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Improvement of Color Video Demosaicking
in Temporal Domain

Xiaolin Wu, Senior Member, IEEE, and Lei Zhang, Member, IEEE

Abstract—Color demosaicking is critical to the image quality
of digital still and video cameras that use a single-sensor array.
Limited by the mosaic sampling pattern of the color filter array
(CFA), color artifacts may occur in a demosaicked image in areas of
high-frequency and/or sharp color transition structures. However,
a color digital video camera captures a sequence of mosaic images
and the temporal dimension of the color signals provides a rich
source of information about the scene via camera and object mo-
tions. This paper proposes an inter-frame demosaicking approach
to take advantage of all three forms of pixel correlations: spatial,
spectral, and temporal. By motion estimation and statistical data
fusion between adjacent mosaic frames, the new approach can re-
move much of the color artifacts that survive intra-frame demo-
saicking and also improve tone reproduction accuracy. Empirical
results show that the proposed inter-frame demosaicking approach
consistently outperforms its intra-frame counterparts both in peak
signal-to-noise measure and subjective visual quality.

Index Terms—Bayer color filter array, data fusion, digital video,
subpixel motion estimation, temporal color demosaicking.

1. INTRODUCTION

OST digital cameras capture a color image with a single
Msensor array that sub-samples color bands in a partic-
ular mosaic pattern, such as the Bayer color filter array (CFA)
[3] shown in Fig. 1. At each pixel, only one of the three pri-
mary colors (red, green, and blue) is sampled. The full color
image is reconstructed by interpolating the missing color sam-
ples. This process is called color demosaicking, which is crit-
ical to the quality of reconstructed color images. The problem
of color demosaicking has been extensively studied in spatial
and frequency domains for still digital cameras [1], [2], [4], [6],
[71, [9], [11], [13]-[17], [22], [23], [26]. Early demosaicking
techniques mostly work in the spatial domain, such as nearest
neighbor replication, bilinear interpolation, and cubic B-spline
interpolation [13]. They are easy to implement but susceptible
to many artifacts such as blocking, blurring and zipper effect
at edges. The problem can be mitigated by an appropriate use
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Fig. 1. Bayer pattern.

of strong spectral correlation that exists in most natural color
images. Indeed, most modern demosaicking methods exploit
the correlation between red, blue, and green channels [2], [4],
[6], [7], [91, [11], [13]-[17], [22], [23], [26]. To distinguish the
existing methodology from the one of temporal demosaicking,
we classify all the above color demosaicking techniques, ei-
ther purely spatial or spatio-spectral methods, into the class of
intra-frame demosaicking.

Even the sophisticated spatio-spectral color demosaicking
techniques, such as those recently published, can still fail to
faithfully reproduce the color components in the presence of
high-frequency and/or sharp color transition structures. In order
to surpass the current state-of-the-art in terms of image quality,
additional information and constraints of the original color
signals have to be brought into the demosaicking process. For
digital video cameras, the temporal dimension of a sequence of
mosaic frames captures more and new data on the scene, which
would be otherwise absent if only a single frame is sampled
by the CFA. A natural enquiry of practical significance is
how to best exploit the correlation between adjacent frames
and improve the accuracy and robustness of intra-frame color
demosaicking.

Somewhat surprisingly, there seems to be little research re-
ported on temporal color demosaicking, despite its obvious po-
tential. Recently, Wu et al. proposed a joint spatial-temporal
color demosaicking technique [24], [25]. Their main idea is to
match the CFA green sample blocks in adjacent frames in such
a way that the missing red and blue samples in one frame can be
inferred from available red and blue samples of a matched ad-
jacent frame. This technique is effective if the motion between
the frames is by certain integer offsets that happen to align an
available blue/red sample in one frame with a missing blue/red
sample in the other frame. Another weakness of the technique
is that it selects only one best reference sample from the adja-
cent frames and then fuses it with a spatially interpolated value.
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Fig. 2. Flowchart of the proposed temporal demosaicking scheme.

In this paper, we propose a new framework of temporal color
demosaicking to overcome these limitations. The progress is
made in making multiple estimates of a missing color sample
temporally and spatially from several reference frames. These
estimates are first derived by associating samples of different
frames via subpixel motion vectors, and then optimally fused
into a single estimate of the missing color value.

For clarity of presentation and without the loss of generality,
our discussions and algorithm development are around the ubig-
uitous Bayer CFA (see Fig. 1), which is used in most digital
video cameras. The temporal demosaicking technique to be de-
veloped can be readily generalized to other CFA patterns. Note
that the sampling frequency of the green channel is twice that
of the red or blue channel in the Bayer pattern. This is because
the sensitivity of human visual system peaks at the green wave-
length and the green channel contributes the most to the lumi-
nance of an image. Since the red and blue channels are more
sparsely sampled, we naturally anchor their reconstruction on
the green channel in temporal demosaicking.

Fig. 2 is a schematic description of the proposed spatial-tem-
poral demosaicking framework. First, the green channels of
all frames are demosaicked individually by intra-frame demo-
saicking. Because the sampling frequency of green channel
is twice that of red or blue channel in the Bayer pattern, the
motion estimation between adjacent frames for temporal color
demosaicking is based on the reconstructed green channel
sequence. This design is to feed the motion analysis with the
best information. With the estimated motion vectors, adjacent
frames are registered spatially. The reference green samples in
adjacent frames are then fused with the intra-frame estimates of
the missing green samples of the current frame to enhance the
green channel. The temporally enhanced green channel is then
used to reconstruct the red and blue channels, by interpolating
the missing red and blue samples using both the intra-frame
and inter-frame information. First, individual red and blue
frames are interpolated spatially using the correlation with cor-
responding green frames that have by now been demosaicked
temporally. Then, the resulting spatio-spectrally demosaicked
red and blue frames are enhanced temporally, guided by the
motion vectors, by being fused with adjacent red and blue
frames.

This paper is structured as follows. Section II introduces a
new gradient-based intra-frame demosaicking method for the

green channel by optimally weighting the horizontal and ver-
tical interpolation results. The resulting green frames are used
to compute the relative motions of adjacent frames in subpixel
precision, which is the subject of Section III. After the frame
registration, in Section IV, the reference frames are fused opti-
mally with the current frame to obtain more robust estimates of
the missing color samples. Section V presents the experimental
results and Section VI concludes.

II. GRADIENT-BASED INTRA-FRAME DEMOSAICKING
OF THE GREEN CHANNEL

Since human visual systems are sensitive to the edge struc-
tures in an image, all adaptive demosaicking methods strive to
avoid interpolating across edges. To this end, the gradient is
estimated at each pixel, and the color interpolation is carried
out directionally based on the estimated gradient. Directional
filtering is the most popular approach to color demosaicking.
A well-known directional interpolation scheme is the second
order Laplacian correction proposed by Hamilton and Adams
[7]. They used the second-order gradients of blue and red sam-
ples and the first-order gradient of green samples to interpolate
the green channel. The red and blue samples are interpolated
similarly with the correction of the second order gradients of the
green samples. In this section, we propose a new intra-frame de-
mosaicking method. The goal is to provide a good base for the
next step of temporal demosaicking at a reasonable computa-
tional cost.

For ease of presentation and without loss of generality, we ex-
amine the case depicted by Fig. 3: a column and a row of alter-
nating green and red samples intersect at a red sampling position
where the missing green value needs to be estimated. The sym-
metric case of estimating the missing green values at the blue
sampling positions of the Bayer pattern can be handled in the
same way. Denote the red sample at the center of the window
by Ry. Its interlaced red and green neighbors in horizontal di-
rection are labeled as R, i € {—2,2}, and G, i € {-1,1},
respectively; similarly, the red and green neighbors of Ry in ver-
tical direction are RY, j € {—2,2},and GY, j € {-1,1}.

Most intra-frame demosaicking methods are based on an as-
sumption that the difference between the green channel and the
red/blue channel is a low-pass signal. Let A9 = Gy — Rg be
the unknown difference between green and red channels at the
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TABLE 1
MEANS OF v{} AND v AND THEIR CORRELATION COEFFICIENTS FOR THE 16 TEST IMAGES IN FIG. 4

Image 1 2 3 5 6 7 8
m, 0.0027 | 0.0013 | 0.0019 [ 0.0004 | -0.0002 | -0.0005 [ 0.0001 [ 0.0018
m, -0.0007 | -0.0009 | -0.0014 | 0.0002 | -0.0013 [ -0.0032 | -0.0005 | 0.0030

c 0.0326 | 0.0927 | -0.0539 [ 0.0696 | -0.0042 | 0.0281 0.0852 | 0.1592

Image 9 10 11 12 13 14 15 16
m, -0.0027 | -0.0006 | -0.0000 | 0.0000 | 0.0008 | 0.0002 | 0.0001 0.0003
m, 0.0013 | -0.0006 [ 0.0009 [ 0.0028 | 0.0003 | -0.0004 | -0.0015 [ 0.0006

c -0.0011 | -0.0021 | 0.0176 | 0.0579 | 0.0597 | 0.1320 | 0.0575 | 0.0724

Fig.3. Row and column of mosaic data that intersect at a red sampling position.

sample position of Rg. The idea is to obtain an estimate of Ay,
denoted by Ay, and then recover the missing green sample by

Gg ~ R(] + Ao. (2'1)

The reason for estimating the color difference signal A = G —
R rather than the green signal G directly is that A is much
smoother than G. Referring to Fig. 3, the horizontal and ver-
tical differences between the green and red channels at Rg can
be estimated as

1

1
3:§(G31+G11})_

(2-Ro+R", +R}) (2-2)

(2-Ro+R%;+RY). (2-3)

N NN

In [7], the authors set Ag = Ag or Ag = A} depending on
which of the horizontal and vertical gradients is smaller, but this
binary decision discards a potentially useful estimate. Instead,
we can fuse the two estimates to obtain a more robust estimate

of Ag

Ag = whAg + ’U}vAg (2'4)
where wy, + w, = 1.

Next, we discuss the determination of the weights w;, and w,,.
Consider A" and Ay as two independent measurements of the
true color difference signal A

Al = Ag+ ol and AY = Ag + Y (2-5)

where measurement noises v{ and vy are the estimation errors
of A} and Ay. Denote by my, and m,, the means of v and v
and by c the correlation coefficient between v} and v{. Table I
lists the values of my,, m,, and c for the 16 test images in Fig. 4,
indicating that v{ and vy are zero mean and nearly uncorrelated.
These properties allow us to derive the optimal weights

2 2
oy o
Wp =5, Wy= 75— (2-6)
oy, + oy oy + o

where 02 = Var(v}) and 02 = Var(vy). Here, the optimality
is in the sense of mean square error (MSE), i.e., wy, and w, of
(2-6) minimize the MSE of estimate Ay.

Empirically, we identify two main influence factors on the
estimation errors of A% and AY. The first one is the ampli-
tude of Ay. Most natural scenes consist of predominantly pas-
toral (unsaturated) colors such that the color difference signal
A =G —R (or A =G — B) is not only smooth but also small
in amplitude. The large amplitude of Ay is typically associated
with the discontinuity of the color difference signal at the posi-
tion of Ry, increasing the risk of large estimation errors. In other
words, the amplitudes of A} and/or Ay are proportional to the
measurement noises v/ and v. The second factor affecting v
and v is the presence of the high-frequency component in the
luminance signal. To account for this, we measure the gradient
of the red channel at Ry by

R, + RS R”, + R}

d" =Ry — 5

and dj = Ro — 2-7)

Also, we observe that the level of v} (vg) is nearly linearly
proportional to the magnitudes of A% (AY) and d? (dy). Let
A, = |Al| + |dh| and A, = |AY| + |dy|. Fig. 5 plots the curve
of oy, (0,) versus Ay (A,) for the first image in Fig. 4. The
curves for other images are similar. These curves suggest that
oy, (0,) is approximately proportional to Ay, (A,)

op < /\h . Ah, Oy )\U . Av (2-8)
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Fig. 4. Test images.

Fig. 5.

where A\, and ), are constants, and \;, = A, (see Fig. 5). Sub-
stituting (2-8) into (2-6) yields

A3 A7

hE A T A

(2-9)

Obviously, if Af and di have large magnitude, then wy, is
small, reducing the influence of Ag on Ay, and vice versa. By
fusing the two directional estimates A} and Ag with optimal

Curves of o, versus /A;, and o, versus A, .

weights wj, and w,, the final estimate Ag is more robust in
reconstructing the missing green sample as Gg = Ry + 4p.

III. MOTION ESTIMATION AND RE-SAMPLING

Upon spatially demosaicking the green channel of each
frame, we take the next step of temporal demosaicking to
enhance the green channel by exploiting the temporal cor-
relation of the video signal. The promise of temporal color
demosaicking lies in the fact that the color samples missed by
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Fig. 6. Current green frame and its backward and forward neighboring frames.

the CFA subsampling process in one frame may be captured
in neighboring frames. To realize this potential, we have to
register the frames by determining the relative motion vectors
between the current frame and the reference frames. Accurate
motion estimation of the video frames is pivotal to temporal
color demosaicking and many applications such as video
coding, superresolution imaging, and computer vision [5], [8],
[12], [18]-[21].

In the Bayer CFA, the green channel has twice as many
samples as the red and blue channels. Furthermore, the green
signal is a good approximation of the luminance signal. For
these reasons, we estimate the motions in the green channel.
This is also why an initial intra-frame demosaicking process
is required to estimate the missing green samples prior to
temporal demosaicking.

Any of the existing motion-estimation techniques can be used
to estimate the motion vector in the green channel. A more ac-
curate motion estimation method may lead to a better temporal
demosaicking result, but of course at a higher computational
cost. It should be stressed, however, that the temporal enhance-
ment technique to be developed in the next section is indepen-
dent of the motion estimation method. The main focus of this
paper is on the methodology of temporal enhancement rather
than motion estimation. For a good balance between estimation
accuracy and low complexity, we choose the block-based mo-
tion-estimation technique, which is widely used in MPEG 2/4
and other video-coding standards [12]. Specifically, we adopt
the cross-correlation-based method proposed in [27] to compute
the motion vector in subpixel precision. For the sake of conti-
nuity, we briefly describe the method below.

As the convention of this paper, we denote the original green
samples by G and the interpolated green samples through the
intra-frame demosaicking by G (referring to Fig. 6). Let M be
a block of pixels in the current frame and M; ; a matched block
in a reference frame with displacement (¢, ), where ¢ and j are
integers. Denote by (7., 7,,) the real valued motion vector of M
from the current frame to the reference frame.
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Fig. 7. Re-sampling of the reference block.

For convenience, let M and M; ; be the matrices whose ele-
ments are the sample values of blocks M and M ;. The cross-
correlation function between M and M; ; is computed as

N, Ny
(i) =YY M(n,m)M; j(n,m)  (3-1)
n=1m=1

where the dimensions of M and M; ; are N, X N, . If the motion
vector (7, 7,) is restricted to integer precision, then it can be
approximated by

(7w, 7y) = (d0, o) = arg max (4, 7). (3-2)

©,7€Z
However, since the true displacement of a scene in two frames is
in general subpixel, we should allow the motion vector (7, 7)
to be real valued for higher precision.

Consider the motion in the horizontal and vertical directions
separately. For a fixed y, we write the continuous cross-corre-
lation function r(xz,y) as r,(z). In [27], we showed that the
one-dimensional cross correlation function can be well approx-
imated by a Gaussian function in the interval around its peak, for
digital signals that are captured by sensors whose kernel func-
tion is Gaussian or box. Therefore, we write r(z,y) in the hor-
izontal direction as

re(z) =a- e bl@—e)? (3-3)
and use the three most significant samples in horizontal direc-
tion (g, jo), (%0, jo—1), and (i, jo+1) to fit r,, (z) and solve
for the three parameters a, b, and c. Letting 7(%9, jo) = r.(0),
T(io,jo — 1) = ’I"x(—l), and T‘(io,jg + 1) = ’I"z(l), we have

Inr(ig, jo — 1) = Ina — b(1 + ¢)?
Inr(ig, jo) = Ina — bc?
Inr(ig,jo + 1) = Ina — b(1 — )%

(3-4)

Solving (3-4) yields

T
= f‘(lovjo-l-. ). 7 (40, jo . ). ()
4r(ig, jo) — 2r(io, jo — 1) — r(io, jo + 1)
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Fig. 8. (a) Interpolation of a missing red sample at a green pixel whose horizontal neighbors are red pixels. (b) Interpolation of a missing red sample at a green
pixel whose vertical neighbors are red pixels. (c) Interpolation of a missing red sample at a blue pixel.

The motion value 7, in the horizontal direction is determined to
be the peak position of 7, (z), i.e., 7, is the sum of integral part
Jo and fractional part ¢ solved in (3-5)

7. = jo+c. (3-6)
Similarly, we can compute 7, the motion in vertical direction,
and then determine the motion vector (7, 7).

Since (7, 7,) is real valued in subpixel precision, the cor-
responding reference block matched to M, denoted by M.,
should be re-sampled from the reference frame. In the literature
the value of a pixel is commonly modeled as the integral of the
light over a unit square. Let P.. be a pixel in M. and suppose the
pixel square of P, overlaps with those of P, P2, P3, and Py, as
shown in Fig. 7, which are the pixels in the reference frame. P
is to be reproduced from P;, P5, P3, and P4. Denote the areas
of the overlaps as Si, So, S3, and Sy, which can be computed
from the fractional part of the real valued coordinate (7., 7).
Then the value of pixel P. can be calculated as the sum of the
intensities over Sq, So, S3, and S4: P, = Z?=1 S; - P;.

Due to the structure of the sampling grid of the green channel,
two of the four squares P, P, P3, and P are the original green
samples G and the other two are the interpolated green samples
G (see Fig. 6). To factor in higher confidence on G than on G,
we put different confidence factors ¢; on Py, Po, P3, and Py
when computing P.

(3-7)

4
PCZZCZ'-SZ‘-PZ‘
i=1

where weight ¢; = 1.2 if P; is an original green sample and
c¢; = 0.8if P; is an interpolated green sample. The sum of
weights should be 37, ¢; = 4.

IV. TEMPORAL IMPROVEMENT OF DEMOSAICKING

Intra-frame spatial demosaicking has an inherent limitation. It
is impossible to reconstruct faithfully the color signal at/near the
edge/texture structures whose frequency exceeds the Nyquist
sampling limit. To aggravate the problem, the human visual
system is very sensitive to the color artifacts across edges. The
demosaicking errors become visually highly objectionable if the

(@) (b)

Fig. 9. (a) Resolution chart image. (b) Synthetic image that contains pure red,
green, and blue color objects.

discontinuity exists simultaneously in luminance and chromi-
nance. In this case, the artifacts cannot be removed by assuming
a high correlation between the color channels as most intra-
frame demosaicking algorithms do. In contrast, temporal cor-
relation of a mosaic color video signal, which commonly ex-
ists, provides badly needed information to resolve such difficult
cases for color demosaicking.

A. Temporal Update of Green Channel

With the motion estimation and re-sampling algorithms
described in Section III, we can get a reference block of the
current block My in each reference frame. Suppose that K
reference frames are used, and denote by {M,},_, , , the
re-sampled reference blocks. The spatially demosaicked §ample
in My is to be fused with the matched samples in M;. For
convenience of expression, we denote the spatially interpolated
green sample in My by Go, the unknown true green sample
corresponding to Go by G, and the associated reference sam-
ples in M; by Gi. Naturally, we can write Gy and G, as the
measurements of true sample G

Gi=G+e, i=0,1,....K 4-1)
where e; are the interpolation errors of G, in the spatial demo-
saicking process, and they are uncorrelated with G. Since G; are
independent observations of G in different frames, we assume

thaterrors e;, 2 = 0, 1, ..., K, are mutually nearly uncorrelated.
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Indeed, the correlation coefficient between e; and e;, ¢ # j, is
only 0.11 on average for the test sequences used in Section V.
Furthermore, this correlation is much weaker in areas of edges
and textures, where temporal demosaicking offers clear advan-
tage over spatial demosaicking, than smooth areas. If e;’s are
significantly correlated, then the observations G, are very sim-
ilar (e.g., if there is no acquisition noise and no motion, CA%Z will
be identical to each other). In this case, the reference frames
offer very little new information and temporal demosaicking
cannot improve spatial demosaicking.

In order to fuse all the measurements Gi into a more robust
estimate of G, we consider the weighted estimate

(4-2)

where weights ZiKZO w; = 1. The criterion of determining w; is
to minimize the MSE of G , i.e., {w;} = arg_max FE[(G —

w;=1
G)?], where E is the expectation operator.

The weights w; may be determined off-line using an appro-
priate training set. The weights optimized for the training set can
then be used in (4-2) to obtain the fused estimate G. However, if
the training dataset is not available, or/and if the best color de-
mosaicking performance is desired, on-line adaptive estimation
can be made as described below. Let

K K 2
N=E|[(G-G)?*|=E (Zwiei + <1—Zwi) eo> .
=1 =1
(4-3)
Denote by o7 the variance of error e;. Differentiating 2 with

respecttoe;, 2 = 1,2,..., K, and setting the partial derivatives
to zero. With Ele;e;]|,,; ~ 0, we have

a0
811)1‘

K
= w;jo? — 1—5 w; o2 =0
=1

from which we obtain the optimal weight vector w =
col{wy,ws,...,wg} for the estimates in the K reference
frames

w=S""1 (4-4)

where 1 is a column vector whose elements are all ones and the
K x K matrix S is

L+o}/0d 1 1
1 1+o03/o - 1
S = . S (4-5)
1 1 1+o0%/od
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Fig. 10. (a) Original image; demosaicked images by the methods in (b) [7];
(c) [41; (@) [9]; (e) [16]; (D) [15]; (g) [26]; (h) [24]; and (i) the proposed temporal
scheme.

Solving (4-4) for w;, the fused estimate of G is then computed
by (4-2).
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TABLE 11

PSNR (dB) RESULTS ON THE TWO SYNTHETIC SEQUENCES BY DIFFERENT METHODS
Demosaicking Methods Simulated sequence 1 | Simulated sequence 2
red | green | blue | Red | green | blue
Method in [7] 23.98 | 30.54 | 23.95 | 23.99 | 36.83 | 23.43
Method in [4] 17.95 |1 27.95 | 17.99 | 8.06 | 8.00 | 7.90
Method in [9] 29.82 | 31.78 | 29.94 | 22.66 | 33.91 | 22.40
Method in [16] 2471 | 28.69 | 24.76 | 22.43 | 28.58 | 23.99
Method in [15] 30.17 | 33.49 | 30.21 | 24.26 | 37.00 | 23.63
Method in [26] 34.84 | 36.41 | 34.53 | 22.55 | 35.45 | 21.96
Method in [24] 32.85 | 37.58 | 33.13 | 32.87 | 43.58 | 31.78
Proposed temporal method 35.76 | 40.38 | 35.77 | 33.69 | 46.20 | 32.60

B. Estimation of the Error Variances

To implement the above algorithm, the error variances o2

need to be estimated. From G; = G + ¢; and E[eiej]|i¢j ~ 0,
we have

dij =E [(Gi - Gj)z}

=0, +0;, i,j=0,1,...,Kandi#j. (4-6)
The values of d; ; can be estimated adaptively from blocks M;

and M, ¢ # j

1 "
dij =7 Yoo (G-

GieM;,G;eM;

(4-7)

where L is the total number of missing green samples in blocks
M.

If 03 , 1.e., the variance of eg in the current block My, is a
known prior, then the values of o7 for other 4’s can be calcu-
lated by (4-6) and (4-7). Otherwise, all the values of o7 can be
estimated as follows. Let

a:col{ag,...,aﬁ} (4-8)

be a K + 1-dimensional vector that encompass all the o?, and
let

d= COl{doJ7 ey dO,K; d1’2, ey dl,K7 ceey dKfl,K} (4-9)
be a K(K + 1)/2-dimensional vector that encompass all the

d; ;, then there exists a K (K +1)/2 x (K + 1) matrix H such
that

(4-10)

Denote h; ; as the row in H such that d; ; = h; ;o. Clearly, only
the i1 and j*"'th elements in h; ; are 1 and all other elements are
zeros. We estimate o by the least-square estimation technique

o= (HH) 'Hd (4-11)

C. Joint Spatial-Temporal Interpolation of Red/Blue Channels

After the green estimates are improved by the temporal de-
mosaicking process described in Sections IV-A and IV-B, they
can in turn guide the demosaicking of the red and blue chan-
nels. Similarly to the demosaicking of the green channel, the
missing red and blue samples are recovered in two steps. First,
we spatially interpolate them with the help of the temporally de-
mosaicked green channel and then temporally improve the in-
terpolation results aided by motion vectors.

The intra-frame demosaicking of red/blue channel can be ac-
complished by any of the existing methods. In this paper, we
adopt the directional filtering strategy similar to Hamilton and
Adams’ method [7]. Since the interpolation of blue channel is
symmetrical to that of red channel, we only describe the process
of interpolating the red channel.

Referring to Fig. 8, there are three cases depending on the po-
sitions of missing red samples. Fig. 8(a) and (b) shows the two
cases of the missing red samples at the original green pixel po-
sitions. Fig. 8(c) shows the case of a missing red sample at the
original blue pixel position. We stress the fact that the missing
green samples at the red/blue positions have already been esti-
mated. In the case of Fig. 8(a), we can estimate the green-red
difference signal by using the true red samples and temporally
estimated green samples in horizontal direction, and in the case
of Fig. 8(b), we can estimate the green-red difference signal in
vertical direction similarly. In the case of Fig. 8(c), we can es-
timate two green-red difference values in 45° and 135° direc-
tions. These two values are fused to one result as what we did in
Section II. The missing red sample is estimated by subtracting
the estimated green-red difference A from the original green
value, R = G — A, in cases (a) and (b), or from the estimated
green value, R=G- A in case (c). Since the above spatial
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Fig. 11. (a) Original image; demosaicked images by the methods in (b) [7];
(c) [41; (d) [9]; (e) [16]; () [15]; (g) [26]; (h) [24]; and (i) the proposed temporal
scheme.

demosaicking process exploits the spectral correlation between
red/blue and green, and it operates on temporally demosaicked

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 10, OCTOBER 2006

green channel, the spatial interpolation of red and blue chan-
nels indirectly benefits from the temporal redundancy in adja-
cent frames.

Similarly to the green channel, the spatially interpolated red
and blue channels can be further improved via motion estima-
tion and data fusion. However, the motion vectors are still com-
puted in the green channel, because the motion estimation ac-
curacy in the green channel is much higher than in the red and
blue channels. Indeed, the sample frequency of red/blue channel
is only half of that of the green channel, and the two-dimen-
sional (2-D) sampling grid of red/blue channel employs inef-
ficient square lattice as opposed to the diamond lattice for the
green channel.

The temporal enhancement process of red/blue channel is
similar to that of green channel. The main difference is in the
confidence factor determination in the re-sampling step. Take
the red channel for example, after the motion vector (7, 7y)
between a current block M and a reference block M. is com-
puted, a pixel P, in M, needs to be re-sampled from the four
neighboring pixels Py, Ps, P3, and P4 in the reference frame.
In the sampling grid of the red channel, only one of the four
pixels is an original red sample R and the other three are interpo-
lated ones R. The confidence factors in the re-sampling process
P. = Z?Zl ¢; - S; - P;are ¢; = 1.6 if P; is an original red
sample and ¢; = 0.8 if P; is an interpolated red sample. This is
to guarantee that the sum of all ¢; to be 4.

V. EXPERIMENTAL RESULTS

The proposed joint spatial-temporal color demosaicking al-
gorithm was implemented and tested on two synthetic sequences
and two real video clips. To evaluate the performance of the
proposed algorithm in comparison with other intra-frame de-
mosaicking algorithms and our earlier temporal demosaicking
algorithm [24], [25], we present in this section both the demo-
saicked images and PSNR results. Besides the temporal method
in [24], the six state-of-the-art intra-frame demosaicking algo-
rithms used in our comparison are: the method of second-order
Laplacian filtering by Hamilton and Adams [7], the method of
variable number of gradients by Chang et al. [4], the principal
vector method by Kakarala and Baharav [9], the bilinear inter-
polation of color difference by Pei and Tam [16], the normalized
color-ratio modeling by Lukac and Plataniotis [15], and the di-
rectional filtering and fusion method by Zhang and Wu [26].

A. Test on Synthetic Mosaic Video Sequences

1) Resolution Chart Video: To validate the proposed
demosaicking algorithm, we used two synthetic mosaic test
sequences. The first sequence is generated from a gray-scale
resolution chart [Fig. 9(a)], which is widely used in evaluating
superresolution algorithms. Denote by I the original resolution
chart image. We simulated five mosaic video frames with
relative motions as follows.

To simulate a video camera, I is first smoothed by convo-
luting with a low-pass filter f, : Iy = [ * f,, where fy =
[1, 1, 1; 1, 8, 1; 1, 1, 1]/16 in this experiment. Then five
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(b)

Fig. 12. Scene in the (a) first test clip and (b) second test clip.

TABLE III
PSNR (dB) RESULTS ON THE TWO SYNTHETIC SEQUENCES BY DIFFERENT METHODS

Demosaicking Methods Test sequence 1 Test sequence 2
red | green | blue | Red | green | blue
Method in [7] 31.53 | 33.61 | 27.87 | 33.16 | 38.30 | 36.16
Method in [4] 31.46 | 33.41 | 27.52 | 32.61 | 37.90 | 33.79
Method in [9] 30.66 | 34.08 | 29.24 | 31.76 | 38.42 | 35.72
Method in [16] 30.83 | 34.37 | 29.14 | 31.59 | 36.29 | 35.15
Method in [15] 30.11 | 33.09 | 28.99 | 31.68 | 36.71 | 35.93
Method in [26] 3048 | 35.25 | 29.74 | 31.23 | 38.24 | 35.62
Method in [24] 32.24 | 35.15 | 30.10 | 34.15 | 38.11 | 36.06
Proposed temporal method 34.42 | 36.10 | 30.57 | 36.62 | 38.87 | 37.85

frames are created by down-sampling /. The current frame to
be enhanced is

Fo(n,m,e) = I;(2n,2m,e)

where “e®” is the index for color channels. The other four refer-
ence frames are

Fi(n,m,:) =1(2n,2m + 2, ) + vy
Fy(ny,m,e) =I1,(2n +2,2m,e) + vy
Fs(n,m,e) =I1,(2n+2,2m + 2,0) + vs
Fy(n,m,e) =I,(2n —1,2m + 1,0) + vy

where v1, V3, U3, and vy are Gaussian white noises and they are
mutually uncorrelated. In our simulation, v; ~ N(0,8),: =1,
2, 3, 4. The relative motions between F;, 2 = 1, 2, 3, 4 and Fj
are (0, 1), (1, 0), (1, 1), and (—0.5, 0.5), respectively. Finally,
each frame F; is down-sampled again according to the Bayer
pattern.

The demosaicked results of different methods for the resolu-
tion chart video are presented in Fig. 10, where (a) is the orig-
inal, (b)—(g) show the demosaicked images by the intra-frame
methods in [4], [7], [9], [15], [16], and [26]. These methods pro-
duce highly visible color artifacts. Fig. 10(h) and (i) shows the
output images of a previous temporal demosaicking method [24]
and the proposed method. One can see that only the new method

is free of color artifacts on the resolution test sequence. The
PSNR results are listed in Table II, which are in agreement with
the visual quality evaluations. The proposed joint spatial-tem-
poral method has the highest PSNR.

2) Saturated Color Video: The simulation results on the
resolution chart demonstrate the effect of the joint spatial-tem-
poral demosaicking approach on the high-frequency luminance
contents. Now we turn to the other more difficult form of
discontinuity for color demosaicking: abrupt chrominance
changes. Fig. 9(b) represents such an artificial worst-case
scenario: a scene consisting of sharp objects of highly saturated
colors (pure red, green, and blue) in a white background. We
generated a mosaic video sequence from Fig. 9(b) in the same
way as described in the previous subsection. The demosaicked
images of this test sequence are presented in Fig. 11. All the
intra-frame methods generate highly visible color artifacts
around the object boundaries. In contrast, the temporal demo-
saicking approach performs very well in reproducing the sharp
color edges. The PSNR results are also listed in Table II.

The color artifacts caused by chrominance discontinuities
(e.g., lack of spectral correlation in saturated colors) are more
difficult to remove than those caused by luminance disconti-
nuities within a frame. In this case, the common assumption
made by almost all intra-frame demosaicking algorithms on
the smoothness of the color difference signal no longer holds.
As we see in this experiment and the following experiments,
this problem can be mitigated by exploiting the temporal
correlation.
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Fig. 13. (a) Original image; demosaicked images by the methods in (b) [7];
(¢) [4]; @) [9]; (e) [16]; () [15]; (g) [26]; (h) [24]; and (i) the proposed temporal
scheme.
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B. Experiments on Real Video Clips

A similar comparison study was also carried out on two real
video clips. The movie sequences were originally captured on
film and then digitized by a high-resolution scanner.! All the
three color channels were known and we simulated the mosaic
data by subsampling the red, green, blue channels according to
the Bayer pattern. In temporal demosaicking of a current frame,
we used two immediately proceeding frames and two immedi-
ately succeeding frames as reference frames.

The scene in the first movie clip is a car in a park. The
car is still but the camera is rotating around it. Fig. 12(a)
shows the scene in a frame. The video is captured at a rate
of 24-frames/second. The spatial resolution of each frame is
1948 x 1280 and the bit depth is 8 bits per color channel. In
this clip, most of the smooth background objects such as the
road, the lake, and trees can be reconstructed free of visible
artifacts by spatial demosaicking techniques. However, on the
car, where some sharp edges accompany abrupt color changes,
the spatial demosaicking cannot faithfully recover the missing

' color components. Fig. 13(a) shows a 256 x 256 portion of the

original frame in question.

Fig. 13(b)—(i) shows the demosaicked images by the eight
methods. Fig. 14(a)—(i) presents the close-ups of the demo-
saicked images by these methods for easier visual inspection.
There are highly visible color artifacts in Fig. 13(b)—(g), par-
ticularly on the grill of the car, where the true color signal
frequency exceeds the sampling frequency of the Bayer
CFA. The algorithm in [26] [see Fig. 13(g)] has fewer color
artifacts on the grill than other intra-frame demosaicking

methods, but it still generates significant zipper effects along
. the boundary of the red and silver colors and on the emblem

of the car [see Fig. 14(g)], as other spatial demosaicking
methods [see Fig. 14(b)—(f)]. The color edges that failed all
intra-frame demosaicking methods have discontinuities in
both luminance and chrominance. For sharp edges of highly
saturated colors of weak spectral correlation, no sufficient
information exists within a frame to reconstruct the color
signal. This is the situation where the temporal correlation
can come to the rescue.

Fig. 13(h) and Fig. 14(h) are the results by the temporal

' demosaicking method in [24]. It offers better visual quality

than intra-frame demosaicking, but some color artifacts still
exist and the improvement in PSNR is quite small (referring
to Table III). Fig. 13(i) and Fig. 14(i) are the demosaicked
images by the proposed temporal demosaicking method. The
proposed method has clear advantages over all others in terms
of visual quality. Most of the color artifacts are eliminated and
many sharp edge structures that are missing or distorted in
intra-frame demosaicking are well reconstructed by the joint
temporal-spatial demosaicking. The PSNR results (we demo-
saicked eight consecutive frames and computed the average
PSNR) of the three color channels by these demosaicking
methods are listed in Table III.

10ur thanks to the IMAX Corporation, Mississauga, ON, Canada, for pro-
viding the test data.
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Fig. 14. Zoom-in images of the demosaicked results. (a) Original image; Fig. 15. (a) Original image; demosaicked images by the methods in (b) [7];
demosaicked images by the methods in (b) [7]; (c) [4]; (d) [9]; (e) [16];  (c) [4]; (d) [9]; (e) [16]; (f) [15]; (g) [26]; (h) [24]; and (i) the proposed
(f) [15]; (g) [26]; (h) [24]; and (i) the proposed temporal scheme. temporal scheme.
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The proposed method achieves significantly higher PSNR than
others as well.

The other test sequence, shown in Fig. 12(b), is a skating
girl. In this scene, both the object (the girl) and the camera are
moving. The motion is a combination of rotation and transla-
tion. The video is captured at 24-frames/second and 8 bits per
color channel. The original resolution of the sequence is 1948
x 1280 and we down-sampled it to 974 x 640 in the exper-
iment. Fig. 15(a) shows a zoom-in crop (128 x 128) of the
scene. As in the previous example, by comparing the other de-
mosaicking techniques in Fig. 15(b)—(h) with the proposed tem-
poral method in Fig. 15(i), we see that most of the color artifacts
and zipper effects are suppressed by the proposed method. The
PSNR results are also listed in Table III. The proposed method
had limited PSNR improvement on the green channel because
the green signal of this sequence is so smooth that the spatial
demosaicking by itself suffices for good reconstruction.

Finally, we want to bring the reader’s attention to the signifi-
cant PSNR increases in the reconstructed red and blue channels
by the proposed demosaicking method. This means that besides
reducing color artifacts the proposed method also reproduces
the color tones more precisely than other methods. The big im-
provements in reproduction precision of the red and blue chan-
nels should not come as a surprise, considering that the Bayer
CFA has much lower sampling frequency and inferior sampling
grid pattern for the red and blue channels. The design bias of
the Bayer CFA against the red and blue channels in favor of the
green channel makes the faithful reproduction of the red and
blue signals more difficult if color demosaicking is carried out
on a frame-by-frame basis. Temporal demosaicking is capable
of much higher tone accuracy in color reproduction.

VI. CONCLUSION

We proposed an inter-frame color demosaicking approach
that utilizes all three forms of pixel correlations: spatial, spec-
tral, and temporal. The green channel is first reconstructed and
it acts as an anchor to help recovering the red and blue channels.
In reconstructing each one of the three channels, we first inter-
polate it using an intra-frame demosaicking method and then
temporally enhance it with the help of adjacent frames. The ex-
perimental results showed that the proposed approach appre-
ciably improved intra-frame spatial color demosaicking tech-
niques, removing much of the color artifacts of the latter and
ensuring higher tone accuracy. Temporal color demosaicking
requires a fairly large buffer to hold multiple reference frames,
and involves quite extensive computations compared with the
intra-frame demosaicking. We can reduce the complexity by
invoking the proposed temporal color demosaicking algorithm
only when infra-frame demosaicking can not produce good out-
puts. Only at localities of sharp edges and finely structured tex-
tures the CPU-intensive temporal color demosaicking will be
activated. In smooth regions of an image, which typically con-
stitute the major portion of a scene, the sampling frequency of
the color mosaic is high enough to allow correct color demo-
saicking solely in the spatial domain.
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