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Abstract—Almost all existing color demosaicking algorithms for
digital cameras are designed on the assumption of high correlation
between red, green, blue (or some other primary color) bands.
They exploit spectral correlations between the primary color
bands to interpolate the missing color samples, but in areas of no
or weak spectral correlations, these algorithms are prone to large
interpolation errors. Such demosaicking errors are visually objec-
tionable because they tend to correlate with object boundaries and
edges. This paper proposes a remedy to the above problem that
has long been overlooked in the literature. The main contribution
of this work is a hybrid demosaicking approach that supplements
an existing color demosaicking algorithm by combining its results
with those of adaptive intraband interpolation. This is formulated
as an optimal data fusion problem, and two solutions are pro-
posed: one is based on linear minimum mean-square estimation
and the other based on support vector regression. Experimental
results demonstrate that the new hybrid approach is more robust
and eliminates the worst type of color artifacts of existing color
demosaicking methods.

Index Terms—Autoregressive model, color demosaicking, color
saturation, digital cameras, linear minimum mean-square estima-
tion (LMMSE), support vector regression (SVR).

I. INTRODUCTION

I N quest of low cost, compact size, and long battery life,
most digital cameras use a single sensor array to capture

color images. At each pixel position only one instead of three
or more primary colors (e.g., red, green, and blue) is captured
with a color filter array (CFA). The most commonly used CFA
is that of Bayer pattern [1] that consists of a quincunx lattice of
green samples interleaved with one square lattice of red sam-
ples and another square lattice of blue samples, as depicted by
Fig. 1. The full color image is reconstructed by interpolating
the missing color samples, a process commonly known as color
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Fig. 1. Bayer pattern of color mosaic for digital cameras.

demosaicking, which is crucial to the visual quality of digital
cameras.

A basic premise of CFA mosaic undersampling schemes for
color reproduction is the following. Most scenes in nature com-
prise of pastoral colors, and highly saturated colors are rare, i.e.,
strong correlations exist between different spectral bands. In-
deed, most existing color demosaicking algorithms, particularly
those of competitive performance [2], [3], assume and exploit
the spectral correlations when interpolating the missing color
samples. In general, those demosaicking techniques that process
different color bands in isolation are inferior to the interband ap-
proach. For a recent survey of, including a taxonomy, of existing
demosaicking techniques please refer to [4].

Among previously published color demosaicking techniques,
the primary-consistent soft-decision demosaicking (PCSD) [5]
performs the best over a diverse set of color images (see Sec-
tion V for comparison). The PCSD algorithm exemplifies an ex-
plicit and thorough use of spectral correlations in demosaicking.
It assumes the difference signals between green and red and be-
tween green and blue to be low-pass, and estimates the color
difference signals. The estimates of missing red and blue sam-
ples are anchored on the green band that has the least chance
of aliasing in Bayer CFA. Moreover, PCSD imposes the same
interpolation direction in all three color bands.

However, this work demonstrates that aggressive uses of
spectral correlations in color demosaicking can sometimes
backfire. When the assumption of high spectral correlations
does not hold, for instances, in areas of highly saturated colors,
and if large sensor noises are present, demosaicking methods
overemphasizing spectral correlations can produce highly
visible, objectionable color artifacts. Indeed, in such cases, the
PCSD algorithm and other sophisticated ones [2], [3] become
inferior to the classic method of Hamilton and Adams [6], while
the latter could in turn be even worse than simple but more
conservative bicubic interpolation. The isotropic separable
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Fig. 2. Y, U, V power spectrums of Lena (solid line) and the girl-with-red-hat image (dotted line) in the Kodak set. (a) Y; (b) U; (c) V.

TABLE I
INTERBAND CORRELATIONS OF TWO IMAGE SETS

bicubic interpolator does not bet on a gradient direction by
assuming spectral correlation as in [6] and [5] and, hence, avoid
worst-case errors when the assumption is invalid.

The problem of overusing spectral correlation in color demo-
saicking was overlooked by many researchers in academia, our-
selves included. The reason seemed to be that they were misled
by a peculiarity of the popular Kodak set of test images that
were commonly used to simulate CFA data and benchmark de-
mosaicking performance. The spectral correlations of these test
images are considerably higher (much smoother hue) than typ-
ical color images, probably due to some postprocessing. Let us
compare the correlation coefficients (between the green
and red bands), (between the green and blue), and (be-
tween the red and blue) for the Kodak set and another set of 30
images randomly chosen from the JPEG, MPEG, SMPTE test
sets and various internet sites. The averages of , , and

for the two test sets are tabulated in Table I. The Kodak set
has substantially higher spectral correlations than normal. The
table also reveals that the Kodak set has a significantly smaller
standard deviation than normal (0.146 versus 0.316) in spectral
correlation. In other words, the Kodak set seems to include a
quite narrow range of color images.

In a closer examination, we find that the power spectrums of
the Kodak set in the U and V components have a much faster
decay (much lower energy in high frequency) than normal. But
strangely, this fast decay is not monotone, and the U and V
power spectrums of each image in the Kodak set, without ex-
ception, have a spike at the highest frequency of the sampling
rate, suggesting that these images are edge enhanced. This pecu-
liarity is evident by comparing the power spectrums of two sim-
ilar portrait images: Lena from the JPEG set and the girl-with-
red-hat image from the Kodak set, which are plotted in Fig. 2.
All the above atypical characteristics of the Kodak set make it
ill suited for simulation of CFA data. As a result, the reported
performances of many previous papers are cast in doubt. In-
deed, we find that on the aforementioned set of 30 typical color

Fig. 3. Color distribution in saturation for Flickr images.

images, some of recent methods actually perform worse than
the classic method of Hamilton and Adams [6]. More detailed
results will be reported in Section V. To be fair, to Eastman
Kodak Company, the so-called Kodak set was made publicly
available not for color demosaicking research. The image set be-
came a de-facto benchmark for evaluating demosaicking algo-
rithms largely because academic researchers were not thorough
enough to choose a good representative set of color images in
their evaluations.

The current color demosaicking algorithms were geared for
colors of low saturation. But this practice should be questioned.
Although having a small probability in terms of pixel count, sat-
urated colors are by no means pathological and they do appear in
daily scenes, such as traffic and commercial signs (often in pure
red, blue, or green), painted object surfaces, and vivid flowers.
In Fig. 3, we plot the color distribution in terms of saturation for
a random draw of 42 images from the popular internet image
site Flickr. Note the peak of the distribution near the full satu-
ration. Semantically speaking, saturated colors are typically the
centers of attentions in an image composition. Demosaicking
errors that correlate with the edges of saturated colors easily
stand out and become annoying, and they can degrade the sub-
jective image quality by a degree that is disproportional to error
population. One of the authors observed the failures of existing
color demosaicking methods to reproduce saturated colors, and
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Fig. 4. (a) Spatial configuration in first pass of PARM. (b) PARM model parameters ��� � �� � � � � � � � in relationship to spatial correlations of pixels.

proposed a remedy of temporal demosaicking [7]. But this ap-
proach is only applicable to digital video cameras. Chang and
Tan also observed that some demosaicking methods tended to
produce artifacts in areas of weak spectral correlation [8], [9],
and proposed a technique called EUSSC (effective use of spa-
tial and spectral correlations). This is essentially an approach
of demosaicking a CFA image into two estimated color images,
under the assumptions of strong and weak spectral correlation,
respectively. When assuming weak spectral correlation, EUSSC
lessens the constraint on the smoothness of the band difference
signal. At each spatial location, the local spectral correlation is
estimated. This estimated correlation is then thresholded to de-
termine which of the two demosaicked results to use.

The goal of this research is to lend a degree of universality
to the existing color demosaicking technology for still cam-
eras. Our main contribution is a new mechanism of adapting to
varying spectral correlations in demosaicking. The idea is to ju-
diciously combine spatial-spectral demosaicking with an adap-
tive intraband interpolation process. Pure spatial demosaicking
is carried out separately in each of the color bands to produce
supplementary estimates of missing samples. These intraband
estimates are fused with the interband estimates produced by
an existing demosaicking method to mitigate the bad artifacts
of the latter. Spatial demosaicking is a problem of image inter-
polation in quincunx or square sublattice of the original image,
depending on whether the green, or blue/red band is in question.
The proposed adaptation mechanism is general, and it can work
with any image interpolation algorithm. But the performance of
the chosen interpolation algorithm affects the quality of spatial
demosaicking and in turn the final fused result. For this reason,
we choose the recent technique of soft-decision adaptive inter-
polation for its superior performance [10]. The key to the suc-
cess of the proposed hybrid approach is how well the underlying
data fusion problem can be solved. We propose two solutions
of different complexity-performance tradeoffs: one is based on
classic linear minimum mean-square estimation (LMMSE); the
other computes the optimal fusion weight by support vector
regression (SVR). The SVR technique, which is extensively
studied in the machine learning literature, can incorporate pre-
knowledge of a training set in the weighting of inter and in-
traband estimates. Therefore, the latter is more powerful and
robust than the former. Simulation results verify the superior
performance of the proposed techniques to existing methods, in
both PSNR measure and perceptual image quality. Certain types

of objectionable artifacts associated with existing color demo-
saicking methods are eliminated.

This paper is structured as follows. In Section II, we in-
troduce the notions of intraband demosaicking via piecewise
autoregressive modeling. Section III presents linear minimum
mean-square fusion of intra and interband estimates of missing
color samples. Section IV describes how these two different
estimates can be combined by support vector regression to
obtain a more robust estimate when the conditions of LMMSE
do not hold. Section V gives the experimental results, and
Section VI concludes.

II. INTRABAND DEMOSAICKING VIA

PIECEWISE AUTOREGRESSION

When there is no spectral correlation to exploit, the better
strategy is to perform spatial interpolation rather than spectral
demosaicking based on erroneous assumption. The intraband
demosaicking of three down-sampled bands in the Bayer CFA
is a problem of image interpolation in quincunx or square sub-
lattice of the original image, depending on whether the green,
or blue/red band is in question. We solve this problem by a new
image interpolation method based on piecewise autoregressive
modeling (PARM) [10]. In this section, we sketch the main idea
of the PARM technique and how it can be applied to intraband
demosaicking.

First, consider the interpolation of the blue/red band that con-
stitutes a square sublattice of the original image in the Bayer
CFA. Let be the blue/red image to be estimated, and be the
down-sampled blue/red image. Let and be
the pixels of and respectively.

Interpolation of the missing pixels is carried out in two passes.
In the first pass, those missing pixels , whose four
8-connected neighbors are known observed pixels ,

, are interpolated. This configuration is depicted
in Fig. 4(a). The interpolation problem is posed as one of non-
linear optimization

(1)
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Fig. 5. Spatial configuration in second pass of PARM.

where is a small local window in which parameters remain
constant. The sample relationships involved in (1) is depicted in
Fig. 4(b). The details on the merits of the PARM model and the
solution of (1) can be found in [10].

Upon the completion of the first pass, the blue/red band be-
comes a quincunx lattice, being the same as the green band of
Bayer CFA. The remaining missing blue/red pixels are to be in-
terpolated in the second pass. The interpolation problem in the
second pass is essentially the same as the one just discussed.
The only difference is that we interpolate the missing pixels

using their four 4-connected neighbors, which are ei-
ther known in or estimated in the first pass. The problem has
the same formulation of nonlinear optimization as in (1), if we
simply rotate the spatial configuration of Fig. 4(a) by 45 degrees
(see Fig. 5). Evidently, the intraband interpolation of the green
band can be done in the same way. With the above two-step in-
terpolation process, we obtain an estimated full color image by
PARM model.

III. LINEAR MINIMUM MEAN-SQUARE FUSION OF INTRA- AND

INTERBAND ESTIMATES

As stated in the introduction, the intraband demosaicking by
the PARM model is meant to be used in conjunction with an
interband demosaicking method for more robust results. Any
existing interband demosaicking method can be improved by
the PARM intraband demosaicking technique.

For each missing sample , where denoting the pixel
location, let its intraband and interband estimates be and

, respectively. The corresponding estimation errors are de-
noted by and , namely

(2)

Our objective is to fuse and into a combined esti-
mate which is more accurate. We employ the weighted average
strategy and let the fused estimate be

(3)

with affine weighting factors , such that
is the linear minimum mean-square estimate of . The

weights and are determined to minimize the mean-
square error of

(4)

or using (3)

(5)

where and are the variances of and in
a local window centered at pixel location .

Noting that

(6)

To minimize , we set the partial differential of with
respect to to zero

(7)

which yields

(8)

Substituting (8) into (3) obtains , the optimally weighted
estimate of intra and interband demosaicking. The MSE of the
optimal estimate is

(9)

Obviously, is less than either of and .
The remaining task is to estimate , and

. For the PARM method, is simply
the value of the objective function (1), which is a by-product of
the nonlinear optimization process.

The estimation of , the error variance of interband de-
mosaicking, depends on the specific interband demosaicking
method. Assuming the original image signal is stationary in a
small window centered at the missing sample , we
estimate the demosaicking error of an interband method
by interpolating the known samples of CFA, ,
from the neighboring estimated samples produced by the same
interband demosaicking method. To be more concrete, let us ex-
amine how to estimate for the popular interband demo-
saicking method of Hamilton and Adams [6]. Using the above
idea, the variance of is estimated by

(10)

where are the known samples in the local window
, and are the interpolation values generated by the

interband method of [6], but using estimated samples
which are missing in the beginning. This uses the degree of fit of
the directional interband filter of [6] in to estimate .

Consider an example depicted in Fig. 6, where the missing
green sample at a blue sample position in CFA. The error
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Fig. 6. Row and a column of mosaic data that intersect at a blue sampling
position.

variance in estimating the missing green sample at this pixel is
estimated by

(11)

In the above summation are the neighboring known green
samples of CFA, and are the corresponding interpolation
values of as if they were to be estimated by the method of
[6] in the same filtering direction as for . Specifically, for
the horizontal filtering direction, we have in (12) and (13)

(12)

(13)

This way we can estimate at a blue sample position in
Bayer CFA. By the symmetry of CFA sample configuration, one
can analogously derive the estimate of at the red sample
position, and the estimates of and .

Similarly, we can compute

(14)

IV. INTRA- AND INTERBAND ESTIMATION BY SUPPORT

VECTOR REGRESSION

In the proceeding section, the fusion of the intraband and
interband estimates is treated and solved as a problem of linear
minimum mean-square estimation. But this method can fail
when the image signal exceeds the Nyquist frequency. In this
case, the estimates of the missing color values are wrong but
they still match the autoregressive model, and we grossly
underestimate the error variance . To overcome this weakness,
we take a machine learning approach to solve the problem
of data fusion. Specifically, we use support vector regression
(SVR) to find the optimal fusion weights and .

Introduced by Vapnik [11], support vector machines (SVM)
is a popular machine learning algorithm with the ability to per-

form high-dimensional function estimation. Support vector re-
gression (SVR) is a SVM-based regression technique. SVR op-
erates in a feature space to approximate unknown functions in
an output space, aiming to linearly estimate an unknown regres-
sion with nonlinear functions.

Suppose that the dependence of a scalar on a vector can
be described by a nonlinear regressive model

(15)

To learn this model, we choose an appropriate training set con-
sisting of input-output pairs

(16)

where is a sample value of the input vector and has a
target value that is the model output on . Our goal is
to obtain an estimate of the function .

To this end, we postulate that an estimate of , denoted by ,
can be expanded in terms of a set of nonlinear basis functions

(17)

Now the estimation problem can be stated as one of minimizing
the empirical risk

(18)

subject to the inequality , where is a constant, and
is a so-called -loss function, which is defined below,

to make the model estimate more robust

otherwise
(19)

with being a prescribed parameter. This constrained opti-
mization problem can be reformulated by introducing two sets
of nonnegative slack variables and

subject to

for (20)

where is a user-specified constant. There are two inequali-
ties to bound the output training for each , regulated by corre-
sponding slack variables and . The effect is that the estimate

can deviate for a prespecified error and cost.
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The constrained optimization problem of (20) can be solved
in a Lagrangian form as the following dual maximization
problem:

subject to

(21)

where are the Lagrange multipliers, and
is called the inner-product kennel. A significance

of (21) is that the dual problem is cast entirely in terms of the
training data. As a result, the objective function de-
pends only on the input patterns in the form of inner-product
kennel. Most importantly, one may use the inner-product kennel

to construct the minimum-risk discriminating hyper-
plane in the feature space without having to explicitly work with
the feature space itself. The estimate can now be rewritten as

(22)

Thus, given a feature , we will use (22) to estimate as learnt
from the training set.

In our demosaicking problem, SVR is used to find the optimal
fusion weights and at each pixel position. Considering

, we just estimate one of them. In the nonlinear
regressive model the dependence of on a feature vector is
described by

(23)

The remaining task is to select suitable feature vector and a
training set by which SVR can provide a good estimate of the
function . In the training process, we know the
real error terms and and, hence, can get the ideal
weight using (8).

The most critical factor in designing a good learning machine
for color demosaicking is the selection of suitable features that
can indicate which demosaicking method is better for the cur-
rent pixel. Besides and , we need to furnish SVR with more
statistically significant features. The sample variance is
a useful feature. The other features are the interband linear cor-
relation coefficients

(24)

where are samples of two different primary bands (i.e.,
R,G,B) in a local window centered at the missing sample

. This gives us three features .

Fig. 7. Test images used in this paper.

Fig. 8. Raw CFA data used in this paper (after demosaicking as thumbnail
here).

Due to the fact that an interband demosaicking method
heavily relies on spectral correlation, the other important fea-
ture is the saturation level of the color

(25)

By convention, we let if .
Finally, we get a richer feature vector

(26)

The selection of a suitable training set is also important for a
learning algorithm [12], particularly so if our goal is to achieve
best possible visual quality rather than just high PSNR. If the
training set is drawn at random and uniformly from representa-
tive images independent of image features, then the population
of the training set will be dominated by samples drawn from rel-
atively smooth areas, because natural images mostly consist of
large smoothly shaded regions. These samples will overwhelm-
ingly influence the SVR design because of their sheer weight.
On the other hand, the human visual system is very sensitive to
edges and line textures. even though they present only a minority
of the sample population. Therefore, one should design the SVR
using samples drawn from the activity regions of the images.
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TABLE II
PSNR (dB) RESULTS OF DIFFERENT METHODS

This design will not affect the visual quality of the smooth re-
gions, for which the two estimates and will be close to
each other anyways and either is a good estimate.

The first selection criterion for the training set is

(27)

where is a threshold. This is because when the two estimates
and differ significantly from each other, it becomes crit-

ical to give lager weight to the one that is closer to the missing
sample. The penalty of get a wrong fusion coefficient is poten-
tially high. The second selection criterion for the training set is

and (28)

where is also a threshold. The intent is to exclude the samples
for which the errors of intraband and interband demosaicking

and are estimated incorrectly. The two selection criteria
make the training set more relevant and robust.

In our experiments, we used the SVR algorithm implemented
by the software package libsvm [13] and chose the thresholds

, in (27) and (28), respectively. The radial basis
function (RBF) is employed as the inner kernel function of SVR

(29)

where is a user-specified constant, the same as the parameters
and in SVR. These three parameters are selected by ex-

periment using grid-search and cross-validation to find the best
values, so that the SVR can accurately predict unknown data.
We finally find , and . More details about
the selection of the three parameters can be found in [13].

V. EXPERIMENTAL RESULTS AND REMARKS

The proposed hybrid color demosaicking algorithm is im-
plemented in both LMMSE and SVR variants, and compared
with five other methods: the popular method of Hamilton and
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TABLE III
PSNR (dB) RESULTS OF DIFFERENT METHODS ON KADAK SET

Adams [6], the wavelet-based method of Gunturk et al. [2], the
adaptive homogeneity method of Hirakawa and Parks [3], the
primary-consistent soft-decision demosaicking (PCSD) method
[5], and the EUSSC method of Chang and Tan [8]. To evaluate
the impact of different intraband interpolation algorithms in the
proposed hybrid demosaicking framework, we also include in
the comparison group two different combinations: a) bicubic in-
terpolator and Hamilton-Adam’s method, and b) the NEDI in-
terpolator [14] and Hamilton-Adam’s method.

We use two sets of color images in our comparison study. The
first set consists of 20 test color images that have a wide range
of spectral correlations. These 20 images, listed in Fig. 7, are
chosen from the test sets of JPEG, MPEG, SMPTE and as well
as from the Kodak test set [Fig. 7(16)–(20)]. They are originally
fully sampled RGB images and the corresponding mosaic im-
ages are simulated by down-sampling the test images with the
Bayer CFA pattern. For the said simulated CFA images we can
compare the different demosaicking methods in PSNR since the
underlying fully sampled color images are known. The second
test set consists of three raw CFA images taken by Canon digital
cameras, listed in Fig. 8, which are downloaded from [15]. This
website provides these raw CFA images for the very purpose
of evaluating the performance of different digital cameras. The
second test image set allows us to compare the visual quality
of different demosaicking methods in real action, although we
cannot measure PSNR in this case. For the SVR variant of the
new method, we include Fig. 7(8)–(15) in the training set and
use the other images for testing.

We report in Table II and Table III the PSNR results of
the eight demosaicking methods for the new general test set
and the Kodak set, respectively. It can be seen from Table II
that the tested methods are ranked from high to low in PSNR
are 1) the proposed hybrid methods, 2) the PCSD method,
3) Hamilton-Adams’ method, 4) the EUSSC method 5) adap-
tive homogeneity method, and 6) Gunturk et al.’s method. The
new method of LMMSE variant gains on average 0.98 dB in red
band, 1.3 dB in green band, and 0.52 dB in blue band over the
PCSD method, which are substantial. We call reader’s attention
to the fact that the simple Hamilton-Adams’ method actually

Fig. 9. (a) Map of estimated weight � versus (b) the map of interband corre-
lation of test image Fig. 7(15).

performs significantly better than the methods [2], [3], [8] on
the general test set, exposing the sensitivity of these methods to
spectral correlation. The average gain of the proposed method
over the method [2] can be as much as 3.94 dB in the green
band. On the other hand, the performance difference between
the two variants of the new method is quite small. The SVR
variant is about 0.17 dB better on average than the LMMSE
variant.

However, on the Kodak images of exceptionally high spectral
correlation, the PSNR ranking of the eight methods is very
different. In Table III, Gunturk et al.’s method now achieves
the third highest PSNR, whereas its ranking is the lowest in
Table II. Only on the Kodak set Hamilton-Adams’ method
performs much worse than others. The sharp contrast between
Table II and Table III demonstrates the necessity of using more
balanced test images when evaluating different demosaicking
techniques.

Given the large PSNR gains of the proposed methods over
the existing demosaicking methods in Table II, one should
expect clearly superior visual quality of the former. Figs. 11–17
are sample parts of seven original and reconstructed images
by different evaluated methods. Of particular importance are
the results of demosaicking the real raw CFA data, presented
in Figs. 11–13. These results of real camera data suggest how
robust different demosaicking algorithms are in reality in chal-
lenging cases. It can be seen that the new methods remove most
of the objectionable color artifacts produced by the existing
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Fig. 10. (a) Ideal weight � versus the interband correlation for test image Fig. 7(15). (b) Ideal � versus estimated � for test image Fig. 7(15).

Fig. 11. Comparison of different demosaiking methods on raw CFA image Fig. 8(1). (a) Gunturk et al.’s method; (b) adaptive homogeneity; (c) Hamilton-Adam’s
method; (d) PCSD; (e) proposed (LMMSE).

Fig. 12. Comparison of different demosaiking methods on raw CFA image Fig. 8(2). (a) Gunturk et al.’s method; (b) adaptive homogeneity; (c) Hamilton-Adam’s
method; (d) PCSD; (e) proposed (LMMSE).

interband demosaicking methods. These artifacts are highly
objectionable to viewers because they are correlated with ob-
ject boundaries and edges. Among the existing demosaicking
methods, the Gunturk et al.’s method is the most susceptible
to zipper effect, while the classic Hamilton-Adams’ method
appears to be the least susceptible.

Fig. 17 demonstrates that some of existing interband de-
mosaicking methods are prone to artifacts even on colors of
low saturation, when being subject to sensor noises. Note that
sensor noises can distort the spectral correlation and, hence,
derail the interband demosaicking methods. The new methods

do not magnify sensor noises as the Hamilton-Adams’ method
and Gunturk et al.’s method.

To demonstrate the adaptability of the proposed method to
varying spectral correlations, we present in Fig. 9, as an ex-
ample, the intensity map of the weight in (8) in compar-
ison with the interband correlation map for image Fig. 7(15).
To quantify this adaptability we plot in Fig. 10 the curve of
ideal weight as a function of interband correlation. Also, to
demonstrate the effectiveness of the proposed fusion method,
the curve of the ideal weight versus the estimated value of

is included in Fig. 10, as well.
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Fig. 13. Comparison of different demosaiking methods on raw CFA image Fig. 8(3). (a) Gunturk et al.’s method; (b) adaptive homogeneity; (c) Hamilton-Adam’s
method; (d) PCSD; (e) proposed (LMMSE).

Fig. 14. Parts of the original and reconstructed images of Fig. 7(8). (a) Original; (b) Gunturk et al.’s method [2]; (c) adaptive homogeneity [3]; (d) Hamilton-
Adams’ method [6]; (e) PCSD [5]; (f) proposed (LMMSE).

Fig. 15. Parts of the original and reconstructed images of Fig. 7(9). (a) Original; (b) Gunturk et al.’s method [2]; (c) adaptive homogeneity [3]; (d) Hamilton-
Adams’ method [6]; (e) PCSD [5]; (f) proposed (LMMSE).

Also, we note that the LMMSE fusing of the bicubic interpo-
lation result and Hamilton-Adams’ demosaicking result is com-
petitive against previous methods, but inferior to the proposed

LMMSE method that employs the PARM-based adaptive inter-
polation by an appreciable margin. Replacing the bicubic inter-
polator by the NEDI interpolator in the combination can expect
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Fig. 16. Parts of the original and reconstructed images of Fig. 7(1). The color artifacts in (b) through (e) are caused by weak spectral correlation (color saturation).
(a) Original; (b) Gunturk et al.’s method [2]; (c) adaptive homogeneity [3]; (d) Hamilton-Adams’ method [6]; (e) PCSD [5]; (f) proposed (LMMSE); (g) proposed
(SVR).

Fig. 17. Parts of the original and reconstructed images of Fig. 7(2). Here, the speckle noises in demosaicked images (b) and (c) are caused by sensor noises. Note
the subtle differences between (f) and (g) to see the improvement by SVR over LMMSE. (a) Original; (b) Gunturk et al.’s method [2]; (c) adaptive homogeneity
[3]; (d) Hamilton-Adams’ method [6]; (e) PCSD [5]; (f) proposed (LMMSE); (g) proposed (SVR).

a better performance. This indicates the important role played
by intraband interpolation in the proposed hybrid demosaicking
framework.

VI. CONCLUSION

We proposed a new hybrid approach of color demosaicking
that combines inter and intraband estimates of missing sam-

ples. The new approach cures a common flaw of existing demo-
saicking techniques: susceptibility to color artifacts in areas of
weak spectral correlation or sensor noises. Two embodiments of
the new approach, an LMMSE-based demosaicking technique
and a SVR-based technique were developed and evaluated. Both
of them eliminate visually objectionable color artifacts of ex-
isting color demosaicking methods, and achieve significantly
higher PSNR and superior image quality.
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