and width as those of yl but
the channel number can be determined as a hyper-parameter.
If we train DSoP-Net without this part in the auxiliary branch,
there is a clear performance drop under the same experimental
settings. This is because the intermediate features, especially
those of layers closer to the input, are not discriminative
enough to fulfill a task.

The second part of our auxiliary branch is a covariance
matrix based second-order pooling layer Pa. The covariance
matrix describes the channel correlations of the output of
Sa. The element (i,j) of the covariance matrix is obtained
by computing the inner production of the i-th and the j-
th channels after they are vectorized. Once the covariance
matrix is ready, we proceed to normalization, such as matrix
logarithm [38] and matrix power [19], [21], etc. The upper- or
lower-triangular matrix of the results is re-arranged to form a
vector, regarded as the output of the second part.

1Superscript is omitted as there is only one branch in this case.

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

(a)

(b)

(c)

Fig. 2: Comparison of back propagation at the l-th layer of a first-order pooling network with different architectures, including
(a): a normal first-order pooling network, (b): a first-order pooling network with the l-th layer modified as a squeeze-and-
excitation block [36] (dash-dotted rectangle), and (c): DSoP-Net with an auxiliary branch plugged after the l-th layer (here we
assume L and La are equally contributed in the total loss). A “�” symbol stands for the operation of element-wise plus and
a “
” symbol stands for channel-wise multiplication between a scalar and its corresponding feature map in back propagation.
y0l denotes the output of the squeeze-and-excitation block related to the l-th layer.

The third part is to produce task-dependent output Oa. It
can be easily adapted from the corresponding structure in
the backbone model. Since in this work we focus on the
classification task, we leverage a fully-connected layer as a
linear classifier. Meanwhile, it allows us to reuse the cross-
entropy loss in classification tasks to effectively update the
weights of an auxiliary branch in DSoP-Net during training.
The weights of the l-th layer can be updated by minimizing
the loss of the branch and the loss of the backbone first-
order pooling network together. From the perspective of back
propagation, the gradients related to channel correlations in the
branch are merged into the gradients in the first-order pooling
network.

2) The total loss: In the gefneral case, we suppose that
there are N auxiliary branches plugged into a first-order
pooling network during training. Let B1

a; : : : ;BN
a denote these

branches in order as shown in Fig. 1. It always holds that
Bi

a is inserted closer to the input than Bj
a in DSoP-Net,

8i < j; i; j = 1; : : : ; N . Let L denote the loss computed for

the original output of the backbone model O. O1
a; : : : ;ON

a are
the outputs of the auxiliary branches, sharing the same shape
and meaning as O. We employ the same criterion to compute
the losses of auxiliary branches, L1

a; : : : ;LN
a .

We sum up L1
a; : : : ;LN

a together with L as the total loss of
the DSoP-Nets to minimize:

LDSoP�Net = �L+

NX
i=1

�iLi
a; (1)

where � and f�igN
i=1 are weights used to balance the contri-

bution of each term. In this paper, we set � = �1 = : : : =
�N = 1 by default except stated otherwise.

For any layer of the backbone model between insertion point
of Bk (included) and the insertion point of Bk�1 (excluded),
its gradients are determined by outputs of the original first-
order pooling and all the auxiliary branches inserted after that
layer. The gradients of the l-th layer of the backbone model

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

can be written as

@LDSoP�Net

@yl

=
@(�L+

PN
i=k �iLi

a)

@yl

; (2)

where yl is the output of the l-th layer. For those outputs of
branches plugged before the specific layer, it can be clearly
observed that they are irrelevant to the update of the l-th layer’s
weights.

It should also be noted that a layer in the backbone model
will not be updated with additional second-order statistics if
there is no auxiliary branch inserted after that layer. In practice,
we always insert the last auxiliary branch BN right before
the first-order pooling layer to make sure that each layer of
the backbone model (except the original pooling layer and its
classifier) can acquire extra cues during training.

After training is completed, we remove all auxiliary
branches so that the first-order network has the same param-
eters and computational overhead as it originally has during
test.

3) Discussions: Once optimized, DSoP-Net can work with-
out extra parameters and computation of channel-information
in auxiliary branches. As we will see in the section of
experimental results, DSoP-Net exhibits highly competitive
performance with second-order pooling networks. This leads
to an interesting question: how does channel-based information
contribute to a CNN model during training and test?

It is important to fuse spatial and channel-based cues of
a CNN model to boost model performance. As the channel-
based cues can be directly computed from the spatial re-
sponses, optimizing spatial responses w:r:t: channel-based
information can improve the latter one in return. Therefore,
there is no need to explicitly compute channel-based cues
during test as the channel-based cues have been determined
once the spatial responses are given. In other words, when
we jointly optimize the spatial and channel-based cues during
training, the spatial cues can be further enhanced.

It is critical to ensure that the backbone network used for
training is equivalent to the one used for testing after we
detach all the auxiliary branches from it. When two CNNs
have the same weights and the same computational graph, they
will obtain the same output for the same input. As detaching
the branches does not affect the value of any weight, all
weights of DSoP-Net remain unchanged in the testing stage.
As for the computational graph, though all auxiliary branches
are detached, no operations are removed or added in the
computational graph of the remained DSoP-Net. Therefore,
the entire route from the input to the desired output O is the
same before and after the detachment. The DSoP-Net used for
training is equivalent to the one used for testing.

To further explain the detachable property of DSoP-Net,
in Fig. 2 we compare DSoP-Net with the original first-order
pooling network and SE-Net [36] from the perspective of back
propagation. One can see that gradients at the l-th layer of
the original first-order pooling network are computed only
regarding to the original loss L. In contrast, gradients obtained
at the l-th layer of both DSoP-Net and SE-Net can be written
as the weighted summation of two terms corresponding to
the spatial and channel-based information. In the dash-dotted

rectangle, it can be observed that the weight of one term
in SE-Net is partially determined by the output of the other
one according to the definition of channel-wise multiplication.
However, weights of both terms in DSoP-Net are independent
to each other. They are pre-defined by the relative contributions
of L and La in the total loss, which is concise and easy to
compute. It remains unsolved in [36] whether the channel-
wise information plays a more important role than the spatial
information as an SE block can be hardly partitioned for in-
depth study. With DSoP-Net, however, we are able to unveil
that it is merely important to explicitly compute channel-wise
information during test when the spatial information is well
learned. It can be seen that at the test stage DSoP-Net can be
regarded as a special SE-Net whose channel-wise information
is always trivial, e.g. 1s. Besides, it can be found from the
experimental results in Section V that DSoP-Net can achieve
equivalent or even better performance than SE-Net.

B. Progressive supervised dimensionality reduction

The output feature dimension of covariance matrix based
second-order pooling method is proportional to the square of
input channels. As a result, dimensionality reduction (DR) is
required prior to a second-order pooling layer to save com-
putational overhead and prevent over-fitting. However, a large
channel reduction ratio often leads to significant performance
drop. The DR operator in [19], [21], for example, consists
of a 1�1 convolution, followed by BN and ReLU layers.
When it reduces the channel number from 2048 to 64 so that
the dimension of second-order representation is comparable
to that of the vanilla ResNet-50 model (with GAP) at 2K-
d, the performance gain almost fades out while it costs 24%
more inference time to perform GSoP. Clearly, it is of vital
importance to develop a compact yet effective DR operator.

In this paper, we propose a compound DR operator which
consists of a sequence of lightweight DR operators, called pro-
gressive supervised dimensionality reduction (PSDR). PSDR
shares the same design principle of DSoP. Their main dif-
ference lies in where they locate in a CNN model. A CNN
model can be regarded as a multi-step transform that maps its
input domain to the desired output domain. Both PSDR and
DSoP aim to introduce the second-order statistics from the
detachable branches to actively guide and improve the learning
of each step, i.e., they both exploit the second-order statistics.
A straight of M intermediate layers are created for PSDR
during training. Each intermediate layer gently reduces the
channel to some extent without decreasing the performance,
and all these layers work together to reduce the channel to
the desired dimension. In addition, we incorporate auxiliary
branches to better transfer the expertise and knowledge in
high-dimensional domain to low-dimensional domain at all in-
termediate layers. Specifically, an auxiliary branch is inserted
after each intermediate layer during training, and there are M
auxiliary branches B1; : : : ;BM . Similar to B1; : : : ;BN , each
auxiliary branch used in PSDR is composed of three parts. The
first part is formed by a 1�1 convolutional layer followed by
batch normalization and non-linear activation layer, e.g. ReLU,
reducing the given number of channels to the desired number.

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

We reuse the covariance matrix based second-order pooling
layer to construct the second part of an auxiliary branch
in PSDR. The third part is built to produce task-dependent
output, which can borrow from the corresponding layers of
the backbone model.

Let P1
a; : : : ;PM

a denote the second part of an auxiliary
branch in PSDR. We denote the output of auxiliary branches
by O1

a; : : : ;OM
a , sharing the same form and meaning as

the original output O. As the same criterion is adopted to
measure these output, we can obtain their corresponding losses
J 1

a ; : : : ;JM
a . All these extra losses are summed up with the

original loss J to minimize. Thus, the total loss function of
PSDR can be written as

LP SDR = �J +

MX
i=1

iJ i
a ; (3)

where � and f
igM
i=1 are scalars used to balance the contribu-

tion of each term. By default, � =
1 = : : : =
M = 1.
Fig. 3 compares a direct DR operation with the proposed

PSDR. Before the second-order pooling layer, the direct DR
operation takes only one step to reduce 2048 channels to 64,
running the risk of severe information loss in the output O. In
contrast, it takes four more steps with PSDR. One can see that
on the right-hand side of Fig. 3b, there are 5 1�1 convolutional
layers with 1024, 512, 256, 128 and 64 filters, where each layer
is followed by batch normalization and ReLU. In the dashed
rectangle, four auxiliary branches are attached at the first
four steps, resulting in O1

a;O2
a;O3

a and O4
a, respectively. With

the help of these branches, channel correlations of features
obtained at intermediate steps are strengthened in the process
of channel reduction.

IV. IMPLEMENTATION DETAILS

A. Architecture of DSoP-Net
It is flexible to implement our DSoP-Net with many stan-

dard architectures. In this paper, we implement DSoP-Net
with the popular and powerful ResNet [13]. By default, we
create 4 auxiliary branches with second-order pooling and
output header, which are inserted after conv2 x, conv3 x,
conv4 x and conv5 x, respectively. We repeat the ResNet
bottleneck defined at each stage for several times to set up the
first part of the auxiliary branch described in Section III-A,
where strides of convolutional layers are fixed to 1 so that the
input and output of the auxiliary layers have identical size.
We name the first part of auxiliary branches as a conv2 x,
a conv3 x, a conv4 x and a conv5 x, respectively. For ex-
ample, a conv2 x is inserted after conv2 x.

For the second-order pooling method used in each aux-
iliary branch, we use iSQRT-COV [21] for fast speed and
reliable performance. Before the iSQRT-COV meta-layer, we
perform a DR following [19], [21] so that the number of
channels is at most 256 if necessary. This reduces the com-
putational cost during training and prevents potential over-
fitting. In our implementation, we follow the default setting of
hyper-parameters described in [21]. We use trace based pre-
normalization and 5 Newton-Schultz iterations to solve matrix
power.

(a)

(b)

Fig. 3: Comparison of (a) a direct DR operation and (b) our
PSDR used to reduce channels from 2048 to 64 for second-
order pooling. The blue, purple and yellow rectangles denote
a 1�1 convolutional layer followed by batch normalization
and ReLU (number of channels is presented after comma), a
second-order pooling layer, and a fully-connected layer used
as a linear classifier, respectively. Data shape is formatted
as height � width � channel, located next to the related
arrow. Four identical auxiliary branches (dashed rectangle) are
created for PSDR during training. Names of the output are
presented in the bracket.

The ResNet-18, ResNet-34 and ResNet-50 based DSoP-Net
models are presented in Table I. The input size is 224�224�3.
We use the same names for those layers as in the original
ResNet structure [13]. We use prefix “a ” to indicate the
corresponding layers in the auxiliary branches. For instance,
a conv2 x is inserted after conv2 x, and a pds2 is on top
of a conv2 x. For comparison, we present the structure of
ResNet-101 in the rightmost column. We only change the
stride of convolutional layers in conv5 x from 2 to 1 so that the
output size is 14�14. Let us consider the modified ResNet-18
model as an example. We replicate the blocks at stage2�stage5
and accordingly put them in the auxiliary branches. We plug
a direct DR layer to reduce the channel number to 256 right
before the second-order pooling operation. However, values
obtained after a conv2 x�a conv4 x are directly fed into
a pds2�a pds4 without DR, respectively. Majority of extra
parameters come from the dense layers in a pds2�a pds5
as the dimension of image representation of the auxiliary
branches increases from 2K to 32K.

The training of DSoP-Net costs more than twice the time

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

TABLE I: DSoP-Net with modified ResNet architecture. The input image size is 224�224�3. 1st- and 2nd-PDS are short
terms for 1st- and 2nd-order pooling, dense layer and softmax, respectively. Figures in bracket indicate kernel size and number
of channels used for pooling.

Layer Name Output Size 18-layer 34-layer 50-layer 101-layer

conv1 112×112 7×7, 64, stride 2

3×3, max pool, stride 2

conv2 x 56×56
[

3× 3; 64
3× 3; 64

]
× 2

[
3× 3; 64
3× 3; 64

]
× 3

 1× 1; 64
3× 3; 64
1× 1; 256

× 3

 1× 1; 64
3× 3; 64
1× 1; 256

× 3

a conv2 x 56×56
[

3× 3; 64
3× 3; 64

]
× 2

[
3× 3; 64
3× 3; 64

]
× 2

 1× 1; 64
3× 3; 64
1× 1; 256

× 3 N.A.

a pds2 1×1 2nd-PDS(64) 2nd-PDS(64) 2nd-PDS(64) N.A.

conv3 x 28×28
[

3× 3; 128
3× 3; 128

]
× 2

[
3× 3; 128
3× 3; 128

]
× 4

1× 1; 128
3× 3; 128
1× 1; 512

× 4

1× 1; 128
3× 3; 128
1× 1; 512

× 8

a conv3 x 28×28
[

3× 3; 128
3× 3; 128

]
× 2

[
3× 3; 128
3× 3; 128

]
× 2

1× 1; 128
3× 3; 128
1× 1; 512

× 4 N.A.

a pds3 1×1 2nd-PDS(128) 2nd-PDS(128) 2nd-PDS(256) N.A.

conv4 x 14×14
[

3× 3; 256
3× 3; 256

]
× 2

[
3× 3; 256
3× 3; 256

]
× 6

 1× 1; 256
3× 3; 256
1× 1; 1024

× 6

 1× 1; 256
3× 3; 256
1× 1; 1024

× 23

a conv4 x 14×14
[

3× 3; 256
3× 3; 256

]
× 2

[
3× 3; 256
3× 3; 256

]
× 2

 1× 1; 256
3× 3; 256
1× 1; 1024

× 13 N.A.

a pds4 1×1 2nd-PDS(256) 2nd-PDS(256) 2nd-PDS(256) N.A.

conv5 x 14×14
[

3× 3; 512
3× 3; 512

]
× 2

[
3× 3; 512
3× 3; 512

]
× 3

 1× 1; 512
3× 3; 512
1× 1; 2048

× 3

 1× 1; 512
3× 3; 512
1× 1; 2048

× 3

a conv5 x 14×14
[

3× 3; 512
3× 3; 512

]
× 2

[
3× 3; 512
3× 3; 512

]
× 2

 1× 1; 512
3× 3; 512
1× 1; 2048

× 3 N.A.

a pds5 1×1 2nd-PDS(256) 2nd-PDS(256) 2nd-PDS(256) N.A.

1st-PDS(512) 1st-PDS(2K)

GFLOPs (Train.) 7.26 9.81 13.45 10.01
GFLOPs (Test) 3.06 5.61 6.27 10.01

#Param (Train) 100.6M 110.7M 181.9M 44.5M
#Param (Test) 11.7M 21.8M 25.6M 44.5M

than training its backbone model with the same experimental
configuration. The extra time comes from two parts: auxiliary
branches and second-order pooling layers. As the total number
of convolutional layers in our auxiliary branches are by
default the same as that of the backbone model, the auxiliary
convolutional layers roughly double the training time. The
extra training time costed by the second-order layers depends
on the number of auxiliary branches. For example, with DSoP-
Net for ImageNet, it takes approximately 74, 97, and 158 hours
to train a ResNet-18, ResNet-34 and ResNet-50, respectively.

B. Organization of PSDR

To balance precision and speed of PSDR, we reduce half
of the channels at the first intermediate layer in our imple-
mentation. For the rest of intermediate layers, we introduce a

decay factor � 2 (0; 1) for gentle DR. The number of output
channels at an intermediate layer can be computed by

Ci
a =

(
0:5C0

a ; i = 1;

b�Ci�1
a c; otherwise;

(4)

where C0
a is the number of given feature maps for PDSR. We

set � = 0:25 in the remaining of this paper unless otherwise
specified. For example, given C0

a=2048 feature maps, we set
up 2 intermediate layers for PSDR and they are associated
with 1024 and 256 channels, respectively. Besides, we directly
reduce the number of current channels to the desired number in
each auxiliary branch before we perform second-order pooling
in case of limited GPU memory.

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

TABLE II: Comparison of error rates (%) achieved by different methods with ResNet-50 on ImageNet.

Method Pooling type Pooling type GFLOPs Extra #Param. Extra #param. Top-1 Top-5(Train.) (Test) GFLOPs (M.) (M.)

ResNet-50-s2 [13] 1st 1st 3.86 N.A. 25.6 N.A. 23.85 7.13
ResNet-50-s1 [13] 1st 1st 6.27 N.A. 25.6 N.A. 23.57 6.85

Knowledge distillation [23]
1st 1st 3.86 0 25.6 0 23.73 7.03w/ ResNet-50-s1

Knowledge distillation [23]
1st 1st 3.86 0 25.6 0 23.54 6.70w/ ResNet-101

Knowledge distillation [23]
1st 1st 3.86 0 25.6 0 23.46 6.66w/ SE-ResNeXt-101

FBN [39] 1st 1st N.A. N.A. N.A. N.A. 24.00 7.10
SORT [40] 1st 1st N.A. N.A. N.A. N.A. 23.82 6.72

SE-Net [36] 1st 1st 3.87 0.01 28.1 2.5 23.29 6.62
CBAM [41] 1st 1st 3.86 0.004 28.1 2.5 22.66 6.31

MPN-COV [19] 2nd 2nd 6.43 0.16 56.9 31.3 22.74 6.54
iSQRT-COV [21] 2nd 2nd 6.43 0.16 56.9 31.3 22.14 6.22

ResNet-50-s2
1st&2nd 1st 3.86 0 25.6 0 23.14 6.56w/ DSoP-Net (ours)

ResNet-50-s1
1st&2nd 1st 6.27 0 25.6 0 21.15 5.70w/ DSoP-Net (ours)

V. EXPERIMENTS

We evaluate the proposed method on large-scale image
classification dataset ImageNet, as well as CIFAR-10 and
CIFAR-100 datasets. All experiments are conducted on a
machine equipped with dual Intel Xeon Gold 6136@3.0GHz
CPUs, 128G DDR4 2666MHz RAM, 1T nvme m.2 SSD and
8 NVIDIA Tesla P100 GPU cards. We implement our method
by using PyTorch [42] compatible with CUDA and cuDNN.

A. Datasets

We adopt ImageNet LSVRC2012 dataset [43] with 1,000
classes for large-scale image classification task. The dataset
contains over 1.2 million images for training, 50 thousand
images for validation, and 100 thousand images for testing.
As labels of the test images are not released, we follow [31],
[13] and compare methods on the validation set.

We also evaluate the generalization capability of the pro-
posed DSoP-Net on the CIFAR-10 dataset and the CIFAR-
100 dataset [44]. Both datasets are well balanced, consisting
of 60,000 32�32 colour images from 10 and 100 classes,
respectively. For each dataset, 50,000 images are used for
training and the remaining 10,000 are adopted for testing.

B. Experimental Settings

We closely follow standard experimental settings on Ima-
geNet as well as CIFAR-10 and CIFAR-100 datasets for fair
comparison. Details are presented below.

Experimental setting for ImageNet. In the training phase,
we first resize each image so that its shorter side is randomly
sampled on [256, 512] [14]. Then, a fixed-size 224�224
patch is randomly cropped from the down-scaled image or its
horizontally flipped version. Finally, we normalize each patch
by subtracting the dataset mean and dividing it by the dataset
standard deviation. In the testing phase, we resize each test
image so that its shorter side is 256 and a single 224�224

center crop is applied for inference. We use SGD [45] with
a mini-batch of 256 for optimization and set weight decay to
1 � 10�4 and momentum to 0.9. We train DSoP-Net from
scratch for 90 epochs. Learning rate starts at 0.1, and is
reduced to 0.01 and 0.001 at Epoch 30 and 60, respectively.

Experimental setting for CIFAR-10 and CIFAR-100.
Standard data augmentation strategy [22], [46], [36] is adopted
in training, where images are horizontally flipped at random
and zero-padded on each side with 4 pixels before conducting
a random 32�32 crop. For evaluation, we report the error
computed on the test images of original size.

C. Evaluation on ImageNet

We compare our DSoP-Net with 4 categories of competing
networks, including: (1) networks with quadratic transforma-
tion instead of just linear convolutions, such as FBN [39] and
SORT [40]; (2) vanilla ResNet-50 trained with deeper or wider
models in terms of knowledge distillation [23], which plays
the role of student network jointly optimized with a teacher
network, e.g. a modified ResNet-50 that uses stride=1 for all
convolutional layers at stage 5, ResNet-101 and SE-ResNeXt-
101; (3) architectures developed with fixed design such as SE-
Net [36], and CBAM [41]; and (4) networks that use GSoP
at the network end, such as MPN-COV [19] and iSQRT-
OV [21]. We compare the results reported in the original
papers for methods in categories (1), (3) and (4). We run the
methods in category (2) with PyTorch official implementation
of ResNet family models 2 and third-party 3 implementation of
SE-ResNeXt-101, with which we achieved very close results
to ResNet family models reported in literature [47]. Due to
limited computational resources, we adapted the final size of
a random image crop to 256�256 pixels so that experiments
can be conducted with a single set of 8-way GPU server;

2https://github.com/pytorch/vision
3https://github.com/Cadene/pretrained-models.pytorch

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

meanwhile, we reduced the mini-batch size from 1024 to 256
for SE-ResNeXt-101 as the original setting reported in [36] is
highly in favor of the distributed training system. Accordingly,
we reduced the initial learning rate from 0.6 to 0.15. Following
the settings in [19], [21], to obtain higher resolution feature
maps, we further changed the value of stride at stage 5 from 2
to 1. We use the original ResNet-50 architecture (stride=2)
and the modified one (stride=1) as two baselines for fair
comparison, and denote by ResNet-50-s2 and ResNet-50-s1
the two baselines, respectively.

Table II compares the performance of DSoP-Net with the
state-of-the-arts on ImageNet. We have three observations
articulated below. First, the proposed ResNet-50-s1 w/ DSoP-
Net achieves top-1/5 error rates at 21.15%/5.70% on Ima-
geNet, significantly outperforming all the competing methods.
It is even better than those methods that explicitly use GSoP at
the network end, including MPN-COV [19] and iSQRT-COV
[21]. Second, with equivalent number of parameters used in
training, ResNet-50-s2 w/ DSoP-Net outperforms joint training
with a single deeper and/or wider teacher model. It shows that
a student model is not able to well fuse the channel correlations
and the spatial information without explicit modelling during
training. However, it is hard to design metrics to directly
measure the discrepancy of channel correlations between the
student and the teacher models. In contrast, DSoP-Net is free
of this issue and it allows us to easily transfer knowledge
and expertise of second-order statistics to the student model.
Third, DSoP-Net uses the same architecture as the two baseline
models during inference, making it the most lightweight one
among all competing methods. However, it can still obtain
equivalent or even better performance than the heavier models,
such as SE-Net [36].

We also study the performance of the latest state-of-the-
art architectures with our DSoP-Net. EfficientNet-b0 [48] is
selected as the backbone model. Without a TPU cluster in
hand, we made a few changes of the original experimental
settings to fit our own GPU server. Specifically, the mini-batch
size is reduced from 2048 to 768, and the initial learning rate
is accordingly set to 0.048 for RMSProp. First, we used a
third-party implementation 4 and managed to achieve a top-1/5
accuracy of EfficientNet-b0 at 76.81%/93.32% on ImageNet
with baseline ResNet preprocessing. The results we obtained
are almost the same as the official TPU implementation 5

under similar settings (top-1 accuracy at 76.8%). Then, we
replaced the original first-order pooling of EfficientNet-b0 with
the second-order pooling structure by reducing the number of
channels from 1280 to 64 with a sequence of conv1� 1, BN
and swish activation [49]. To prevent over-fitting, we inserted a
dropout layer before the last linear classifier and set its dropout
rate to 0.2. It turns out that the EfficientNet-b0 with second-
order pooling obtains a top-1/5 accuracy at 77.02%/93.38%.
Finally, we constructed the DSoP-Net for EfficientNet-b0 by
inserting two auxiliary branches with second-order pooling.
One was inserted at the middle of the backbone model and
the other was inserted at the end. With DSoP-Net, the top-1/5

4https://github.com/rwightman/pytorch-image-models
5https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

(a)

(b)

Fig. 4: Convergence curves regarding (a) top-1 and (b) top-5
error rates achieved by ResNet-50-s1 with and without DSoP-
Net on ImageNet.

accuracy of the original first-order pooling head is further im-
proved to 77.12%/93.56%. This validates the complementary
nature of DSoP-Net to state-of-the-art CNN architectures such
as EfficientNet.

Figure 4 compares the convergence curves of our DSoP-
Net (output with GAP) and those of ResNet-50-s1. We can
see that our DSoP-Net consistently outperforms ResNet-50-s1
by a large margin. This shows that knowledge acquired from
the auxiliary classifiers with second-order pooling improves
the original classifier with first-order pooling throughout the
whole training process. Figure 5 presents the convergence
curves of different output headers. We have three observations.
First, the first-order output achieves very close performance
to its teacher output in the last detachable branch. Second,
output of a branch inserted at a later layer always performs
better than that of a branch inserted at an earlier layer. The
first-order output has even better results than those second-
order outputs of the branches inserted at earlier layers. Third,
compared to the original backbone model, the benefit gained

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

TABLE III: Comparison of error rates (%) achieved by different training policies with DSoP-Net on ImageNet.

Training #Epoch a pds2 a pds3 a pds4 a pds5 GAP
policy Top-1/5 Top-1/5 Top-1/5 Top-1/5 Top-1/5

One-phase (default) 90 34.59/15.24 25.44/8.33 21.77/6.04 21.11/5.57 21.15/5.70

Two-phase 90+15 43.52/22.36 30.00/11.30 24.68/7.54 23.34/6.50 23.57/6.85

10 20 30 40 50 60 70 80 90

20

30

40

50

60

epochs

to
p

−
1

 e
rr

o
r

(%
)

train: stage 2

train: stage 3

train: stage 4

train: stage 5

train: output

val: stage 2

val: stage 3

val: stage 4

val: stage 5

val: output

(a)

10 20 30 40 50 60 70 80 90
1

6

11

16

21

26

31

36

epochs

to
p

−
5

 e
rr

o
r

(%
)

train: stage 2

train: stage 3

train: stage 4

train: stage 5

train: output

val: stage 2

val: stage 3

val: stage 4

val: stage 5

val: output

(b)

Fig. 5: Convergence curves regarding (a) top-1 and (b) top-5
error rates achieved by all output headers of DSoP-Net under
ResNet-50 architecture on ImageNet, including the original
one and the four obtained in the auxiliary branches.

by DSoP-Net during the very first epochs is significant while
later the gap between the curves gradually reduces. This
raises an interesting question regarding to the effect of early
removal of auxiliary branches in DSoP-Net. We employed
ResNet-50-s1 as the backbone and inserted auxiliary branches
at the beginning of training on ImageNet. All experimental
settings remain unchanged except that auxiliary branches are
removed at epoch 30, 45, 60, respectively, to train the DSoP-
Net. Experimental results show that the top-1/5 accuracies are
decreased by 0.87%/0.31%, 0.41%/0.14% and 0.33%/0.11%,

respectively, compared to adopting auxiliary branches during
the whole training. That is, early removal of auxiliary branches
in DSoP-Net harms the final performance of the backbone
model.

We continue to investigate the importance of engaging
second-order statistics at earlier layers of first-order pooling
networks. The default training policy of our DSoP-Net can be
regarded as one-phase where first- and second-order statistics
jointly help to update the weights of the backbone model.
For comparison reasons, we define a two-phase training pol-
icy where first- and second-order statistics are independently
computed in order. Specifically, we first attach the same 4
auxiliary branches, including a pds2,3,4,5, to the baseline
ResNet-50 model (stride=1) after it converges under default
training settings so that it has the same structure as DSoP-
Net. Then, we proceed to fine-tune the parameters in auxiliary
branches and fix those of the backbone model for 15 epochs
on ImageNet. Learning rate starts at 0.1, and is reduced to
0.01 and 0.001 after 5 and 10 epochs, respectively. From
Table III, one can see that the performance of the outputs
at the 4 auxiliary branches achieved by the two-phase training
policy can be largely improved by the default training policy.
This suggests that optimizing networks simultaneously with
first- and second-order statistics lead to better performance
at earlier layers than computing the two kinds of statistics
separately during training. Besides, with the default training
policy of DSoP-Net, the strengthened intermediate layers help
to improve the classification performance of the backbone
model.

D. Evaluation on CIFAR-10 and CIFAR-100 Datasets

We further implement DSoP-Net with other modern back-
bone models to evaluate its generalization ability on CIFAR-10
and CIFAR-100 datasets, including two Pre-activation ResNet
models [13], i:e: ResNet-110 and ResNet-164, two Wide
Residual Networks (WRN) [37] models, i:e: WRN-22-10
and WRN-28-10, as well as two ResNeXt [15] models, i:e:
ResNeXt-64-8 and ResNeXt-64-16. During training, for all
models, we used SGD with momentum as optimizer and set
the batch size as 128 and momentum as 0.9. For Pre-activation
ResNet models, we set the weight decay as 1� 10�4 and the
number of training epochs as 110. The learning rate starts from
0.3, and it is divided by 10 at 80 and 95 epochs. For WRN
models, we set the weight decay as 5� 10�4 and the number
of training epochs as 200. The learning rate begins from 0.1,
and is divided by 5 at epochs 60, 120 and 160. For ResNeXt
models, we set the weight decay as 5� 10�4 and the number
of training epochs as 300. The initial learning rate is 0.1, and
is divided by 10 at 150 and 225 epochs. To construct auxiliary

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

TABLE IV: Summary of DSoP-Net with different backbone models on CIFAR-10 and CIFAR-100 datasets.

Backbone #Block #Branch #Total #Conv. per stage Stage
per stage per stage branches (Backbone+Branch) specification

ResNet-110 18 6 18 36+36 [0,0,3]×6
ResNet-164 18 6 18 54+54 [0,0,3]×6
WRN-22-10 3 2 6 6+6 [1,0,2]
WRN-28-10 4 2 6 8+8 [0,2,0,2]

ResNeXt-64-8 3 2 6 9+9 [1,0,2]
ResNeXt-64-16 3 2 6 9+9 [1,0,2]

branches for each model, definition of the same building block
is reused at the stage where one auxiliary branch is attached.
Meanwhile, we keep the total number of building blocks at
one stage the same as that of the blocks used in the backbone
model. Therefore, there are the same number of convolutional
layers in the backbone model and its auxiliary branches.

Table IV summarizes some key statistics of DSoP-Net
with different backbone models on CIFAR-10 and CIFAR-100
datasets. Take ResNet-110 as an example. We uniformly insert
18 branches with second-order pooling into the backbone
network. The pattern of each stage is specified as [0; 0; 3]� 6,
where the non-zero values suggest the number of auxiliary
convolutional layers inserted at the corresponding position
while the zero values mean there are no auxiliary branches
inserted at that position. To this end, there is a detachable
branch at the end of every 3 bottlenecks; 6 auxiliary branches
are attached to each stage; and there are 6� 3 = 18 auxiliary
branches in total. For each branch, it adopts the same network
structure as its associated 3 bottlenecks before the second-
order pooling layer. As each original/auxiliary bottleneck
depicts 2 convolutional layers, 36 + 36 = 72 convolutional
layers are used at each stage during training. The target number
of channels are set to 128 for all second-order pooling layers,
including DSoP-Nets and iSQRT-COV [21] for comparison.
For DR, we follow [19], [21] and use the direct DR operator.
To avoid over-fitting, we incorporate a dropout layer with
dropout rate as 0.5 before a dense layer in an auxiliary branch
if 128 channels are used for second-order pooling. In this way,
the image representation in auxiliary branches is 2K-d, 4K-d,
and 4K-d for branches attached to Stage 1, Stage 2, and Stage
3, respectively.

To adapt to the CNN models on CIFAR-10 and CIFAR-100
datasets, we fixed the weight of original loss as � = 1 in
Eqn. 1. Weights of losses connected with auxiliary outputs at
Stage 1, Stage 2 and Stage 3 of all models are empirically
set as 0.1, 0.2 and 0.3, respectively. This significantly helps
to prevent gradient exposure accumulated at earlier layers in
back-propagation. Meanwhile, this also strengthens the role
of the original prediction of backbone model. We observed
that all losses are basically on the same order of magnitude;
thus, the desired loss of the original prediction given by the
1st-order pooling layer only takes up a very small portion
(� 5%) if all components are equally weighted in the total
loss, challenging the performance of the backbone model in
inference. In contrast, with our implementation, loss of the
original prediction actually takes up 30% � 50% in the total
loss to train more effective CNN model.

TABLE V: Comparison of error rates (%) achieved by different
backbone models on CIFAR-10.

Backbone w/o DSoP-Net w/ DSoP-Net Gain(Original) (Ours)

ResNet-110 6.37 5.73 0.64
ResNet-164 5.46 4.55 0.91
WRN-22-10 4.44 3.91 0.53
WRN-28-10 4.17 3.81 0.36

ResNeXt-64-8 3.65 3.44 0.21
ResNeXt-64-16 3.58 3.20 0.38

TABLE VI: Comparison of error rates (%) achieved by dif-
ferent backbone models on CIFAR-100.

Backbone w/o DSoP-Net w/ DSoP-Net Gain(Original) (Ours)

ResNet-110 26.88 25.43 1.45
ResNet-164 24.33 21.06 3.27
WRN-22-10 20.75 18.91 1.84
WRN-28-10 20.50 18.50 2.00

ResNeXt-64-8 17.77 16.34 1.43
ResNeXt-64-16 17.31 16.23 1.08

To prevent over-fitting caused by auxiliary branches, a direct
DR operator is inserted before the 2nd-order pooling layer to
keep at most 128 channels if there are more channels for GSoP.
Meanwhile, a dropout layer (p = 0:5) is plugged between the
second-order pooling layer and the dense layer in each branch.
Consequently, the dimension of image representation produced
by any auxiliary branch on CIFAR-10 and CIFAR-100 datasets
is equal or less than 128�(128+1)�0.5�0.5=4K.

Table V and Table VI demonstrate the results achieved
by different backbone models with and without DSoP-Net
on CIFAR-10 and CIFAR-100 datasets. One can clearly see
that models with DSoP-Net effectively outperforms the same
architecture without DSoP-Net on both CIFAR-10 and CIFAR-
100. Besides, it can be observed that DSoP-Net is more useful
when training a narrow network. For example, the performance
gain on CIFAR-10 for the narrowest model, ResNet, reaches
0:64% � 0:91% while those for the WRN models, and the
widest ResNeXt models, are reduced to 0:36% � 0:53%, and
0:21% � 0:38%, respectively.

E. Ablation Study

1) DSoP-Net: We conduct ablation study of DSoP-Net
from three aspects, as presented in detail as follows.

Pooling methods in auxiliary branches. We study the
impact of different pooling methods in auxiliary branches.

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

TABLE VII: Comparison of error rates (%) achieved by dif-
ferent pooling methods in the auxiliary branches on ImageNet.
ResNet-50-s1 is employed as the backbone model.

With DSoP-Net Aux. Pool. Method Order Top-1/5

7 N.A. N.A. 23.57/6.85

X
GAP [22] 1st 22.74/6.61

iSQRT-COV [21] 2nd 21.15/5.70

TABLE VIII: Comparison of error rates (%) achieved by
different number of channels used for second-order pooling at
a pds2,3,4,5 on ImageNet. ResNet-18-s1 is employed as the
backbone model. An asterisk symbol in superscript indicates
a DR operation before 2nd-order pooling.

With Target #Chnl GFLOPs / Top-1/5DSoP-Net #Chnl #Param.(M)

7 N.A. N.A. 3.06/11.7 30.11/10.78

X
64 64,64�,64�,64� 5.69/32.7 29.19/10.12
128 64,128,128�,128� 5.95/51.3 28.88/9.92
256 64,128,256,256� 7.26/100.6 28.69/9.85

ResNet-50-s1 is employed as the backbone model and we
modify the network architecture of auxiliary branches during
training. All layers used for channel reduction are removed and
the second part is changed from iSQRT-COV to GAP while the
other parts remain unchanged. We train the backbone model
with the modified auxiliary branches from scratch with the
default training strategy. We compare it to default architecture
defined in DSoP-Net under the same backbone model. Table
VII presents the results. Compared with the baseline, we
can see that the introduction of auxiliary branches with first-
order pooling method improves top-1 error rates by 0.8%. If
we use the covariance matrix based second-order pooling as
the second part of an auxiliary branch, it further boosts the
result by nearly 1.4%. It shows that the second-order channel
correlations are difficult to be directly modelled by first-order
pooling such as GAP. Instead, knowledge and expertise from
the second-order pooling layer in an auxiliary branch are
effective to adjust the spatial responses in the backbone model.

Number of channels for GSoP. Covariance matrix as an

TABLE IX: Comparison of top-1 error rates by different
optimizers (%).

(a) ResNet-20 on CIFAR-10.

Optimizer w/o DSoP-Net w/ DSoP-Net

SGD [45] 7.92 7.59
ADAHESSIAN [50] 7.87 7.70

RAdam [51] 8.62 8.07

(b) ResNet-18-s1 on ImageNet.

Optimizer w/o DSoP-Net w/ DSoP-Net

SGD [45] 30.11 28.69
ADAHESSIAN [50] 29.86 29.55

RAdam [51] 32.12 31.29

image representation quadratically increases the computational
complexity of the second-order pooling method. It also affects
the number of parameters of the dense layer in an auxiliary
branch. To study the impact, in each auxiliary branch, we
decrease the number of channels for second-order pooling
from 256 to 128 and 64, respectively. ResNet-18 (stride=1),
denoted by ResNet-18-s1, is employed as the backbone model.
Table VIII compares the results by using different number of
channels. One can see that the total number of parameters
used in training decreases sharply from 100.6M to 32.7M with
only 64 channels. It reduces the computational complexity by
approximately 21.6%. Meanwhile, top-1/5 error rates increase
moderately by 0.5% and 0.27%. Even so, DSoP-Nets still
reduces the top-1 error rate by almost 1% with the same
backbone inference architecture.

Insertion points of the auxiliary branches. To study
the impact of different insertion points, we employ ResNet-
18 model as backbone and fix the total number of ResNet
bottlenecks used in all auxiliary branches as 16. Specifically,
we remove one or more auxiliary branches based on the default
architecture of DSoP-Net under the ResNet-18-s1 architecture
(please refer to Table I), where each auxiliary branch contains
four ResNet bottlenecks. We uniformly distribute the bottle-
necks to the remaining branches. Table X presents the results.
One can see that performance of first-order pooling can be
improved by inserting more branches at different stages. With
the same number of branches, plugging branches at the layers
closer to the first-order pooling benefits performance boost at
the price of more parameters and computations in training, but
not during the inference stage.

Choice of optimizer. It has been shown [52], [53] that
SGD is a very stable and effective network optimizer for
various CNN architectures, especially on large scale datasets
such as ImageNet. It is interesting to investigate whether other
optimizers can further improve the performance of DSoP-
Net than SGD. We test two recent optimizers: ADAHES-
SIAN [50] and Rectified Adam (a.k.a. RAdam) [51]. We use
the official implementation of ADAHESSIAN6 and RAdam7.
In the experiments, we opt to SGD [45] as the baseline and
evaluated ResNet-20 on CIFAR-10 and ResNet-18-s1 on Ima-
geNet, which are widely used to compare different optimizers
(especially those designed for CNN models). We use the same
hyper parameter settings reported in the original paper of each
optimizer, including weight decay, initial learning rate, total
epochs, learning rate schedule, etc.

Table IX summarizes the results. One can have the following
three observations. First, for each optimizer, model trained
with DSoP-Net outperforms the same model trained without
DSoP-Net on both CIFAR-10 and ImageNet. This shows that
our method is effective with different optimizers. Second,
compared to the baseline optimizer, DSoP-Net slightly reduces
the gap between RAdam and SGD on CIFAR-10 from 0.70%
to 0.48%. However, the gap between RAdam and SGD on
ImageNet is enlarged from 2.01% to 2.60%. Third, ADAHES-
SIAN results in better performance than SGD for the original

6https://github.com/amirgholami/adahessian
7https://github.com/LiyuanLucasLiu/RAdam

ACCEPTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

TABLE X: Comparison of error rates(%) achieved by different insertion points with ResNet-18 on ImageNet.

#Conv. Layers in With #Branch GFLOPs #Param. Top-1 Top-5a conv2,3,4,5 x DSoP-Net (M)

0,0,0,0 7 N.A. 3.06 11.7 30.11 10.78

16,0,0,0 X 1 4.94 94.8 29.09 10.04
0,0,0,16 X 11.23 127.4 28.88 9.92

8,8,0,0 X
2

4.34 95.4 29.06 10.03
8,0,0,8 X 8.47 108.7 29.00 9.98
0,0,8,8 X 8.50 112.0 28.77 9.90

4,4,4,4 X 4 7.26 100.6 28.69 9.85

TABLE XI: Comparison of error rates (%) achieved by differ-
ent DR methods with ResNet-50-s1 on ImageNet in reducing
the 2048 channels.

Method Target
�

w/ Aux. Top-1 Top-5#Channel Branches

Direct DR [19], [21]
64 N.A. N.A. 23.73 6.99
128 N.A. N.A. 22.78 6.43
256 N.A. N.A. 22.14 6.22

PSDR (Ours)

64 0.25 7 23.30 6.86
128 0.25 7 22.18 6.09
64 0.5 7 23.24 6.72
128 0.5 7 22.02 6.15
256 0.5 7 21.84 5.99
64 0.5 X 22.71 6.42
128 0.5 X 21.89 6.11
256 0.5 X 21.65 6.00

CNN models on both datasets, but it is not as good as SGD
for models with DSoP-Net. We believe that the performance
loss is caused by the approximation of the Hessian matrix as
a diagonal operator. Such an approximation may be suitable
for the sequential models (such as the vanilla CNN models),
but for multiple-header models like DSoP-Net, it is critical to
consider the correlations among parameters in the backbone
model and those in the auxiliary model. As a result, some
second-order cues in the auxiliary branches may be implicitly
lost during the optimization with ADAHESSIAN, and the per-
formance becomes worse than the DSoP-Net optimized with
SGD. Besides, SGD is friendly to computational resources in
terms of both memory and overhead, and hence it is easier to
apply to deeper or wider CNN architectures.

2) PSDR: We employ ResNet-50-s1 as the backbone model
in the ablation study of PSDR. In addition, we focus on the
parameter selection of � in Eqn. 4 and the introduction of
auxiliary branches for DR. Table XI demonstrates the results
achieved by the direct DR operator adopted in [19], [21] and
the proposed PSDR in reducing the 2048 channels of the last
convolutional layer. It can be observed that PSDR outperforms
direct DR when the same reduction ratio is applied. A larger
� allows more intermediate layers, leading to a clear perfor-
mance boost. Meanwhile, introduction of auxiliary branches
enables transfer of second-order statistics from high-dimension
domain to low-dimension domain, which also improves the
DR operation. Particularly, PSDR significantly improves the
direct DR when the given 2048 channels are reduced to 64

channels. We achieve a top-1/5 error rate of 22.71%/6.42%,
even better than when keeping 128 channels with direct DR.

VI. CONCLUSION

We proposed a novel method which significantly improves
the performance of first-order CNNs in image classification.
Auxiliary branches were carefully designed to transfer knowl-
edge to the backbone first-order networks during training,
which are however removable at the testing stage. As a result,
the proposed method leverages the advantages of second-order
pooling networks while keeping similar complexity to first-
order networks during inference. To the best of our knowledge,
this is the first attempt to make use of higher-order statistics
in knowledge distillation. Experiments conducted on ImageNet
as well as CIFAR-10 and CIFAR-100 datasets demonstrated
the effectiveness of our network. In particular, we achieved
a top-1 error rate of 21.15% with single center-crop using
ResNet-50 network. In the future, we will adapt DSoP-Net to
solve more tasks, including object detection, image segmen-
tation, etc.

ACKNOWLEDGMENT

This work is partially supported by Hong Kong RGC GRF
project (PolyU 152135/16E) and NSF of China (under grant
number 61971086). The authors would like to thank the
reviewers for their insightful comments.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. NeurIPS, 2012.

[2] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The PASCAL visual object classes chal-
lenge: A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136,
Jan. 2015.

[3] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE Trans. Neural Netw. Learn. Syst, pp. 1–21,
2019.

[4] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[5] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard,
“The megaface benchmark: 1 million faces for recognition at scale,” in
Proc. CVPR, 2016.

[6] B. Cao, N. Wang, J. Li, and X. Gao, “Data augmentation-based joint
learning for heterogeneous face recognition,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 6, pp. 1731–1743, June 2019.

[7] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-
identification by multi-channel parts-based CNN with improved triplet
loss function,” in Proc. CVPR, 2016.

