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Remove Cosine Window from Correlation
Filter-based Visual Trackers: When and How

Feng Li, Xiaohe Wu, Wangmeng Zuo, David Zhang, and Lei Zhang

Abstract—Correlation filters (CFs) have been continuously
advancing the state-of-the-art tracking performance and have
been extensively studied in the recent few years. Nonetheless,
the existing CF trackers adopt a cosine window to spatially
reweight base image to alleviate boundary discontinuity. However,
cosine window emphasizes more on the central region of base
image and has the risk of contaminating negative training
samples during model learning. On the other hand, spatial
regularization deployed in many recent CF trackers plays a
similar role as cosine window by enforcing spatial penalty on
CF coefficients. Therefore, we in this paper investigate the
feasibility to remove cosine window from CF trackers with
spatial regularization. When simply removing cosine window,
CF with spatial regularization still suffers from small degree of
boundary discontinuity. To tackle this issue, binary and Gaussian
shaped mask functions are further introduced for eliminating
boundary discontinuity while reweighting the estimation error
of each training sample, and can be incorporated with multiple
CF trackers with spatial regularization. In comparison to the
baseline methods with cosine window, our methods are effective
in handling boundary discontinuity and sample contamination,
thereby benefiting tracking performance. Extensive experiments
on four benchmarks show that our methods perform favorably
against the state-of-the-art trackers using either handcrafted or
deep CNN features.

Index Terms—Visual tracking, correlation filters, cosine win-
dow, spatial regularization

I. INTRODUCTION

CORRELATION filter (CF) is a representative framework
for visual tracking and has attracted great research in-

terest. Since the pioneering work of MOSSE [1], extensive
studies have been given to improve the CF models by incor-
porating nonlinear kernel [2], [3], scale adaptivity [4], [5],
[6], max-margin classification [7], spatial regularization [8],
[9], [10], and continuous convolution [11], [12]. Moreover, the
use of deep representation [13], [14], [15] and its combination
with handcrafted features also significantly boosts the tracking
performance. Benefited from the progress in models and
feature representation, CFs have continuously advanced the
state-of-the-art tracking accuracy and robustness in the recent
few years.
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In standard CF, the training set is formed as all the cyclic
shifts of a base image and can be represented as a circulant
matrix, making that CFs can be efficiently learned via fast
Fourier transform (FFT). Albeit such circulant property greatly
benefits learning efficiency, it makes the negative samples
(i.e., shifted images) suffer from the boundary discontinuity
problem. As shown in Fig. 1(a), except for the base image in
green box, all the shifted images (e.g., the two patches in cyan
and blue boxes) are generated using the circulant property and
are not truly negative patches in real images.

In order to alleviate boundary discontinuity, cosine window
has been introduced in early CF trackers, e.g., MOSSE [1] and
KCF [2], and generally inherited by the subsequent improved
models [4], [8], [16]. In particular, cosine window bands on
base image as a pre-processing step by multiplying with a
cosine shaped function (i.e., larger values for central regions
and zeros for boundary pixels). Using KCF [2] as an example,
it can be seen from Fig. 1(b) that after deploying cosine
window boundary discontinuity can be largely suppressed
(e.g., the patch in cyan box). Nonetheless, the shifted images
near boundary are still plagued, as shown in the patch in blue
box. In addition, when cosine window is deployed to base
image, it also suppresses the pixels outside the target bounding
boxes, thus has the risk of reducing the quality of training
samples away from the target center. Since the model learning
is directly dependent on the training set, the contamination on
sample quality has a negative impact on learning more robust
models. For example, the regions outside the human head in
the base image of Fig. 1(b) are forced to approximate zero with
the introduction of cosine window. This reduces the quality
of the patches in cyan and blue boxes since the surrounding
regions of the human head may also be helpful for the model
learning. Unfortunately, this issue remains less investigated in
the tracking community.

Recently, spatial regularization has also been suggested in
numerous CF trackers [8], [12], [9], [16], [17], [18] to alleviate
boundary discontinuity, which can be roughly grouped into
two categories. On the one hand, SRDCF [8] and its later
works [12], [17], [18] penalize the filter coefficients near
boundaries to approximate zero. On the other hand, CFLB [9]
and its multi-channel extension BACF [16] directly restrict the
filter coefficients to be zero outside target bounding boxes.
In general, existing CF trackers with spatial regularization
still adopt cosine window, and are more effective in han-
dling boundary discontinuity, as illustrated in Fig. 1(c)(e).
Even though, the contamination of negative samples remains
inevitable, since the cyan patch in Fig. 1(c) is forced to be
zero in comparison to its counterpart in Fig. 1(d), and cannot
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(a) KCF without cosine window (b) KCF with cosine window

(c) BACF with cosine window (d) BACF without cosine window

(e) ECO with cosine window (f) ECO without cosine window

Fig. 1. Illustration of the cyclic extension of base image, representative samples and learned filters by KCF, BACF and ECO with and without cosine window,
including KCF (a) without and (b) with cosine window, BACF (c) with and (d) without cosine window, ECO (e) with and (f) without cosine window. In
each of (a)(b)(c)(d)(e)(f), the left part shows the cyclic extension of base image, while the right part illustrates the learned filter and three training samples
cropped from the left part. One can observe from (a)(b)(c)(e) that while cosine window plays similar roles with spatial regularization on handing boundary
discontinuity, it has the risk of reducing the quality of training samples. And when removing cosine window from BACF, ECO in (d) and (f), the learned
filter does not change much in its appearance. These results motivate us to remove cosine window from CF trackers with spatial regularization.

contribute much on model learning, thereby leading to the
degraded performance.

Comparing the filters in Fig. 1(a)(b)(c)(e), one can see that
cosine window plays a similar role as spatial regularization
in enforcing the filter coefficients near boundary to approach
zero. Therefore, it is interesting to ask the first problem
concerned in this work: when can we remove cosine window
from CFs? In Fig. 1(d)(f), we present the learned filters
by simply removing cosine window from both BACF and
ECO trackers. It can be observed that the filters in both
Fig. 1(c)(d) and Fig. 1(e)(f) are only moderately different in
appearances. Our empirical study further shows that the two
trackers without cosine window performs slightly inferior to
their baseline methods with cosine window. Thus, our answer
to this question is: when spatial regularization is deployed, it
is possible to remove cosine window from CF trackers.

The second problem concerned in this work is: how to

remove cosine window from CF trackers with spatial regular-
ization. To begin with, Fig. 1(d) illustrates three representative
samples used in BACF by simply removing cosine window.
While most samples are real image patches (e.g., those in
green and cyan boxes), there remain a small percentage
of negative samples suffering from boundary discontinuity
(e.g., the patch near boundary in blue box). To address this
issue, we introduce a binary mask function to eliminate the
effect of boundary discontinuous sample. In particular, we
assign zero to negative samples with discontinuous boundaries,
thereby safely removing cosine window. To further improve
tracking performance, a Gaussian shaped mask function is also
presented to emphasize more on samples near target center.

To evaluate the feasibility and effectiveness of removing
cosine window, we incorporate our methods with several
representative CF trackers with spatial regularization, includ-
ing BACF [16], STRCF [17], ECO [12], and UPDT [18].
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Experiments are then conducted on four tracking benchmarks,
i.e., OTB-2015 [19], Temple-Color [20], VOT-2018 [21] and
LaSOT datasets. In comparison to the baseline methods with
cosine window, our methods are effective in handling bound-
ary discontinuity while avoiding sample contamination, and
give rise to more robust appearance models as well as tracking
performance. Moreover, by incorporating with UPDT [18], our
methods achieve the state-of-the-art tracking performance, and
attain an EAO score of 0.391 on VOT-2018, surpassing the
rank-1 tracker (i.e., LADCF [22]) in the VOT2018 challenge.

To sum up, the main contributions of this paper are:
• The existing CF methods adopt the cosine window to

alleviate boundary discontinuity, but neglect its risk of
contaminating the negative samples during model train-
ing. As far as we are concerned, we make the first attempt
to address this issue by removing cosine window from CF
trackers to avoid the sample contamination.

• When to remove cosine window from CF trackers? we
perform analyses and empirical studies to show the simi-
lar roles of cosine window with spatial regularization on
reducing boundary discontinuity. Based on these results,
we find that it is possible to remove cosine window from
CF methods with spatial regularization.

• How to remove cosine window from CF trackers with
spatial regularization? We propose two mask functions
to safely remove cosine window from CF trackers with
spatial regularization. Since there still exist several sam-
ples with discontinuous boundaries after removing cosine
window from CF trackers with spatial regularization, we
incorporate two mask functions into the CF models to
reweight the estimation errors of each sample. In this
way, the resulting models can both eliminate boundary
discontinuity and avoid sample contamination.

• Our methods are generic and can be incorporated with
several representative CF trackers with spatial regular-
ization. The experimental results on multiple datasets
show that the proposed methods outperform their baseline
methods with cosine window, and perform favorably with
state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the CF trackers relevant to this work.
Section III provides both qualitative and quantitative analyses
to dissect the effect of removing cosine window from CF
trackers. Section IV further describes our solutions to remove
cosine window, which are then incorporated with multiple
CF trackers with spatial regularization. Section V reports the
experimental results. Finally, Section VI ends this work with
several concluding remarks.

II. RELATED WORK

The core problem of CF trackers is to learn a discriminative
filter for the next frame from current frame and historical
information. Early methods, e.g., MOSSE [1] and KCF [2],
formulate the CF framework with one single base image
from the current frame, and update the CFs using the linear
interpolation strategy. Denote by the sample pair {(xt,yt)} in
frame t, where each sample xt consists of L feature maps with

xt = [xt,1, ...,xt,L], and yt represents the Gaussian shaped
label. Then the correlation filter f is obtained by minimizing
the following objective,

E (f) = 1

2

∥∥∥∥∥
L∑

l=1

fl ? (xt,l � c)− yt

∥∥∥∥∥
2

+ λR(f), (1)

where ? and � respectively stand for circular convolution and
Hadamard product, c denotes cosine window, and λ denotes
the tradeoff parameter of the regularization term R(f).

Since the pioneering work of MOSSE [1], many improve-
ments have been made to CF trackers. On the one hand, the CF
models have been consistently improved with the introduction
of non-linear kernel [2], scale adaptivity [4], [5], [6], long-
term tracking [23], part-based CFs [24], particle filters [25],
spatial regularization [9], [17], continuous convolution [11],
[12], and formulation with multiple base images [8], [12], [18].
On the other hand, the progress in feature engineering has also
been advancing the state-of-the-art tracking performance, such
as HOG [26], color features [27], [28], self-similarity local
features [29] and hierarchal CNN features [13], [14], [15],
[30], [31].

Among these improvements, we specifically mention a
category of CF formulations with multiple base images [8],
[12], [18]. Given a set of K base images {(xk,yk)}Kk=1, CF
with multiple base images can then be expressed as,

E (f) = 1

2

K∑
k=1

αk

∥∥∥∥∥
L∑

l=1

fl ? (xk,l � c)− yk

∥∥∥∥∥
2

+ λR(f), (2)

where αk represents the weight of the k-th base image xk.
For example, SRDCF [8] and CCOT [11] simply adopt the
latest K frames as base images. In SRDCFdecon [32], an
adaptive decontamination model is presented to downweight
corrupted samples while up-weighting faithful ones. ECO [12]
and UPDT [18] apply a Gaussian mixture model (GMM) to
determine both the weights as well as base images. In general,
CF trackers with multiple base images perform much better
than those with single base image, and have achieved state-
of-the-art tracking performance.

In contrast to CF with single base image in Eqn. (1), the
introduction of multiple base images breaks the circulant struc-
ture, and generally requires iterative optimization algorithms
to solve the resulting formulation in Eqn. (2). Therefore, in
this work different solutions are respectively developed for
removing cosine window from CF trackers with single and
multiple base images.

III. WHEN TO REMOVE COSINE WINDOW

Cosine window is first introduced in the early MOSSE and
KCF methods to alleviate the effect of boundary discontinuity,
and then adopted in all the subsequent CF trackers. In the
recent few years, spatial regularization has also been deployed
in CF trackers for handling boundary discontinuity. Albeit co-
sine window is also adopted in CF with spatial regularization,
considering their similar roles, it is natural to ask whether it
is possible to remove cosine window from CF when spatial
regularization is adopted.
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In this section, we use KCF and BACF as two representative
examples, and evaluate the performance of CF trackers with
and without cosine window on the VOT-2018 dataset. Here
we name KCF and BACF without cosine window as KCFRC
and BACFRC , respectively. Table I lists their EAO, accuracy
and robustness on VOT-2018. For KCF, it can be seen that
removing cosine window is harmful to tracking performance
and gives rise to an obvious EAO drop from 0.106 to 0.069.
From Fig. 1(a)(b), the filter learned by KCF is much different
from that learned by KCFRC in appearance. Moreover, cosine
window also performs similarly in enforcing non-central filter
coefficients to approach zero. In contrast to KCF, cosine
window actually plays a minor role on improving tracking
performance for BACF, and the EAO of BACFRC is only
0.013 lower than that of BACF. From Fig. 1(c)(d), the filters
learned by BACF and BACFRC are also similar in appearance.
Similar results can also be observed for STRCF [17], ECO [12]
and UPDT [18] on the VOT-2018 benchmark in Section V,
indicating that it is possible to remove cosine window from
CF trackers when spatial regularization is introduced.

We also note that BACF still slightly outperforms BACFRC ,
which can be explained by taking both boundary discontinuity
and sample contamination into account. From Fig. 1(c), it can
be seen that BACF can well handle boundary discontinuity
by incorporating cosine window and spatial regularization.
However, cosine window is deployed on the base image, which
makes the shifted negative samples contaminated and may
be harmful to tracking performance. In BACFRC , one can
see from Fig. 1(d) that most negative samples are real image
patches (e.g., those in green and cyan boxes). However, a small
percentage of negative samples still suffer from boundary
discontinuity (e.g., that in blue box), which may explain the
slight inferiority of BACFRC in comparison to BACF. To sum
up, for removing cosine window, it is better to avoid sample
contamination as well as eliminate boundary discontinuity for
all negative samples. Thus, we turn to the second problem
of this work, i.e., how to remove cosine window from CF
trackers with spatial regularization, and present our solutions
in the next section.

IV. HOW TO REMOVE COSINE WINDOW

Simply removing cosine window from CF trackers with
spatial regularization generally cannot outperform the baseline
methods because the negative samples near boundary still
suffer from boundary discontinuity. To address this issue, we
modify the formulation of CF trackers by introducing mask
function to deactivate the boundary discontinuous samples.
Two mask functions are presented to eliminate boundary
discontinuity as well as emphasize more on samples near the
target center. Then, optimization algorithms are respectively
developed for removing cosine window from CF trackers with
single and multiple base images.

A. Problem formulation

Without loss of generality, we use BACF as an example
to analyze the positions of negative samples suffering from
boundary discontinuity. Suppose that the sizes of the target

TABLE I
THE EAO, ACCURACY AND ROBUSTNESS OF TWO CF TRACKERS (I.E.,
KCF AND BACF) AND THEIR CORRESPONDING VARIANTS WITHOUT

USING COSINE WINDOW DURING TRAINING (I.E., KCFRC AND BACFRC )
ON THE VOT-2018 DATASET. HERE, ↑ (↓) DENOTES HIGHER (LOWER) IS

BETTER.

Methods KCF [2] KCFRC BACF [16] BACFRC

EAO (↑) 0.106 0.069 0.137 0.124

Accuracy (↑) 0.327 0.374 0.432 0.466

Robustness (↓) 1.182 1.823 0.757 0.892

bounding box and base image are h × w and H × W ,
respectively. For BACF, we have H = W = 5

√
hw. From

Fig. 2(a), it can be seen that only the samples at position (x, y)
are with discontinuous boundaries when H

2 ≥ |x| >
H
2 −

h
2

or W
2 ≥ |y| >

W
2 −

w
2 . In general, H (W ) is much larger

than h (w), and thus the majority of samples (e.g., 64% when
h = w) are real image patches. In order to eliminate the
effect of boundary discontinuity, we introduce a binary mask
function M shown in Fig. 2(b) to indicate the samples of real
image patches. In particular, a sample at position (x, y) is a
real image patch when M(x, y) = 1. Then the binary mask
M can be defined as follows,

M (x, y) =

{
1, if |x| ≤ H

2 −
h
2 , |y| ≤

W
2 −

w
2 ,

0, otherwise.
(3)

Furthermore, the CF model usually is learned from an
unbalanced set containing few positive samples and a large
amount of negative samples. The binary mask M treats all
boundary continuous samples equally, and has the risk of
degrading tracking performance due to vast negative samples.
Considering that the samples near the target center are more
important than those on image boundaries, we also present a
Gaussian shaped mask function MG defined as,

MG(x, y)=

{
e−( xhδ )

2−( y
wδ )

2

, if |x|≤ H
2 −

h
2 , |y|≤

W
2 −

w
2 ,

0, otherwise,
(4)

where the parameter δ is introduced to control the weight
decay speed of training samples. Empirical study also validates
that Gaussian shaped mask function MG generally performs
moderately better than binary mask function M for CF track-
ers with spatial regularization.

In the following, we use Eqn. (2) as a general form
to illustrate how to eliminate boundary discontinuity while
avoiding sample contamination for CF trackers with spatial
regularization. In particular, we remove cosine window from
Eqn. (2), and incorporate the binary mask M to deactivate
the negative samples suffering from boundary discontinuity,
resulting in the following model,

E (f) = 1

2

K∑
k=1

αk

∥∥∥∥∥M�
(

L∑
l=1

fl ? xk,l−yk

)∥∥∥∥∥
2

+λR(f) . (5)

With the introduction of M, the estimation error of the sample
with discontinuous boundary can be safely excluded during
training. In comparison to CF tracker with cosine window in
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用黄色框和蓝色框分别表示是否边界不连续的样本，多给几个代表性的例子
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(c)

Fig. 2. Illustration of the mask functions. (a) Training samples from the video soccer used in BACF, where the samples outside green box suffer from the
boundary discontinuity problem, (b) the binary mask function M, (c) the Gaussian shaped mask function MG. In order to eliminate boundary discontinuity,
a binary mask function M is introduced to deactivate the patches with discontinuous boundaries by setting their values in M to 0. And another Gaussian
shaped mask function MG is further proposed to emphasize more on samples near target center.

Eqn. (2), the formulation in Eqn. (5) can circumvent both
boundary discontinuity and sample contamination, thereby
benefiting tracking performance.

Given a specific CF tracker, we denote the models by
(i) removing cosine window, (ii) removing cosine window
and incorporating binary mask function, (iii) removing co-
sine window and incorporating Gaussian mask function as
CFRC , CFRCB , and CFRCG, respectively. In the following,
we present the optimization algorithms to solve the model in
Eqn. (5) for CF trackers with single and multiple base images,
respectively.

B. Solution for CF trackers with single base image

For CFLB [33], BACF [16], CSR-DCF [10] and STR-
CF [17], the filter is updated by solving a specific CF model
defined on a single base image (i.e., the current frame). In this
case, the resulting constrained optimization problem can be
efficiently solved via alternating minimization, in which each
subproblem has the closed-form solution. When removing
cosine window from this category of CF trackers with spatial
regularization, we rewrite the model in Eqn. (5) as

E (f) = 1

2

∥∥∥∥∥M�
(

L∑
l=1

fl ? xl−y

)∥∥∥∥∥
2

+λR(f) . (6)

Since the mask function M is defined as a constant non-
negative matrix, the data term

∥∥∥M� (∑L
l=1 fl ? xl−y

)∥∥∥2
shares the same convex property with

∥∥∥∑L
l=1 fl ? xl−y

∥∥∥2
according to the operations preserving convexity of functions
in [34]. Suppose Eqn. (6) is a convex function and can be
solved via the ADMM algorithm. According to the Eckstein-
Bertsekas condition [35], the ADMM algorithm is guaranteed
to converge to global optimum when Eqn. (6) is convex
and each subproblem in ADMM algorithm has closed-form
solution. In the following, we take BACF as an example,
and present an alternating direction method of multipliers
(ADMM) to optimize the resulting formulation.

With simple algebra, the original formulation of BACF can
be equivalently rewritten as,

L(g) = 1

2

∥∥∥∥∥
L∑

l=1

(xl � c) ? (PTgl)− y

∥∥∥∥∥
2

+
λ

2
‖g‖2 , (7)

where P stands for the binary mask matrix which crops the
central D elements of gl with the size of T . After removing
cosine window and incorporating with the mask function M,
we further let fl = PTgl, and the modified BACF model can
be formulated as,

L(f ,g) = 1

2

∥∥∥∥∥M� (

L∑
l=1

xl ? fl − y)

∥∥∥∥∥
2

+
λ

2
‖g‖2 ,

s.t. fl = PTgl.

(8)

The model in Eqn. (8) is still a convex optimization prob-
lem, can be solved with the ADMM algorithm. To begin with,
we introduce another auxiliary variable z =

∑L
l=1 xl ? fl − y,

and reformulate Eqn. (8) as,

L(f ,g, z) = 1

2
‖M� z‖2 + λ

2
‖g‖2 ,

s.t. fl = PTgl, z =

L∑
l=1

xl ? fl − y.
(9)

Then the augmented Lagrangian function of Eqn. (9) is given
as,

L(f ,g, z,ζ,γ)= 1

2
‖M� z‖2 + λ

2
‖g‖2

+

L∑
l=1

ζT
l (fl−P

Tgl) +
µ

2

L∑
l=1

∥∥∥fl−PTgl

∥∥∥2
+γT

(
L∑

l=1

xl?fl−y−z

)
+
τ

2

∥∥∥∥∥
L∑

l=1

xl?fl−y−z

∥∥∥∥∥
2

,

(10)

where ζ, γ denote the Lagrangian multipliers, and µ, τ
represent the penalty parameters, respectively. Eqn. (10) can be
solved iteratively with the ADMM algorithm, in which all the
subproblems, i.e., f , g and z, have their closed-form solutions.
In the following, we present the solution of each subproblem.
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Subproblem g:

argmin
g

λ

2
‖g‖2+

L∑
l=1

ζT
l (fl−P

Tgl)+
µ

2

L∑
l=1

∥∥∥fl−PTgl

∥∥∥2 . (11)

Note that each channel of g in Eqn. (11) can be computed in-
dependently, thus the closed-form solution of the l-th channel
of g can be expressed as,

gl =
(
λI+ µPPT

)−1

(Pζl + µPfl) , (12)

where I denotes an identity matrix. Note that λI + µPPT

is a diagonal matrix and its inverse matrix can be efficiently
computed via element-wise operation.

Subproblem f :

argmin
f

L∑
l=1

ζT
l (fl−P

Tgl)+
µ

2

L∑
l=1

∥∥∥fl−PTgl

∥∥∥2
+γT

(
L∑

l=1

xl?fl−y−z

)
+
τ

2

∥∥∥∥∥
L∑

l=1

xl?fl−y−z

∥∥∥∥∥
2

.

(13)

Using Parseval’s theorem, Eqn. (13) can be equivalently ex-
pressed in the Fourier domain,

argmin
f̂

L∑
l=1

ζ̂
T
l

(
f̂l−q̂l

)
+
µ

2

L∑
l=1

∥∥∥f̂l−q̂l

∥∥∥2
+γ̂T

(
L∑

l=1

x̂l� f̂l−ŷ−ẑ

)
+
τ

2

∥∥∥∥∥
L∑

l=1

x̂l� f̂l−ŷ−ẑ

∥∥∥∥∥
2

.

(14)

Here x̂ =
√
TFx represents the FFT of sample x where F

is the orthonormal Discrete Fourier Transform (DFT) matrix,
and q̂l takes the form of q̂l =

√
TFPTgl. Analogous to

BACF [16], the solution for f̂ can be divided into T indepen-
dent subproblems. Denote by x (t) ∈ RL the vector consisting
of t-th elements of sample x along all L channels, then the
t-th elements f̂(t) of f̂ can be computed by,

f̂(t) =
(
τ x̂ (t) x̂ (t)T + µI

)−1

(
τ x̂ (t) ŷ (t)+τ x̂ (t) ẑ (t)−x̂ (t)γ(t)−ζ̂ (t)+µq̂ (t)

)
.

(15)

Note that x̂ (t) x̂ (t)
T is rank-1 matrix, thus Eqn. (15) can be

efficiently solved with Sherman-Morrison formula [36],

f̂ (t) =
1

µ

(
τ x̂ (t) ŷ (t)+τ x̂ (t) ẑ (t)−x̂ (t) γ̂(t)−ζ̂ (t)+µq̂ (t)

)
− x̂ (t)

µb
(τ ŷ(t)ŝx(t)+τ ẑ(t)ŝx(t)−γ̂(t)ŝx(t)−ŝζ(t)+µŝq(t)) .

(16)

where ŝx (t) = x̂(t)
T
x̂(t), ŝζ (t) = x̂(t)

T
ζ̂(t), ŝq(t) =

x̂(t)
T
q̂(t) and b= µ

τ + ŝx (t). And the solution for f is further
obtained with the inverse DFT operation.

Subproblem z:

argmin
z

1

2
‖M� z‖2 +γT

(
L∑

l=1

xl?fl−y−z

)

+
τ

2

∥∥∥∥∥
L∑

l=1

xl?fl−y−z

∥∥∥∥∥
2

.

(17)

Analogous to Eqn. (11), each element in z can also be
computed independently, and its solution is expressed as
follows,

z = (Diag(M�M+ τ1))−1

(
τ(

L∑
l=1

xl ? fl−y)+γ

)
, (18)

where 1 defines a vector in which each element equals to
the value 1, and Diag(·) constructs a diagonal matrix from a
vector.
Lagrangian Update: The Lagrangian multipliers ζ, γ are
updated as,

ζ(t+1) = ζ(t) + µ
(
f (t+1) −PTg(t+1)

)
,

γ(t+1) = γ(t) + τ

(
L∑
l=1

xl ? f
(t+1)
l − y − z(t+1)

)
.

(19)

where f (t+1), g(t+1) and z(t+1) are the solutions to the above
subproblems at iteration t+ 1.

Finally, we also note that the above solutions can be easily
extended to remove cosine window from other CF trackers
(e.g., STRCF) with a single base image.

C. Solution for CF trackers with multiple base images

Another category of CF trackers with spatial regularization
is defined on multiple base images, which inevitably breaks the
circulant structure and requires iterative optimization to solve
some of the resulting subproblems. Several representative
trackers in this category include SRDCF [8], CCOT [11],
ECO [12] and UPDT [18]. In this subsection, we use ECO
as an example to suggest an iterative optimization method
for removing cosine window. Without loss of generality, our
solution can be easily extended to remove cosine window
from other CF trackers based on multiple base images (e.g.,
UPDT [18]).

In general, the learning algorithm in ECO consists of two
stages. (i) In the first frame, a sample projection matrix
is learned with the CF to reduce the number of feature
channels in training samples. (ii) In the subsequent frames
the projection matrix is fixed and the CFs are further updated
with the reduced features. To keep consistent with the ECO
tracker [12], we also define the formulation for data on a
one-dimension domain. Denote by a collection of K sample
pairs {(xk,yk)}Kk=1, and the feature map size for the l-th
channel xk,l is Nl. The feature map xk,l in ECO tracker is
first transformed into the continuous spatial domain t ∈ [0, T )
with an interpolation operator Jl,

Jl{xk,l}(t) =
Nl−1∑
n=0

xk,l[n]bl(t−
T

Nl
n), (20)

where bl is an interpolation kernel with the period T > 0.
Suppose the reduced correlation filter f = [f1, ..., fD] consists
of D feature maps with D < L, and the projection matrix Q ∈
RL×D is represented as Q = {ql,d|l = 1, ..., L, d = 1, ..., d}.
Then the filter f and sample projection matrix Q can be
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computed by minimizing the following objective function,

E(f ,Q) =
1

2

K∑
k=1

αk

∥∥∥∥∥
D∑

d=1

L∑
l=1

ql,dfd ?(Jl{xk,l} � c)−yk

∥∥∥∥∥
2

+
1

2

D∑
d=1

‖w � fd‖2+
λ

2
‖Q‖2 ,

(21)

where w denotes the spatial regularization matrix.
When removing cosine window and incorporating the mask

function M, the ECO model can be modified as,

E(f ,Q)=
1

2

K∑
k=1

αk

∥∥∥∥∥M� (

D∑
d=1

L∑
l=1

ql,dfd ?Jl{xk,l}−yk)

∥∥∥∥∥
2

+
1

2

D∑
d=1

‖w � fd‖2+
λ

2
‖Q‖2 .

(22)

To solve Eqn. (22), we introduce a series of auxiliary vari-

ables [z1, ..., zK] with zk=
√
αk(

D∑
d=1

L∑
l=1

ql,dfd?Jl{xk,l}−yk),
then it can be relaxed as,

E(f ,Q, zk)=
1

2

K∑
k=1

‖M� zk‖2 +
1

2

D∑
d=1

‖w � fd‖2+
λ

2
‖Q‖2

+
τ

2

K∑
k=1

αk

∥∥∥∥∥
D∑

d=1

L∑
l=1

ql,dfd ?Jl{xk,l}−yk−
zk√
αk

∥∥∥∥∥
2

,

(23)

where τ is a penalty parameter which is updated along with
the iterations.

We suggest an iterative optimization algorithm for solving
the problem in Eqn. (23). In particular, we minimize the
objective in each iteration by alternating between updating the
auxiliary variables zk and the model parameters {f , Q}, which
is further explained as follows.
Updating {f ,Q}: Given the auxiliary variables [z1, ..., zK],
we can observe that the subproblem shares similar formulation
with Eqn. (21), thus it can be minimized with the optimization
method used in the ECO tracker.
Updating z: Analogous to Eqn. (17), the closed-form solution
for zk can be computed by,

zk=(Diag(M�M+τ1))−1 τ
√
αk

(
D∑

d=1

L∑
l=1

ql,dfd ?Jl{xk,l}−yk

)
.

(24)

V. EXPERIMENTS

In this section, we evaluate the feasibility and effectiveness
of removing cosine window by integrating it into five repre-
sentative CF trackers with spatial regularization, i.e., BACF,
STRCF, ECOhc, ECO and UPDT. Then, extensive experiments
are conducted to compare our methods with the state-of-the-
art methods on four popular tracking benchmarks, i.e., OTB-
2015 [19], Temple-Color [20], VOT-2018 [21] and LaSOT
datasets.

A. Baseline CF trackers

Our methods are generic and can be integrated to multiple
CF trackers with spatial regularization, such as those with

single or multiple base images, using handcrafted or deep
CNN features. In the experiments, we choose three baseline
CF trackers using handcrafted features, i.e., BACF [16], E-
COhc [12] and STRCF [17]. Moreover, we also consider two
state-of-the-art baseline CF trackers using CNN features, i.e.,
ECO [12] and UPDT [18]. It is worth noting that we only
incorporate our method with UPDT on the VOT-2018 dataset,
because UPDT employs the difficult videos from OTB-2015
for parameter tuning and most of these videos also exist
in Temple-Color. Besides, another two CF trackers without
spatial regularization, i.e., MOSSE and KCF, are also included
to illustrate when to remove cosine window from CF trackers.

B. Implementation details

We employ the publicly available codes provided by the
authors to reproduce the results of the baseline CF trackers and
competing methods. As for our modified trackers by removing
cosine window, we keep most of the parameters the same with
their baseline methods, and mainly finetune the parameters
added by our methods. In particular, we set the penalty pa-
rameters τ , µ, and the number of iterations in BACFRCG and
STRCFRCG as {2.5, 2.5, 3} and {2, 2, 4}, respectively. The
penalty parameters τ , µ are updated along with iterations by
τ (t+1) = min(pτ (t), τmax) and µ(t+1) = min(pµ(t), µmax),
where τmax, µmax and p are set to {100, 100, 1.05} and {100,
100, 1.07} for BACFRCG and STRCFRCG, respectively. As
for the ECO and UPDT trackers, the parameters τ and the
number of iterations are set to {2.2, 4} and {2.5, 5} and {2.5,
4} for ECOhcRCG, ECORCG and UPDTRCG. In addition, we
assign the standard deviation parameter δ in Eqn. (4) to {1.2,
1.2, 1.4, 2, 1.8} for BACFRCG, STRCFRCG, ECOhcRCG,
ECORCG and UPDTRCG, respectively. Note that we employ
the same parameter settings for each tracker on all datasets.
Our method is implemented on Matlab 2017b with Matconvnet
library [37], and all the experiments are run on a PC with Intel
i7 CPU, 32GB RAM and a single NVIDIA GTX 1070 GPU.

C. Internal Analyses of our methods

1) Ablation study: In this section, we study the effect of
removing cosine window, incorporating binary or Gaussian
shaped mask functions into the baseline CF trackers using
the VOT-2018 benchmark [21]. To this end, we implement
four variants for each baseline CF tracker, i.e., the baseline
CF (termed as Baseline), directly incorporating with bina-
ry mask function (B), directly incorporating with Gaussian
shaped mask function (G), removing cosine window (RC),
removing cosine window and incorporating binary mask func-
tion (RCB), and removing cosine window and incorporating
Gaussian shaped mask function (RCG). In addition, we also
include MOSSE and KCF as baseline trackers to show that
their performance is degraded by removing cosine window and
cannot be remedied by incorporating mask function. Following
the protocols in [38], we evaluate the performance of each
method using Expected Average Overlap (EAO), accuracy and
robustness as performance measures.

Table II presents the results of all the variants on the VOT-
2018 dataset. One can observe that except for the BACF
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method, the performance of B variants generally outperforms
the Baseline with an improvement of 0.002 in terms of EAO
scores. This can be explained by the fact that incorporating
with binary mask function is able to deactivate several samples
with discontinuous boundaries, thereby benefiting the tracking
performance. Meanwhile, although cosine window implicitly
emphasizes more on the samples near the target center, the G
variants can still boost the performance with an EAO gain of
0.001 over B. In addition, when removing the cosine window
from MOSSE and KCF, the tracking performance degrades
significantly. And they still perform inferior to the Baseline
methods even with the introduction of binary or Gaussian
shaped mask functions. Thus, cosine window cannot be re-
moved from the CF trackers without spatial regularization.

As for the CF trackers with spatial regularization, we
can make the following observations. (i) In comparison to
Baseline, the performance of RC variant slightly degrades
with a drop of ∼0.015 in terms of EAO. Such performance
degradation can be explained by the fact that a small per-
centage of negative samples still suffer from boundary dis-
continuity which may be harmful to tracking performance.
(ii) By integrating the binary mask function M into the
CF trackers with spatial regularization, the RCB variants
consistently outperform the RC and Baseline. In terms of
EAO, the performance gain of RCB can be about 0.02 ∼ 0.04
against RC and about 0.015 ∼ 0.03 against Baseline. The
performance improvement can be ascribed to the reason that
RCB is more effective in handling both boundary discontinuity
and sample contamination in comparison with Baseline and
RC. (iii) The introduction of Gaussian shaped mask function
MG can further boost the performance of CF trackers with
spatial regularization, indicating that the samples near target
center should be emphasized more in the modified CF models.
(iv) While B and G variants perform better than Baseline,
they are still much worse than RCB and RCG on CF trackers
with spatial regularization, validating the effectiveness of the
proposed methods. (v) Finally, RCB and RCG significantly
improve the robustness against the Baseline trackers with
lower failure times. In terms of accuracy, RCB and RCG
perform on par with Baseline and RC, indicating that the gain
of mask function should be attributed to the improvement on
the robustness of appearance modeling.

To sum up, the results empirically validate our answers to
the two problems concerned in this work. (i) It is feasible to
remove cosine window for CF trackers with spatial regulariza-
tion. (ii) By incorporating with mask function, we can not only
safely remove cosine window from CF trackers with spatial
regularization, but also bring moderate performance gains over
their Baseline methods with cosine window.

2) Effect of hyper-parameter δ in MG: The hyper-
parameter δ in Gaussian shaped mask function MG controls
the decay speed of training samples from target center to
boundaries. In particular, higher δ indicates the slower decay
speed, and more negative samples near boundary will be
considered during training. When δ → +∞, the Gaussian
shaped mask function MG degrades to the binary mask
function M. Using BACF, ECOhc and ECO, we analyze
the effect of the hyper-parameter δ on tracking performance.

0 0.5 1 1.5 2 2.5

Hyper-parameter 

0.05

0.1

0.15

0.2

0.25

0.3

E
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O

BACF

ECOhc

ECO

Fig. 3. Effect of the hyper-parameter δ in MG for BACFRCG, ECOhcRCG

and ECORCG on the VOT-2018 dataset.

Concretely, Fig. 3 shows the EAO plots of the three trackers
with different δ values on the VOT-2018 dataset. It can be seen
that the choice of δ has a significant effect on EAO score for
all the three trackers. For BACF, ECOhc and ECO, the RCG
methods achieve the best performance when δ = {1.2, 1.4, 2},
respectively.

3) The removal of cosine window on tracking stage: In
addition to the removal of cosine window on training stage,
it is also interesting to investigate the effect of removing
cosine window during tracking. Since cosine window can only
be removed from CF trackers with spatial regularization in
the training stage, we take KCF and BACFRCG methods as
two representative examples respectively, and further evaluate
their performance of removing cosine window during tracking.
Moreover, after removing cosine window during tracking,
we also implement two variants by incorporating our mask
functions on response maps to penalize large displacements on
consecutive frames. In particular, we make four variants for
each baseline tracker, i.e., the baseline CF (Baseline), remov-
ing cosine window during tracking (TeRC), removing cosine
window and incorporating the binary mask on response map
(TeRCB), and removing cosine window and incorporating the
Gaussian mask on response map (TeRCG).

Table III gives the results of all the variants on the VOT-
2018 dataset. One can observe that while TeRC variants
outperform the Baseline methods with accuracy gains of 0.051
and 0.024 for KCF and BACF methods, their robustness
scores drop significantly than the Baseline methods with
more tracking failures. And the overall EAO scores of TeRC
variants degrade with a drop of 0.042 and 0.048 for KCF
and BACF, respectively. It indicates that the cosine window
cannot be easily removed in the tracking stage. Moreover, even
when banding the binary mask function on the response map,
the TeRCB variants still perform comparably with TeRC,
but much worse than Baseline methods. However, with the
integration of the Gaussian mask function on response map,
the TeRCG variants significantly improve the performance
against TeRCB, and perform on par with Baseline trackers.
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TABLE II
THE EAO, ACCURACY (ACC.) AND ROBUSTNESS (RO.) RESULTS BY PROGRESSIVELY INTEGRATING OUR METHODS INTO THE BASELINE CF TRACKERS
ON THE VOT-2018 DATASET. HERE, BASELINE, RC, RCB, AND RCG RESPECTIVELY REPRESENT THE BASELINE CF TRACKER, THAT BY REMOVING
COSINE WINDOW, THAT BY REMOVING COSINE WINDOW AND INCORPORATING WITH BINARY MASK FUNCTION M, AND THAT BY REMOVING COSINE

WINDOW AND INCORPORATING WITH GAUSSIAN SHAPED MASK FUNCTION MG . (∗) NOTE THAT THE RESULTS OF ECO AND UPDT ARE REPRODUCED
FROM THE RELEASED CODES ON THE VOT-2018 CHALLENGE WEBSITE, AND WE REPORT THE UPDT RESULTS AS THE AVERAGE SCORES OF 15 TIMES

RUNNING FOLLOWING THE PROTOCOLS IN [21].

Methods MOSSE [1] KCF [2] BACF [16] STRCF [17] ECOhc [12] ECO∗ [12] UPDT∗ [18]

EAO ACC. RO. EAO ACC. RO. EAO ACC. RO. EAO ACC. RO. EAO ACC. RO. EAO ACC. RO. EAO ACC. RO.

Baseline 0.067 0.387 1.862 0.106 0.327 1.182 0.137 0.432 0.757 0.174 0.47 0.632 0.212 0.524 0.492 0.262 0.458 0.323 0.352 0.523 0.207

B 0.07 0.372 1.827 0.11 0.304 1.167 0.137 0.432 0.757 0.176 0.464 0.618 0.213 0.522 0.487 0.264 0.454 0.317 0.353 0.522 0.204

G 0.072 0.369 1.804 0.111 0.302 1.162 0.139 0.428 0.749 0.177 0.462 0.613 0.215 0.518 0.483 0.265 0.45 0.311 0.354 0.521 0.202

RC 0.033 0.403 2.438 0.069 0.374 1.823 0.124 0.466 0.892 0.166 0.486 0.683 0.194 0.532 0.521 0.251 0.476 0.334 0.343 0.529 0.221

RCB 0.038 0.408 2.392 0.075 0.377 1.788 0.158 0.462 0.723 0.187 0.478 0.604 0.225 0.528 0.476 0.279 0.464 0.272 0.384 0.524 0.174

RCG 0.042 0.396 2.375 0.081 0.372 1.774 0.165 0.458 0.692 0.192 0.474 0.595 0.231 0.524 0.464 0.287 0.462 0.258 0.391 0.528 0.168

TABLE III
THE EAO, ACCURACY (ACC.) AND ROBUSTNESS (RO.) RESULTS BY

COMPARING DIFFERENT VARIANTS OF KCF AND BACFRCG METHODS
AFTER REMOVING COSINE WINDOW ON TRACKING STAGE. HERE,

BASELINE, TERC, TERCB, AND TERCG RESPECTIVELY REPRESENT
THE BASELINE CF TRACKER (I.E., KCF AND BACFRCG), THAT BY

REMOVING COSINE WINDOW ON TRACKING STAGE, THAT BY REMOVING
COSINE WINDOW AND INCORPORATING BINARY MASK FUNCTION M ON

THE RESPONSE MAP, AND THAT BY REMOVING COSINE WINDOW AND
INCORPORATING GAUSSIAN SHAPED MASK FUNCTION MG ON THE

RESPONSE MAP. (∗) NOTE THAT KCF AND BACFRCG ARE TAKEN AS THE
BASELINE METHODS RESPECTIVELY, SINCE COSINE WINDOW CAN ONLY
BE REMOVED FROM CF TRACKERS WITH SPATIAL REGULARIZATION IN

THE TRAINING STAGE.

Methods KCF BACFRCG
EAO ACC. RO. EAO ACC. RO.

Baseline* 0.106 0.327 1.182 0.165 0.458 0.692
TeRC 0.064 0.378 1.847 0.117 0.482 1.236

TeRCB 0.072 0.377 1.822 0.123 0.479 1.207
TeRCG 0.107 0.329 1.183 0.166 0.461 0.695

The results demonstrate that after removing cosine window
during tracking, it is vital to enforce strict spatial constraints
on response map for reducing the risk of tracking drift. In
summary, the empirical studies show that while cosine window
cannot be removed directly during tracking, it can be replaced
by incorporating the proposed Gaussian mask function on
response map.

D. VOT-2018 benchmark

To further assess the proposed methods, we compare our
best trackers (i.e., UPDTRCG and ECORCG) with the state-of-
the-art trackers on the VOT-2018 dataset. VOT-2018 consists
of 60 challenging videos collected from real-life datasets.
In the benchmark, a tracker will be re-initialized with the
ground-truth bounding boxes whenever it significantly drifts
from the target. And the performance is evaluated with three
measures: accuracy, robustness and EAO. The accuracy com-
putes the average overlap between estimated bounding boxes
and ground-truth annotations. The robustness score counts the
times of tracking failures. And EAO measure is a principled
combination of accuracy and robustness scores.

Table IV lists the results of our UPDTRCG and ECORCG,
ECO, and the top ten best performing trackers on the VOT-
2018 challenge. For a fair comparison, we reproduce the
results of ECO and UPDT with their publicly available codes
on the VOT-2018 challenge website, and the UPDT result is
reported as the average score of 15 times running. We also
note that the reported EAO score of UPDT on the VOT-
2018 challenge is 0.378, while our reproducing result is 0.352
based on the released code on the VOT-2018 challenge. From
Table IV, we can observe that UPDTRCG slightly outperforms
VOT-2018 challenge winner LADCF and ranks the first among
all the competing trackers. UPDTRCG is also superior to its
baseline UPDT by an EAO gain of 0.039, indicating the feasi-
bility and benefit of removing cosine window. Not surprisingly,
ECORCG also shows its superiority, i.e., an improvement of
0.025 by EAO score, over the ECO method.

E. OTB-2015 dataset

The OTB-2015 dataset [19] consists of 100 full annotated
videos with 11 video attributes, including illumination vari-
ations (IV), scale variation (SV), occlusion (OCC), in-plane
rotation (IPR), out-of-plane rotation (OPR), motion blur (MB),
fast motion (FM), deformation (DEF), background clutter
(BC), out of view (OV) and low resolution (LR). Following
the settings given in [19], we evaluate the trackers based
on the One Pass Evaluation (OPE) protocol, and adopt the
overlap precision (OP) metric for calculating the fraction
of frames with bounding box overlaps exceeding 0.5 in a
sequence. Besides, we also present the overlap success plots
with different overlap thresholds for detailed comparison.

To assess our methods, we compare four of them (i.e.,
STRCFRCG, ECOhcRCG, BACFRCG and ECORCG) with
24 state-of-the-art trackers, which can be roughly grouped
into two categories: (i) trackers using handcrafted features
(i.e., STRCF [17], ECOhc [12], BACF [16], DSST [4],
SAMFAT [43], Staple [44], TRACA [45], SRDCFDecon [32],
SRDCF [8], SKSCF [7] and PTAV [46]), and (ii) trackers
using deep CNN features (i.e., ECO [12], CCOT [11], CNN-
SVM [47], FCNT [48], CF-Net [49], DeepSTRCF [17], VI-
TAL [50], DeepSRDCF [51], SiameseFC [52], HDT [14],
HCF [13], SiamRPN [42] and MDNet [53]). In particular,
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TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART TRACKERS IN TERMS OF EAO, ACCURACY, AND ROBUSTNESS ON THE VOT-2018 DATASET. THE FIRST,
SECOND AND THIRD BEST RESULTS ARE HIGHLIGHTED IN COLOR. (∗) NOTE THAT THE RESULTS OF ECO AND UPDT ARE REPRODUCED FROM THE

RELEASED CODES ON VOT-2018 CHALLENGE WEBSITE, AND WE REPORT THE UPDT RESULT AS THE AVERAGE SCORE OF 15 TIMES RUNNING
FOLLOWING THE PROTOCOLS IN [21].

Methods
ECO∗

[12]

DLSTpp

[39]

SA Siam R

[40]

CPT

[21]

DeepSTRCF

[17]

UPDT∗

[18]

DRT

[41]

RCO

[21]

SiamRPN

[42]

MFT

[21]

LADCF

[22]

ECORCG

Ours

UPDTRCG

Ours

EAO (↑) 0.262 0.325 0.337 0.339 0.345 0.352 0.356 0.376 0.383 0.385 0.389 0.287 0.391

Accuracy (↑) 0.458 0.543 0.566 0.506 0.523 0.523 0.519 0.507 0.586 0.505 0.503 0.462 0.528

Robustness (↓) 0.323 0.224 0.258 0.239 0.215 0.207 0.201 0.155 0.276 0.14 0.159 0.258 0.168

STRCFRCG, ECOhcRCG, and BACFRCG are compared with
the trackers using handcrafted features, while ECORCG is
compared with the trackers using deep CNN features. For a
fair comparison, UPDT and UPDTRCG are not included in the
comparison because UPDT adopts the difficult videos from
OTB-2015 for parameter tuning.

1) Comparison with state-of-the-arts: We compare the pro-
posed methods with the state-of-the-art trackers on OTB-
2015. Table V lists the mean OP results of all the competing
methods. One can see that our methods are consistently supe-
rior to their baseline approaches. Using handcrafted features,
BACFRCG, ECOhcRCG and STRCFRCG outperform their
baseline methods with mean OP gains of 1.1%, 1.3% and
2.3%, respectively. Using deep CNN features, ECORCG also
surpasses its baseline ECO by 1.9% in terms of mean OP.
Moreover, our STRCFRCG achieves the best mean OP among
the trackers using handcrafted features, while our ECORCG
performs the best among those using deep CNN features.
Furthermore, Fig. 4 shows the overlap success curves of the
competing methods, which are ranked with the Area-Under-
the-Curve (AUC) score. Not surprisingly, our methods perform
favorably against the competing trackers using handcrafted and
deep CNN features.

2) Attribute comparison: Using the handcrafted features,
we further investigate the performance of our methods on all
11 video attributes. Table VI gives the mean OP results of all
the trackers. One can see that our ECORCG and STRCFRCG
obtain the rank-1 performance on 9 of all 11 video attributes.
For the attributes motion blur, background clutter, illumina-
tion variation and occlusion, significant improvement can be
achieved by our methods. By removing cosine window and
incorporating mask function, our methods are more effective
in exploiting negative samples for model learning, and benefit
the robustness of tracking performance. This may explain the
better results of our methods when the target suffers from
rapid appearance changes (e.g., motion blur, occlusion, and
illumination variation) and background clutter. In addition,
Fig. 5 provides the AUC plots of all competing trackers using
handcrafted features on all video attributes. It can be seen that
our ECORCG and STRCFRCG also perform favorably against
the state-of-the-art methods on most attributes.

3) Running time: Fig. 6 reports the tracking speed (FPS)
of the four baseline trackers, i.e., BACF, STRCF, ECOhc
and ECO, and their corresponding RCG methods on OTB-
2015. It can be seen that BACFRCG, STRCFRCG achieve
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Fig. 4. Comparison of overlap success plots with the state-of-the-art trackers
on the OTB-2015 dataset: (a) trackers using handcrafted features, and (b)
trackers using deep CNN features.
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Fig. 6. The tracking speed of four baseline CF trackers, i.e., BACF, STRCF,
ECOhc and ECO, and their corresponding RCG methods on OTB-2015.

a tracking speed of 22.2 and 19.5 FPS, moderately slower
than their baseline methods BACF (26.7 FPS) and STRCF
(24.3 FPS). respectively. Thus, while the introduction of mask
function increases the model complexity, the two trackers
can still be efficiently solved with the ADMM algorithms,
and each subproblem has its closed-form solution. As for
the trackers with multiple base images, ECOhcRCG runs at
approximately 70% speed of the baseline ECOhc (42 FPS),
but still maintains real-time tracking performance with 28.9
FPS. When extended to deep CNN features, ECORCG (5.9
FPS) can run at approximately 70% speed of its baseline ECO
method (9.8 FPS).
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TABLE V
THE MEAN OP RESULTS (%) OF DIFFERENT TRACKERS USING HANDCRAFTED AND CNN FEATURES ON THE OTB-2015 DATASET. NOTE THAT THE FIRST

TWO ROWS COMPARE THE METHODS WITH HANDCRAFTED FEATURES, WHILE THE LAST TWO ROWS CORRESPOND TO THE TRACKERS WITH CNN
FEATURES. THE FIRST, SECOND AND THIRD BEST RESULTS ARE HIGHLIGHTED IN COLOR.

Methods
DSST

[4]

SKSCF

[7]

SAMFAT

[43]

Staple

[44]

SRDCF

[8]

TRACA

[45]

SRDCFDecon

[32]

BACF

[16]

ECOhc

[12]

STRCF

[17]

BACFRCG

Ours

PTAV

[46]

ECOhcRCG

Ours

STRCFRCG

Ours

Mean OP (↑) 62.2 66.5 68 71 72.8 74.7 76.6 76.7 77.2 80 77.8 78.1 78.5 82.3

Methods
CNN-SVM

[47]

HCF

[13]

HDT

[14]

FCNT

[48]

SiameseFC

[52]

CF-Net

[49]

DeepSRDCF

[51]

SiamRPN

[42]

CCOT

[11]

ECO

[12]

DeepSTRCF

[17]

MDNet

[53]

VITAL

[50]

ECORCG

Ours

Mean OP (↑) 65.1 65.6 65.8 67.1 71 73 76.8 81.9 82.4 84.8 84.9 84.9 86.6 86.7

TABLE VI
THE MEAN OP RESULTS (%) OF DIFFERENT TRACKERS USING HANDCRAFTED FEATURES ON EACH ATTRIBUTE OF OTB-2015. THE FIRST, SECOND AND

THIRD BEST RESULTS ARE HIGHLIGHTED IN COLOR.

Methods
DSST

[4]

SKSCF

[7]

SAMFAT

[43]

Staple

[44]

SRDCF

[8]

TRACA

[45]

SRDCFDecon

[32]

BACF

[16]

ECOhc

[12]

STRCF

[17]

BACFRCG

Ours

PTAV

[46]

ECOhcRCG

Ours

STRCFRCG

Ours

MB 55.3 63.4 70.8 65 72.9 73.9 79.9 73.5 75.3 79.4 78.4 74.4 77.4 81.5

OCC 56.2 63.4 64.8 68 67.6 71.2 73.5 71.1 74.5 75.1 76.7 73.1 74.5 80.2

IV 65.8 68.6 62.9 72 74.2 76.9 79.3 78. 5 76.1 78.3 78.8 79.5 81 80.9

BC 59.9 69 63 67.7 69.2 74.1 78 76 76.5 79.5 79.9 81.5 78.6 82.6

IPR 60.8 65.4 65.5 66.9 66.3 71.5 70 71.5 68.5 73.9 73.9 72.4 70.8 76

OPR 58.3 64.3 64.8 66.5 65.9 72.5 72.4 71.8 72.1 76.6 72.2 73.7 74.8 80.1

SV 55.8 56.3 58.8 61.5 67.1 68.6 74.4 70.2 71.9 76.4 73 70.6 73.6 78.1

FM 55 63.2 66.8 65.9 72.1 70.6 74.6 76 74.5 76 74.6 74.7 72.2 77

DEF 53.1 62.7 58.4 68.6 66.1 70 68.2 71.3 73.7 73.3 68.7 73.9 75.4 73.9

OV 45.5 45.8 60.3 52.3 52.7 67.8 61.8 67.1 63.5 70.9 63.8 68 67.8 70.6

LR 34.7 24 51.4 39.3 64.1 54.9 63.9 62.2 56 69.6 67 56.5 53.8 68.9

4) Qualitative evaluation: Fig. 7 shows the qualitative re-
sults of four baseline CF trackers, i.e., BACF, STRCF, ECOhc
and ECO, as well as their RCG variants. It can be seen from
the first row that the target suffers from background clutter
and illumination variation. In comparison to baseline BACF,
BACFRCG can take the benefit of removing cosine window,
thus is able to exploit more useful and uncontaminated training
samples for robust model learning, thereby significantly alle-
viating the tracker drift issue. In the second row, due to the
effect of motion blur, fast motion and occlusion challenges,
ECOhc cannot track the target throughout the whole sequence
while ECOhcRCG still performs well.

In the last two rows, similar phenomena can also be
observed when the STRCF and ECO trackers are applied
to coupon and freeman4 videos, respectively. In all these
videos, the RCG variant consistently outperforms its baseline
CF method, indicating the effectiveness of removing cosine
window and incorporating with mask function.

F. Temple-Color dataset

To further evaluate our methods, comparative experiments
are also conducted on the Temple-Color dataset containing
129 color video sequences in total. Fig. 8 shows the overlap
success plots of the competing trackers using handcrafted and
CNN features. It can be seen from Fig. 8(a) that our methods
generally consistently improve the baseline CF trackers using
handcrafted features. In particular, BACFRCG, ECOhcRCG
and STRCFRCG respectively outperform the baseline CF
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Fig. 8. Comparison of overlap success plots with the state-of-the-art trackers
on the Temple-Color dataset: (a) trackers using handcrafted features, and (b)
trackers using deep CNN features.

methods with AUC score gains of 1.9%, 0.8% and 1.2%.
Moreover, as shown in Fig. 8(b), ECORCG also performs
better than ECO by 0.8% when using deep CNN features,
further demonstrating the effectiveness of removing cosine
window from CF trackers with spatial regularization.

G. LaSOT dataset

LaSOT is a recent large-scale tracking benchmark consisting
of 1400 video sequences, which are further divided into
training and test subsets. To assess the proposed methods,
we compare them (i.e., BACFRCG, STRCFRCG, ECOhcRCG,
ECORCG and UPDTRCG) with 10 recent representative track-
ers on the test subset of LaSOT (280 videos), including
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(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e
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Success plots of OPE - illumination variation (38)
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Success plots of OPE - background clutter (30)
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Success plots of OPE - in-plane rotation (50)
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Success plots of OPE - out-of-plane rotation (61)
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Success plots of OPE - fast motion (38)
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Fig. 5. Overlap success plots of the competing trackers using handcrafted features under all eleven attributes on the OTB-2015 dataset. Our methods achieve
the best performance on most attributes.
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Fig. 9. Comparison of the overlap success plot with the state-of-the-art
trackers on the test subset of LaSOT dataset.

MDNet [53], VITAL [50], UPDT [18], ECO [12], STR-
CF [17], BACF [16], TRACA [45], HCF [13], PTAV [46]
and DSST [4].

Following the protocols in [54], we report the success
overlap plot for different trackers in Fig. 9. One can observe
that our UPDATRCG is among the top three best-performed
trackers and outperforms its baseline method UPDT with a
gain of 1.3% on AUC score. In addition, the proposed RCG
variants achieve AUC gains of 1.8%, 1.5%, 0.9% and 1.2%
for BACF, STRCF, ECOhc and ECO trackers, respectively.
These results further validate the superiority of the proposed
methods on large tracking benchmarks.

VI. CONCLUSION

In this paper, we investigated the problems of when and how
to remove cosine window from CF trackers. Our empirical
analyses showed that both spatial regularization and cosine
window can be utilized to alleviate boundary discontinuity.
However, cosine window may give rise to sample contami-
nation, while for spatial regularization a small percentage of
negative samples still suffer from boundary discontinuity. To
remove cosine window from CF trackers with spatial regular-
ization, we introduced a binary mask function to exclude the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

#1 #60 #80 #90

#1 #125 #130 #140

#1 #60 #80 #100

#230 #240 #250#1

Baseline CF tracker Our corresponding RCG method

Fig. 7. Visualization of tracking results on four videos for comparing four baseline CF trackers with our corresponding RCG methods by removing cosine
window and incorporating Gaussian shaped mask function. The videos from top to bottom are skating1, biker, coupon and freeman4. In each row, a baseline
CF tracker and our corresponding RCG method are applied (from top to bottom: BACF [16], ECOhc [12], STRCF [17] and ECO [12]).

negative samples suffering from boundary discontinuity during
training. Furthermore, another Gaussian shaped mask function
was also introduced to downweight the negative samples far
from target center. Then, optimization algorithms were respec-
tively developed for removing cosine window from CF track-
ers with single and multiple base images. The experiments
on OTB-2015, Temple-Color, VOT-2018 and LaSOT dataset-
s showed that our methods are effective in circumventing
boundary discontinuity and sample contamination, and bring
moderate performance gains over their CF baseline methods
with cosine window. Our methods also perform favorably
against the state-of-the-art trackers using handcrafted and deep
CNN features.
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[32] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Adaptive decon-
tamination of the training set: A unified formulation for discriminative
visual tracking,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1430–1438. 3, 9, 10

[33] H. K. Galoogahi, T. Sim, and S. Lucey, “Multi-channel correlation fil-
ters,” in IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 4630–4638. 5

[34] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004. 5

[35] J. Eckstein and D. P. Bertsekas, “On the douglasrachford splitting
method and the proximal point algorithm for maximal monotone op-
erators,” Mathematical Programming, vol. 55, pp. 293–318, 1992. 5

[36] K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Technical
University of Denmark, 2008. 6

[37] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for matlab,” in ACM international conference on Multimedia, 2015, pp.
689–692. 7

[38] L. ehovin, A. Leonardis, and M. Kristan, “Visual object tracking per-
formance measures revisited,” IEEE Transactions on Image Processing,
vol. 25, no. 3, pp. 1261–1274, March 2016. 7

[39] L. Yang, R. Liu, D. Zhang, and L. Zhang, “Deep location-specific
tracking,” in ACM international conference on Multimedia, 2017, pp.
1309–1317. 10

[40] A. He, C. Luo, X. Tian, and W. Zeng, “A twofold siamese network for
real-time object tracking,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4834–4843. 10

[41] C. Sun, D. Wang, H. Lu, and M.-H. Yang, “Correlation tracking via
joint discrimination and reliability learning,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 489–497. 10

[42] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual
tracking with siamese region proposal network,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8971–8980. 9, 10

[43] A. Bibi, M. Mueller, and B. Ghanem, “Target response adaptation for
correlation filter tracking,” in European Conference on Computer Vision,
2016, pp. 419–433. 9, 10

[44] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. Torr, “Staple:
Complementary learners for real-time tracking,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 1401–1409. 9, 10

[45] J. Choi, H. J. Chang, T. Fischer, S. Yun, K. Lee, J. Jeong, Y. Demiris,
and J. Y. Choi, “Context-aware deep feature compression for high-speed
visual tracking,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 479–488. 9, 10, 12

[46] H. Fan and H. Ling, “Parallel tracking and verifying: A framework
for real-time and high accuracy visual tracking,” in IEEE International
Conference on Computer Vision, 2017, pp. 5486–5494. 9, 10, 12

[47] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning
discriminative saliency map with convolutional neural network,” in
International Conference on Machine Learning, 2015. 9, 10

[48] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with fully
convolutional networks,” in IEEE International Conference on Computer
Vision, 2015, pp. 3119–3127. 9, 10

[49] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“End-to-end representation learning for correlation filter based tracking,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5000–5008. 9, 10

[50] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. W.
Lau, and M.-H. Yang, “Vital: Visual tracking via adversarial learning,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 8990–8999. 9, 10, 12

[51] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Convo-
lutional features for correlation filter based visual tracking,” in IEEE
International Conference on Computer Vision Workshop, 2015, pp. 621–
629. 9, 10

[52] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional siamese networks for object tracking,” in European
Conference on Computer Vision Workshop, 2016, pp. 850–865. 9, 10

[53] H. Nam and B. Han, “Learning multi-domain convolutional neural
networks for visual tracking,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4293–4302. 9, 10, 12

[54] H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai, Y. Xu, C. Liao,
and H. Ling, “Lasot: A high-quality benchmark for large-scale single
object tracking,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 5374–5383. 12


