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Gradient Histogram Estimation and Preservation for
Texture Enhanced Image Denoising
Wangmeng Zuo, Lei Zhang, Chunwei Song, David Zhang and Huijun Gao

Abstract—Natural image statistics plays an important role in
image denoising, and various natural image priors, including
gradient based, sparse representation based and nonlocal self-
similarity based ones, have been widely studied and exploited for
noise removal. In spite of the great success of many denoising
algorithms, they tend to smooth the fine scale image textures
when removing noise, degrading the image visual quality. To
address this problem, in this paper we propose a texture enhanced
image denoising method by enforcing the gradient histogram of
the denoised image to be close to a reference gradient histogram
of the original image. Given the reference gradient histogram,
a novel gradient histogram preservation (GHP) algorithm is
developed to enhance the texture structures while removing noise.
Two region-based variants of GHP are proposed for the denoising
of images consisting of regions with different textures. An
algorithm is also developed to effectively estimate the reference
gradient histogram from the noisy observation of the unknown
image. Our experimental results demonstrate that the proposed
GHP algorithm can well preserve the texture appearance in the
denoised images, making them look more natural.

Index Terms—Image denoising, histogram specification, non-
local similarity, sparse representation.

I. INTRODUCTION

IMAGE denoising, which aims to estimate the latent clean
image x from its noisy observation y, is a classical yet

still active topic in image processing and low level vision.
One widely used data observation model [4], [7], [9]–[11] is
y = x+ v, where v is additive white Gaussian noise (AWGN).
One popular approach to image denoising is the variational
method, where an energy functional is minimized to search
the desired estimation of x from its noisy observation y. The
energy functional usually involves two terms: a data fidelity
term which depends on the image degeneration process and
a regularization term which models the prior of clean natural
images [4], [7], [8], [12]. The statistical modeling of natural
image priors is crucial to the success of image denoising.

Motivated by the fact that natural image gradients and
wavelet transform coefficients have a heavy-tailed distribution,
sparsity priors are widely used in image denoising [1]–[3].
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Fig. 1: Examples of denoised images and their gradient histograms.
(a) A cropped image with hair textures; (b) denoised image by the
SAPCA-BM3D method [11]; (c) denoised image by the proposed
texture enhanced image denoising via gradient histogram preservation
(GHP); (d) the gradient histograms of the denoised images. One can
see that the proposed GHP method can recover more texture details
than other methods, and the gradient histogram of the denoised image
by GHP is also closer to the gradient histogram of ground truth image.

The well-known total variation minimization methods actually
assume Laplacian distribution of image gradients [4]. The
sparse Laplacian distribution is also used to model the high-
pass filter responses and wavelet/curvelet transform coeffi-
cients [5], [6]. By representing image patches as a sparse
linear combination of the atoms in an over-complete redundant
dictionary, which can be analytically designed or learned from
natural images, sparse coding has proved to be very effective
in image denoising via l0-norm or l1-norm minimization [7],
[8]. Another popular prior is the nonlocal self-similarity (NSS)
prior [9]–[11], [50]; that is, in natural images there are often
many similar patches (i.e., nonlocal neighbors) to a given
patch, which may be spatially far from it. The connection
between NSS and the sparsity prior is discussed in [11], [12].
The joint use of sparsity prior and NSS prior has led to state-
of-the-art image denoising results [12]–[14]. In spite of the
great success of many denoising algorithms, however, they
often fail to preserve the image fine scale texture structures
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[23], degrading much the image visual quality (please refer to
Fig. 1 for example).

With the rapid development of digital imaging technology,
now the acquired images can contain tens of megapixels. On
one hand, more fine scale texture features of the scene will
be captured; on the other hand, the captured high definition
image is more prone to noise because the smaller size of
each pixel makes the exposure less sufficient. Unfortunately,
suppressing noise and preserving textures are difficult to
achieve simultaneously, and this has been one of the most
challenging problems in natural image denoising. Unlike large
scale edges, the fine scale textures are much more complex
and are hard to characterize by using a sparse model. Texture
regions in an image are homogeneous and are composed of
similar local patterns, which can be characterized by using
local descriptors or textons [43]. Cognitive studies [35], [36],
[43], [44] have revealed that the first-order statistics, e.g.,
histograms, are the most significant descriptors for texture
discrimination. Considering these facts, histogram of local
features has been widely used in texture analysis [15]–[17].
Meanwhile, image gradients are crucial to the perception and
analysis of natural images [45], [46]. All these motivate us
to use the histogram of image gradient to design new image
denoising models.

With the above considerations, in this paper we propose
a novel gradient histogram preservation (GHP) method for
texture enhanced image denoising. From the given noisy image
y, we estimate the gradient histogram of original image x.
Taking this estimated histogram, denoted by hr, as a reference,
we search an estimate of x such that its gradient histogram
is close to hr. As shown in Fig. 1, the proposed GHP based
denoising method can well enhance the image texture regions,
which are often over-smoothed by other denoising methods.
The major contributions of this paper are summarized as
follows:

(1) A novel texture enhanced image denoising framework is
proposed, which preserves the gradient histogram of the
original image. The existing image priors can be easily
incorporated into the proposed framework to improve the
quality of denoised images.

(2) Using histogram specification, a gradient histogram
preservation algorithm is developed to ensure that the
gradient histogram of denoised image is close to the
reference histogram, resulting in a simple yet effective
GHP based denoising algorithm.

(3) By incorporating the hyper-Laplacian and nonnegative
constraints, a regularized deconvolution model and an it-
erative deconvolution algorithm are presented to estimate
the image gradient histogram from the given noisy image.

The rest of the paper is organized as follows. Section II pro-
vides a brief survey of the related work. Section III introduces
the gradient histogram estimation and preservation framework.
Section IV presents the proposed denoising model and the
iterative histogram specification algorithm, while Section V
describes the regularized deconvolution model and algorithm
for gradient histogram estimation. Section VI presents the
experimental results. Finally, Section VII concludes this paper.

II. RELATED WORK

Image denoising methods can be grouped into two cat-
egories: model-based methods and learning-based methods.
Most denoising methods reconstruct the clean image by ex-
ploiting some image and noise prior models, and belong to
the first category. Learning-based methods attempt to learn a
mapping function from the noisy image to the clean image
[19], and have been receiving considerable research interests
[20], [21]. Here we briefly review those model-based denoising
methods related to our work from a viewpoint of natural image
priors.

Studies on natural image priors aim to find suitable models
to describe the characteristics or statistics (e.g., distribution)
of images in some domain. One representative class of image
priors is the gradient prior based on the observation that
natural images have a heavy-tailed distribution of gradients.
The use of gradient prior can be traced back to 1990s when
Rudin et al. [4] proposed a total variation (TV) model for
image denoising, where the gradients are actually modeled as
Laplacian distribution. Another well-known prior model, the
mixture of Gaussians, can also be used to approximate the
distribution of image gradient [1], [22]. In addition, hyper-
Laplacian model can more accurately characterize the heavy-
tailed distribution of gradients, and has been widely applied
to various image restoration tasks [2], [3], [23]–[25].

The image gradient prior is a kind of local sparsity prior,
i.e., the gradient distribution is sparse. More generally, the
local sparsity prior can be well applied to high-pass filter re-
sponses, wavelet/curvelet transform coefficients, or the coding
coefficients over a redundant dictionary. In [5], [6], Gaussian
scale mixtures are used to characterize the marginal and joint
distributions of wavelet transform coefficients. In [26], [27],
the Student t-distributions are used for both basis filter learning
and filter response modeling. By assuming that an image patch
can be represented as a sparse linear combination of the atoms
in an over-complete dictionary, a number of dictionary learning
(DL) methods (e.g., analysis and synthesis K-SVD [7], [28],
task driven DL [29], and adaptive sparse domain selection [8]
have been proposed and applied to image denoising and other
image restoration tasks.

Based on the fact that a similar patch to the given patch
may not be spatially close to it, another line of research is to
model the similarity between image patches, i.e., the image
nonlocal self-similarity (NSS) priors. The seminal work of
nonlocal means denoising [9] has motivated a wide range of
studies on NSS, and has led to a flurry of NSS based state-
of-the-art denoising methods, e.g., BM3D [11], LSSC [12],
and EPLL [30], etc. While most of the NSS based methods
find similar patches on the original scale, recent studies have
shown that NSS across different scales can also benefit image
denoising [52]. Under the NSS framework, Levin et al. [31]
investigated the inherent limit of denoising algorithms, and
their empirical validation showed that the existing methods
might still be improved by 1 dB.

Different image priors characterize different and comple-
mentary aspects of natural image statistics, and thus it is
possible to combine multiple priors to improve the denoising
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performance. For example, Dong et al. [13] unified both image
local sparsity and nonlocal similarity priors via clustering-
based sparse representation. Recently, Jancsary et al. [32]
proposed a method called regression tree fields (RTF) to
integrate different priors.

However, many existing image denoising algorithms, in-
cluding those local sparsity and NSS based ones, tend to
wipe out the image fine scale textures while removing noise.
As we discussed in Section I, considering the randomness
and homogeneousness of image texture regions, we propose
to use the histogram of gradient to describe image texture
and design a novel image denoising algorithm with gradient
histogram preservation. In [23], [24], Cho et al. used hyper-
Laplacian distribution to model gradient, and proposed a
content-aware prior for image deblurring by setting different
shape parameters of gradient distribution in different image
regions. By matching the gradient distribution prior, Cho et al.
[23] found that the deblurred images can have more detailed
textures as well as better visual quality. However, in [23],
[24] the estimation of desired gradient distribution is rather
heuristic, and the iterative distribution reweighting algorithm
is very complex.

III. THE TEXTURE ENHANCED IMAGE DENOISING
FRAMEWORK

The noisy observation y of an unknown clean image x is
usually modeled as

y = x + v, (1)

where v is the additive white Gaussian noise (AWGN) with
zero mean and standard deviation σ. The goal of image
denoising is to estimate the desired image x from y. One
popular approach to image denoising is the variational method,
in which the denoised image is obtained by

x̂ = arg min
x

{
1

2σ2 ∥y − x∥2 + λ · R(x)
}
, (2)

where R(x) denotes some regularization term and λ is a
positive constant. The specific form of R(x) depends on the
employed image priors.

One common problem of image denoising methods is that
the image fine scale details such as texture structures will
be over-smoothed. An over-smoothed image will have much
weaker gradients than the original image. Intuitively, a good
estimation of x without smoothing too much the textures
should have a similar gradient distribution to that of x. With
this motivation, we propose a gradient histogram preservation
(GHP) model for texture enhanced image denoising, whose
framework is illustrated in Fig. 2.

Suppose that we have an estimation of the gradient his-
togram of x, denote by hr. In order to make the gradient
histogram of denoised image x̂ nearly the same as the reference
histogram hr, we propose the following GHP based image
denoising model:

x̂ = arg minx,F
{

1
2σ2 ∥y − x∥2 + λR(x) + µ∥F(∇x) − ∇x∥2

}
s.t. hF = hr

,

(3)

where F denotes an odd function which is monotonically
non-descending, hF denotes the histogram of the transformed
gradient image |F (∇x)|, ∇ denotes the gradient operator, and
µ is a positive constant. The proposed GHP algorithm adopts
the alternating optimization strategy. Given F, we can fix
∇x0 = F(∇x), and update x. Given x, we can update F by the
histogram specification based shrinkage operator which will
be introduced in Section IV. Thus, by introducing F, we can
easily incorporate the gradient histogram constraint with any
existing image regularizer R(x).

Another issue in the GHP model is how to find the reference
histogram hr of unknown image x. In practice, we need to
estimate hr based on the noisy observation y. In Section V,
we will propose a regularized deconvolution model and an
associated iterative deconvolution algorithm to estimate hr

from the given noisy image. Once the reference histogram
hr is obtained, the GHP algorithm is then applied for texture
enhanced image denoising.

IV. DENOISING WITH GRADIENT HISTOGRAM
PRESERVATION

A. The Denoising Model

The proposed denoising method is a patch based method.
Let xi = Rix be a patch extracted at position i, i = 1, 2, ..., N,
where Ri is the patch extraction operator and N is the number
of pixels in the image. Given a dictionary D, we sparsely
encode the patch xi over D, resulting in a sparse coding vector
αi. Once the coding vectors of all image patches are obtained,
the whole image x can be reconstructed by [7]:

x = D ◦ α ,
(∑N

i=1
RT

i Ri

)−1 ∑N

i=1
RT

i Dαi, (4)

where α is the concatenation of all αi.
Good priors of natural images are crucial to the success of

an image denoising algorithm. A proper integration of different
priors could further improve the denoising performance. For
example, the methods in [12], [14], [32] integrate image local
sparsity prior with nonlocal NSS prior, and they have shown
promising denoising results. In the proposed GHP model,
we adopt the following sparse nonlocal regularization term
proposed in the nonlocally centralized sparse representation
(NCSR) model [14]:

R(x) =
∑

i

∥∥∥αi − βi

∥∥∥
1 , s.t. x = D ◦ α, (5)

where βi is defined as the weighted average of αq
i :

βi =
∑

q
wq

i α
q
i , (6)

and αq
i is the coding vector of the qth nearest patch (denoted by

xq
i ) to xi. The weight is defined as wq

i =
1
W exp

(
− 1

h

∥∥∥x̂i − x̂q
i

∥∥∥2
)

(x̂i and x̂q
i denote the current estimates of xi and xq

i , re-
spectively), where h is a predefined constant and W is the
normalization factor. More detailed explanations on NCSR can
be found in [14].

By incorporating the above R(x) into Eq. (3), the proposed
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Fig. 2: Flowchart of the proposed texture enhanced image denoising framework.

GHP model can be formulated as:

x̂ = arg minx,F
{

1
2σ2 ∥y − x∥2 + λ∑i

∥∥∥αi − βi

∥∥∥
1 + µ∥F(∇x) − ∇x∥2

}
s.t. x = D ◦ α, hF = hr

.

(7)
From the GHP model with sparse nonlocal regularization
in Eq. (7), one can see that if the histogram regularization
parameter µ is high, the function F (∇x) will be close to ∇x.
Since the histogram hF of |F (∇x)| is required to be the same
as hr, the histogram of ∇x will be similar to hr, leading to the
desired gradient histogram preserved image denoising. In the
next subsection, we will see that there is an efficient iterative
histogram specification algorithm to solve the model in Eq.
(7).

B. Iterative Histogram Specification Algorithm

The proposed GHP model in Eq. (7) can be solved by
using the variable splitting (VS) method, which has been
widely adopted in image restoration [40]–[42]. By introducing
a variable g = F(∇x), we adopt an alternating minimization
strategy to update x and g alternatively. Given g = F(∇x), we
update x (i.e., α) by solving the following sub-problem:

minx
{

1
2σ2 ∥y − x∥2 + λ∑i

∥∥∥αi − βi

∥∥∥
1 + µ∥g − ∇x∥2

}
s.t. x = D ◦ α . (8)

We use the method in [14] to construct the dictionary D
adaptively. Based on the current estimation of image x, we
cluster its patches into K clusters, and for each cluster, a
PCA dictionary is learned. Then for each given patch, we
first check which cluster it belongs to, and then use the PCA
dictionary of this cluster as D. Although in Eq. (8) the l1-
norm regularization is imposed on

∥∥∥αi − βi

∥∥∥
1 rather than ∥αi∥1,

by introducing a new variable ϑi = αi − βi, we can use the
iterative shrinkage / thresholding method [33] to update ϑi

and then update αi = ϑi+βi. This strategy is also used in [14]

to solve the problem with this regularization term, and thus
here we omit the detailed deduction process.

To get the solution to the sub-problem in Eq. (8), we first
use a gradient descent method to update x:

x(k+1/2) = x(k) + δ
(

1
2σ2 (y − x(k)) + µ∇T

(
g − ∇x(k)

))
, (9)

where δ is a pre-specified constant. Then, the coding coeffi-
cients αi are updated by

α
(k+1/2)
i = DT Rix(k+1/2). (10)

By using Eq. (6) to obtain βi, we further update αi by

α
(k+1)
i = S λ/d

(
α

(k+1/2)
i − βi

)
+ βi, (11)

where S λ/d is the soft-thresholding operator, and d is a constant
to guarantee the convexity of the surrogate function [33].
Finally, we update x(k+1) by

x(k+1) = D ◦ α(k+1) ,
(∑N

i=1
RT

i Ri

)−1 ∑N

i=1
RT

i Dα(k+1)
i . (12)

Once the estimate of image x is given, we can update F by
solving the following sub-problem:

ming,F∥g − ∇x∥2 s.t. hF = hr, g = F(∇x). (13)

Considering the equality constraint g = F(∇x), we can
substitute g in ∥g − ∇x∥2 with F(∇x), and the sub-problem
becomes

minF∥F(∇x) − ∇x∥2 s.t. hF = hr. (14)

To solve this sub-problem, by introducing d0 = |∇x|, the
standard histogram specification operator [34] can be used to
obtain the only feasible monotonic non-parametric transform
T which makes the histogram of T (d0) the same as hr. Note
that (x − y)2 ≤ ((−x) − y)2 if the signs of x and y are the
same. Since F̂ (|∇x|) = T (|∇x|), to minimizing the squared
error ∥F (∇x)−∇x∥2, we should require that the sign of F̂ (∇x)
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is the same as that of ∇x. Thus, we define F̂ (∇x) as

F̂ (∇x) = sgn (∇x) T (|∇x|) . (15)

Given F̂ (∇x), we then let g = F̂ (∇x).
The proposed iterative histogram specification (IHS) based

GHP algorithm is summarized in Algorithm 1. It should be
noted that, for any gradient based image denoising model, we
can easily adapt the proposed GHP to it by simply modifying
the gradient term and adding an extra histogram specification
operation.

Algorithm 1: Iterative Histogram Specification (IHS) for GHP
1. Initialize k = 0, x(k) = y
2. Iterate on k = 0, 1, ..., J
3. Update g:

g = F(∇x)
4. Update x:

x(k+1/2) = x(k) + δ
(

1
2σ2 (y − x(k))+µ∇T (g − ∇x(k))

)
5. Update the coding coefficients of each patch:

α
(k+1/2)
i = DT Rix(k+1/2)

6. Update the nonlocal mean of coding vector αi:
βi =

∑
q wq

i α
q
i

7. Update α:
α

(k+1)
i = S λ/d

(
α

(k+1/2)
i − βi

)
+ βi

8. Update x
x(k+1) = D ◦ α(k+1)

9. F (∇x) = sgn (∇x) T (|∇x|)
10. k ←− k + 1
11. x = x(k) + δ

(
µ∇T (g − ∇x(k))

)
The GHP model in Eq. (7) is nonconvex, and thus the

proposed algorithm cannot be guaranteed to converge to a
global optimum. However, it is empirically found that our
GHP algorithm converges rapidly. Fig. 3 shows an example
convergence curve of the proposed GHP algorithm on image
Bear (in Fig. 2). One can see that GHP converges within 15 20
iterations.

0 5 10 15 20
0

2

4

6

8
x 10

8

The number of iterations

E
ne

rg
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Fig. 3: The convergence curve of the proposed GHP algorithm on
image Bear.

C. Region-based GHP

The histogram constraint in Eq. (7) is global. If the image
consists of different regions with different textures, GHP may
generate some false textures in the less textured areas. To
address this problem, we can partition the noisy image into
several regions, estimate the reference gradient histogram of
each region, and then apply GHP to each region for denoising.

As shown in Fig. 4, we suggest two schemes to partition the
noisy image, resulting in two region-based GHP variants. The

first scheme (Fig. 4(a)), namely S-GHP, is to employ k-means
clustering method to roughly partition the image into K homo-
geneous regions, while the second scheme (Fig. 4(b)), namely
B-GHP, simply partitions the noisy image into K =

√
K×
√

K
blocks with equal size. Denote by {Ω1, . . . ,Ωk, . . . ,ΩK} the
partitioned regions. Each region Ωk has the corresponding
reference gradient histogram hr,k, and we have a function Fk

to process the pixels within region Ωk:

min
Fk

∑
(i, j)∈Ωk

(
Fk

(
(∇x)i j

)
− (∇x)i j

)2
s.t. hFk = hr,k. (16)

We define an indicator function

1Ωc (i, j) =
{

1, if(i, j) ∈ Ωk

0, else . (17)

The F (∇x) for S-GHP/B-GHP can then be defined as

F(∇x) =
∑

k
Fk(∇x)1Ωk . (18)

(a)  (b)

Fig. 4: Two image partition schemes. (a) The noisy image is parti-
tioned into K homogeneous regions by k-means clustering. (b) The
noisy image is partitioned into

√
K ×

√
K blocks.

V. REFERENCE GRADIENT HISTOGRAM ESTIMATION
To apply the model in Eq. (7), we need to know the

reference gradient histogram hr of original image x. In this
section, we propose a regularized deconvolution model to
estimate the histogram hr. Assuming that the pixels in gradient
image ∇x are independent and identically distributed (i.i.d.),
we can view them as the samples of a scalar variable, denoted
by x. Then the normalized histogram of ∇x can be regarded
as a discrete approximation of the probability density function
(PDF) of x. For the AWGN v, we can readily model its
elements as the samples of an i.i.d. variable, denoted by v.
Since v ∼ N

(
0, σ2

)
and let ε = ∇v, ε can then be well

approximated by the i.i.d. Gaussian with PDF [38]

pε =
1

2
√
πσ

exp
(
− ε

2

4σ2

)
. (19)

Since y = x+v, we have ∇y = ∇x+∇v. It is ready to model
∇y as an i.i.d. variable, denoted by y, and we have y = x + ε.
Let px be the PDF of x, and py be the PDF of y. Since x and
ε are independent, the joint PDF p (x, ε) is

p(x, ε) = px × pε. (20)

Then the PDF py is

py(y = t) =
∫

a
px(x = a) × pε (ε = (t − a)) da. (21)
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If we use the normalized histogram hx and hy to approxi-
mate px and py, we can rewrite Eq. (21) in the discrete domain
as:

hy = hx ⊗ hε, (22)

where ⊗ denotes the convolution operator. Note that hε can be
obtained by discretizing pε, and hy can be computed directly
from the noisy observation y.

Obviously, the estimation of hx can be generally modeled
as a deconvolution problem:

hr = arg minhx

{∥∥∥hy − hx ⊗ hε
∥∥∥2
+ c · R (hx)

}
, (23)

where c is a constant and R(hx) is some regularization term
based on the prior information of natural image’s gradient
histogram. We consider two kinds of constraints on hx. First,
it has been shown that px (i.e., the continuous counterpart of
hx) can be approximated by hyper-Laplacian distribution [3],
[23], [24]. Considering that the real hx might deviate from the
hyper-Laplacian distribution to some extent, we only require
that hx should be close to the hyper-Laplacian distribution:

px ≈ C · exp (−κ|x|γ) , (24)

where C is the normalization factor, γ and κ are the two
parameters of the hyper-Laplacian distribution. More specifi-
cally, we let κ ∈ [0.001, 3] and γ ∈ [0.02, 1.5]. Second, each
element of hx should be nonnegative. Based on these two
constraints, gradient histogram estimation can be formulated
as the following regularized deconvolution problem:

hr = arg minhx,C,κ,γ

∥∥∥hy − hx ⊗ hε
∥∥∥2
+ c

∥∥∥hx −C · exp(−κ|x|γ)
∥∥∥2
,

s.t. hx ≥ 0,
(25)

which can be re-written as:

hr = arg minhx,h′x,C,κ,γ


∥∥∥hy − hx ⊗ hε

∥∥∥2

+c
∥∥∥hx −C · exp(−κ|x|γ)

∥∥∥2

+η
∥∥∥hx − h′x

∥∥∥2


s.t. h′x ≥ 0

. (26)

We iteratively update hx, h′x, C, γ, and κ alternatively. Let
h0 = C · exp(−κ|x|γ), hx is updated by

hx =
FFT (hε) • FFT (hy) + cFFT (h0) + ηFFT (h′x)

FFT (hε) • FFT (hε) + c + η
, (27)

where “•” denotes the element-wise multiplication, “ ∗∗” de-
notes the element-wise division, and “∗” denotes the complex
conjugate operator. h′x is updated by

h′x(i) = max (hx(i), 0) . (28)

C is updated by

C =
∑

i exp(−κ|i|γ)∑
i hx(i)

. (29)

γ and κ are updated based on gradient decent

κ(t+1) = κ(t) + τ
∑

i
C|i|γ exp(−κ(t)|i|γ)

(
C · exp(−κ(t)|i|γ − hx(i)

)
,

(30)

γ(t+1) = γ(t) + ρ
∑
|i,0|

{
Cκ(t)|i|γ ln |i| exp(−κ(t)|i|γ)
·
(
C · exp(−κ(t)|i|γ − hx(i)

) }
. (31)

Fig. 5 shows an example of reference gradient histogram
estimation. It can be seen that our method can obtain a good
estimation of hx.

For region based B-GHP and S-GHP, the regularized de-
convolution method can be directly applied to each region to
estimate the corresponding reference gradient histogram.

VI. EXPERIMENTAL RESULTS

To verify the performance of the proposed GHP based image
denoising method, we apply it to ten natural images with
various texture structures, whose scenes are shown in Fig.
6. All the test images are gray-scale images with gray level
ranging from 0 to 255. We first discuss the parameter setting
in our GHP algorithm, and then compare the performance of
global based GHP and its region based variants, i.e., B-GHP
and S-GHP. Finally, experiments are conducted to validate its
performance in comparison with the state-of-the-art denoising
algorithms. In the following experiments we set the AWGN
standard deviation from 20 to 40 with step length 5.1

Fig. 6: Ten test images. From left to right and top to bottom, they
are labeled as 1 to 10.

A. Parameter setting

There are 4 parameters in our GHP algorithm and 4 pa-
rameters in the reference histogram estimation algorithm. All
these parameters are fixed in our experiments.

1) Parameters in the GHP algorithm: The proposed GHP
algorithm has two model parameters: λ, and µ. We use the
same strategy as in the original NCSR model [14] to determine
the value of λ. The parameter µ is introduced to balance
the nonlocally centralized sparse representation term and the
histogram preservation term. If µ is is set very large, GHP
can ensure that the gradient histogram of the denoising result
is the same as the reference histogram. Considering that in
practice the reference histogram is estimated from the noisy
image and there are certain estimation errors, µ cannot be set
too big. We empirically set µ to 5 based on our experimental
experience.

The GHP algorithm involves two more algorithm param-
eters: δ and d. Following [14], when the noise standard
deviation is less than 30, we set δ to 0.23; when else we set δ
to 0.26. Based on [14], [33], to guarantee the convexity of the
surrogate function, d should be larger than the spectral norm
of dictionary D. Since in our algorithm D is an adaptively

1We also evaluated the denoising performance of S-GHP under lower and
higher noise standard deviations, i.e., σ = 5, 10, 15, and σ = 50, 80, 100.
The detailed results can be found in the supplementary file.
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Fig. 5: An example of reference gradient histogram estimation. (a) Real and simulated AWGN gradient histograms (noise standard deviation
σ = 30); (b) real and simulated gradient histograms of noisy image; and (c) real and estimated gradient histograms of the clean image.

selected orthogonal PCA dictionary, any d ≥ 1 will be fine.
According to [14], [33] we choose a little higher d (d = 3)
for numerical stability of the algorithm.

In summary, compared with NCSR, GHP only introduces
one extra model parameter µ, and we set it to 5 by experience
in all the experiments.

2) Parameters in reference histogram estimation: Our ref-
erence histogram estimation method involves two model pa-
rameters, i.e., c and η. Image gradients are generally assumed
to follow hyper-Laplacian distributions [2], [3]. We choose
a relatively large c value, i.e., c = 10, to ensure that the
estimated histogram should be close to a hyper-Laplacian
distribution. The parameter η is introduced to ensure the non-
negative property of the estimated histogram, and a large η
value should be set to guarantee that the estimated histogram
is non-negative. Thus we also choose a large η value, i.e.,
η = 10, in the implementation.

There are also two algorithm parameters, τ and ρ, in our
reference histogram estimation method. τ and ρ denote the
step sizes in the gradient descent algorithm to update κ and γ,
respectively. If the step size is sufficiently small, the gradient
descent algorithm would converge to a local optimum [53].
Thus we set two smaller values to τ and ρ, i.e., τ = 0.01 and
ρ = 0.01.

In Fig. 5, we have shown an example of gradient histogram
estimation, and it can be seen that the estimated gradient
histogram is very close to the ground-truth. Table I lists the
K-L divergence between the estimated and the ground-truth
(obtained using the noiseless image) gradient histograms for
the ten test images with different standard deviations of noise.
From Table I, one can see that the average K-L divergence
is less than 0.1 and the standard deviation is less than 0.08,
indicating that the proposed gradient histogram estimation
method can obtain satisfactory estimation results.

B. Comparison between the three GHP variants

By setting the AWGN standard deviation
σ ∈ {20, 25, 30, 35, 40}, we evaluate the three variants
of the proposed method, i.e., GHP, B-GHP, and S-GHP, in
terms of PSNR and the perceptual quality index SSIM [39].
To evaluate if the proposed reference gradient histogram
estimation method is effective for the final noise removal
performance, we couple GHP with both the estimated

TABLE I: The K-L divergence between the estimated and ground-
truth gradient histograms.

σ 20 25 30 35 40
1 0.098 0.121 0.138 0.118 0.095
2 0.036 0.036 0.027 0.020 0.014
3 0.094 0.089 0.086 0.091 0.152
4 0.014 0.017 0.014 0.014 0.017
5 0.023 0.030 0.051 0.064 0.128
6 0.233 0.261 0.254 0.218 0.151
7 0.066 0.071 0.085 0.061 0.029
8 0.123 0.167 0.192 0.161 0.103
9 0.058 0.073 0.066 0.042 0.026
10 0.015 0.028 0.038 0.071 0.140

Avg. ±
Std.

0.076 ±
0.067

0.089 ±
0.076

0.095 ±
0.077

0.086 ±
0.064

0.086 ±
0.058

gradient histogram and the ground truth gradient histogram
and compare the outputs. Table II lists the PSNR and SSIM
values on the ten test images. One can see that GHP achieves
similar PSNR/SSIM values by using the estimated gradient
histogram and the ground truth gradient histogram.

We then compare the performance of GHP, B-GHP and S-
GHP on the ten test images. The PSNR and SSIM indices are
also listed in Table III. One can see that the region-based
GHP methods, i.e., B-GHP and S-GHP, generally achieve
better results than GHP in terms of both PSNR and SSIM.
Fig. 7 shows an example of the denoising outputs by GHP,
B-GHP, and S-GHP on test image 6. Since natural images
often consist of regions with different textures and GHP uses
the global gradient histogram for texture enhanced denoising,
sometimes false textures can be generated in the less textured
areas by GHP. By simply partitioning the image into regular
blocks, the block based B-GHP can reduce the possibility
of generating false textures. By segmenting the image into
texture homogeneous regions, S-GHP can further achieve
better denoising results than B-GHP in terms of PSNR/SSIM
measures and subjective visual quality, as demonstrated in Fig.
7.

C. Comparison with the State-of-the-Arts

We then compare S-GHP with some state-of-the-art de-
noising methods, including shape-adaptive PCA based BM3D
(SAPCA-BM3D) [11], the learned simultaneously sparse cod-
ing (LSSC) [12] and the NCSR [14] methods. The codes of
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TABLE II: The PSNR (dB) and SSIM results of GHP with the estimated gradient histogram (GHP-E) and with the ground truth gradient
histogram (GHP-G).

σ = 20 σ = 25 σ = 30 σ = 35 σ = 40
GHP-G GHP-E GHP-G GHP-E GHP-G GHP-E GHP-G GHP-E GHP-G GHP-E

1 30.67 30.59 29.53 29.40 28.62 28.47 27.91 27.78 27.29 27.01
0.870 0.866 0.843 0.833 0.817 0.808 0.800 0.799 0.781 0.779

2 27.93 27.90 26.82 26.72 26.00 25.87 25.43 25.28 24.90 24.62
0.813 0.808 0.769 0.761 0.731 0.725 0.699 0.697 0.668 0.663

3 28.13 28.15 27.19 27.12 26.42 26.34 25.77 25.71 25.22 25.12
0.758 0.757 0.722 0.720 0.692 0.690 0.662 0.661 0.640 0.638

4 26.69 26.59 25.51 25.41 24.55 24.46 23.93 23.84 23.31 23.16
0.803 0.795 0.757 0.748 0.715 0.708 0.677 0.676 0.643 0.640

5 30.65 30.54 29.68 29.52 28.87 28.61 28.38 28.07 27.83 27.26
0.805 0.802 0.773 0.769 0.743 0.737 0.723 0.719 0.701 0.693

6 28.54 28.39 27.24 27.13 26.22 26.12 25.52 25.44 24.90 24.76
0.887 0.866 0.854 0.833 0.820 0.804 0.799 0.797 0.772 0.771

7 30.14 30.07 29.11 28.99 28.33 28.15 27.79 27.58 27.29 26.93
0.839 0.834 0.804 0.800 0.774 0.769 0.752 0.750 0.729 0.726

8 31.43 31.27 30.33 30.14 29.47 29.23 28.83 28.56 28.26 27.82
0.893 0.884 0.870 0.858 0.848 0.835 0.840 0.837 0.824 0.821

9 27.45 27.31 26.26 26.12 25.33 25.21 24.61 24.52 24.01 23.88
0.819 0.806 0.779 0.764 0.743 0.730 0.710 0.709 0.681 0.680

10 30.93 30.83 29.95 29.75 29.19 28.85 28.76 28.32 28.26 27.50
0.813 0.811 0.780 0.776 0.752 0.745 0.734 0.727 0.714 0.703

Avg. 29.26 29.16 28.16 28.03 27.30 27.13 26.69 26.51 26.13 25.81
0.830 0.823 0.795 0.786 0.764 0.755 0.740 0.737 0.715 0.711

TABLE III: The PSNR (dB) and SSIM results of GHP, B-GHP, and S-GHP.

σ = 20 σ = 25 σ = 30 σ = 35 σ = 40
GHP B-GHP S-GHP GHP B-GHP S-GHP GHP B-GHP S-GHP GHP B-GHP S-GHP GHP B-GHP S-GHP

1 30.59 30.53 30.60 29.40 29.40 29.47 28.47 28.55 28.60 27.78 27.82 27.85 27.01 27.23 27.22
0.866 0.869 0.869 0.833 0.841 0.842 0.808 0.818 0.818 0.799 0.796 0.801 0.779 0.779 0.781

2 27.90 27.89 27.97 26.72 26.79 26.88 25.87 25.98 26.07 25.28 25.42 25.43 24.62 24.86 24.87
0.808 0.815 0.814 0.761 0.771 0.771 0.725 0.735 0.734 0.697 0.695 0.698 0.663 0.665 0.666

3 28.15 28.07 28.17 27.12 27.12 27.25 26.34 26.36 26.43 25.71 25.71 25.75 25.12 25.19 25.21
0.757 0.753 0.753 0.720 0.718 0.720 0.690 0.688 0.688 0.661 0.657 0.659 0.638 0.636 0.636

4 26.59 26.60 26.72 25.41 25.47 25.53 24.46 24.58 24.67 23.84 23.93 23.97 23.16 23.31 23.34
0.795 0.801 0.801 0.748 0.759 0.756 0.708 0.719 0.718 0.676 0.673 0.676 0.640 0.640 0.639

5 30.54 30.63 30.65 29.52 29.66 29.77 28.61 28.86 28.99 28.07 28.29 28.38 27.26 27.77 27.88
0.802 0.807 0.807 0.769 0.775 0.774 0.737 0.745 0.751 0.719 0.716 0.723 0.693 0.696 0.704

6 28.39 28.36 28.46 27.13 27.08 27.19 26.12 26.09 26.26 25.44 25.41 25.58 24.76 24.77 24.96
0.866 0.880 0.883 0.833 0.848 0.848 0.804 0.819 0.820 0.797 0.793 0.802 0.771 0.768 0.775

7 30.07 30.06 30.22 28.99 29.00 29.12 28.15 28.22 28.39 27.58 27.66 27.81 26.93 27.20 27.30
0.834 0.839 0.843 0.800 0.805 0.807 0.769 0.777 0.780 0.750 0.745 0.754 0.726 0.725 0.730

8 31.27 31.15 31.34 30.14 29.86 30.21 29.23 29.14 29.42 28.56 28.59 28.80 27.82 28.16 28.21
0.884 0.887 0.895 0.858 0.858 0.872 0.835 0.841 0.853 0.837 0.830 0.843 0.821 0.822 0.829

9 27.31 27.35 27.40 26.12 26.16 26.22 25.21 25.26 25.31 24.52 24.59 24.57 23.88 23.99 24.05
0.806 0.817 0.818 0.764 0.777 0.777 0.730 0.742 0.744 0.709 0.707 0.708 0.680 0.680 0.684

10 30.83 30.96 30.98 29.75 29.94 29.93 28.85 29.18 29.15 28.32 28.67 28.74 27.50 28.20 28.15
0.811 0.816 0.815 0.776 0.783 0.782 0.745 0.756 0.754 0.727 0.729 0.736 0.703 0.711 0.711

Avg. 29.16 29.16 29.25 28.03 28.05 28.16 27.13 27.22 27.33 26.51 26.61 26.69 25.81 26.07 26.12
0.823 0.828 0.830 0.786 0.794 0.795 0.755 0.764 0.766 0.737 0.734 0.740 0.711 0.712 0.716

all the competing methods are provided by the authors and
we used the recommended parameters by the authors. On a
PC with two Intel CPUs (1.86 GHz) and 2GB RAM, under
Matlab 2011a programming environment, GHP spends 2383s
to process a 512 × 512 image, which is similar to B-GHP
(2388s), S-GHP (2386s) and NCSR (2445s) but is much faster
than LSSC (4287s). SAPCA-BM3D spends 420s to process a
512 × 512 image but it should be noted that SAPCA-BM3D
is mainly implemented by C programming language.

The quantitative experimental results by competing methods
are shown in Tables IV. One can see that the proposed S-GHP
method has similar PSNR/SSIM measures to SAPCA-BM3D,
LSSC and NCSR. Nonetheless, the goal of our GHP method
is to preserve and enhance the image texture structures, and
we further compare the visual quality of the denoised images

by these methods. Fig. 8 shows the denoising results of noisy
image 7 with noise standard deviation σ = 30. In this image,
there are different texture regions, such as sky, tree, water and
building. We can see that SAPCA-BM3D, LSSC and NCSR
smooth too much the textures in tree, water and building
areas, while LSSC introduces some artifacts in the smooth
sky area. Though these methods have good PSNR and even
SSIM indices, the denoised images by them look somewhat
unnatural. In contrast, S-GHP preserves much better the fine
textures in areas of tree and water, making the denoised image
look more natural and visually pleasant. It should also be noted
that, the better visual quality in areas of tree and water of S-
GHP might not always result in higher PSNR or SSIM values
on the close-ups.

Fig. 9 shows the denoising results of image 1 with noise
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Fig. 7: (a) The noisy test image 6 (noise standard deviation σ = 35). From (b) to (e): the zoom-in denoising results by GHP, B-GHP and
S-GHP, and the ground truth.

standard deviation σ = 30. This image consists of texture
regions like cloud, tree, and water. We can see that SAPCA-
BM3D, LSSC and NCSR tend to over-smooth the textures in
tree and water areas. In contrast, S-GHP preserves much better
the fine texture in tree and water areas, while making the cloud
area look more natural.

Due to the limit of space, we do not show the full denoised
images in the main paper. However, examples of full denoised
images are given in the supplementary file. Similar conclusions
can be made; that is, S-GHP obtains more natural denoising
results and preserves better the fine textures. We also evaluated
the denoising performance of competing methods under lower
(i.e., σ = 5, 10, 15) and higher noise standard deviations (i.e.,
σ = 50, 80, 100). Please refer to the supplementary file for the
detailed results. In terms of average PSNR and SSIM, S-GHP
is comparable to SAPCA-BM3D, LSSC and NCSR. In terms
of visual quality, when the noise standard deviation is high,
S-GHP can preserve better the textures and strong edges than
the competing methods. When the noise standard deviation is
low, S-GHP can preserve better image fine textures.

The proposed S-GHP method has similar overall
PSNR/SSIM results to the state-of-the-arts and it leads
to better visual quality of the denoised images. In terms of
visual quality, it improves much the textured areas. However,
the improvement in visual quality may not result in PSNR
and SSIM improvements. S-GHP enforces the statistical
distribution of image gradients to be close to the reference
histogram, but it cannot guarantee that the restored image
will be close to the real image in terms of PSNR or SSIM.

Using image 6 with AWGN of standard deviation 30 as
an example, we calculate the local PSNR maps (with a
sliding window of size 41 × 41) for the denoised images
by SAPCA-BM3D and S-GHP. Denote by pBM3D and pGHP

the two local PSNR maps of SAPCA-BM3D and S-GHP,
respectively. In Fig. 10, we show the original image, the
denoised images by SAPCA-BM3D and S-GHP, and the
difference map (pBM3D − pGHP). The white values indicate
the areas where pBM3D is higher than pGHP, while the dark
values indicate the areas where pGHP is higher than pBM3D.
One can see that, in terms of PSNR, S-GHP outperforms
SAPCA-BM3D in many smooth areas, while SAPCA-BM3D
outperforms S-GHP in many textured areas. However, the
denoised image by S-GHP has better visual quality than the
one by SAPCA-BM3D in most textured and smooth areas.

D. Subjective Evaluation

How to evaluate the perceptual quality of an image is a very
challenging problem. Though many image quality assessment
(IQA) indices (e.g., SSIM [39] and FSIM [51]) have been
developed and they can well predict the perceptual quality
of images with a single type of distortion such as noise
corruption, Gaussian blur and compression artifacts, they are
still far from satisfying to faithfully evaluate the subjective
quality of denoised images, whose distortion is much more
complex. This is also why the denoised images by our methods
have better visual quality, but their SSIM indices are similar
to the denoised images by other methods.
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TABLE IV: The PSNR (dB) and SSIM values of SAPCA-BM3D (BM3D), LSSC, NCSR and S-GHP.

σ = 20 σ = 25 σ = 30 σ = 35 σ = 40
BM3D LSSC NCSR S-GHP BM3D LSSC NCSR S-GHP BM3D LSSC NCSR S-GHP BM3D LSSC NCSR S-GHP BM3D LSSC NCSR S-GHP

1 30.83 30.69 30.59 30.60 29.66 29.56 29.46 29.47 28.75 28.62 28.58 28.60 28.02 27.91 27.76 27.85 27.41 27.32 27.19 27.22
0.876 0.872 0.869 0.869 0.849 0.846 0.843 0.842 0.825 0.820 0.820 0.818 0.803 0.800 0.793 0.801 0.784 0.781 0.776 0.781

2 28.07 27.98 27.91 27.97 26.99 26.94 26.87 26.88 26.18 26.14 26.08 26.07 25.54 25.51 25.37 25.43 25.02 24.98 24.87 24.87
0.817 0.815 0.807 0.814 0.773 0.773 0.764 0.771 0.734 0.734 0.727 0.734 0.699 0.700 0.681 0.698 0.668 0.670 0.651 0.666

3 28.39 28.46 28.11 28.17 27.43 27.52 27.16 27.25 26.66 26.66 26.39 26.43 26.01 26.03 25.64 25.75 25.46 25.47 25.10 25.21
0.755 0.762 0.736 0.753 0.721 0.728 0.702 0.720 0.692 0.696 0.675 0.688 0.667 0.670 0.640 0.659 0.647 0.647 0.621 0.636

4 26.86 26.75 26.65 26.72 25.68 25.61 25.52 25.53 24.79 24.76 24.64 24.67 24.08 24.06 23.84 23.97 23.50 23.48 23.26 23.34
0.803 0.803 0.782 0.801 0.758 0.758 0.737 0.756 0.715 0.717 0.697 0.718 0.677 0.678 0.640 0.676 0.641 0.643 0.604 0.639

5 30.88 30.75 30.64 30.65 29.96 29.81 29.68 29.77 29.21 29.04 28.91 28.99 28.58 28.41 28.27 28.38 28.06 27.90 27.76 27.88
0.812 0.809 0.802 0.807 0.780 0.776 0.770 0.774 0.754 0.744 0.742 0.751 0.730 0.718 0.710 0.723 0.709 0.696 0.690 0.704

6 28.59 28.47 28.49 28.46 27.32 27.26 27.24 27.19 26.35 26.33 26.30 26.26 25.59 25.59 25.49 25.58 24.97 24.98 24.90 24.96
0.888 0.883 0.882 0.883 0.856 0.850 0.851 0.848 0.824 0.825 0.820 0.820 0.794 0.795 0.788 0.802 0.765 0.769 0.761 0.775

7 30.17 30.18 30.13 30.22 29.14 29.18 29.14 29.12 28.35 28.40 28.38 28.39 27.71 27.81 27.71 27.81 27.18 27.32 27.22 27.30
0.839 0.840 0.833 0.843 0.803 0.807 0.799 0.807 0.771 0.775 0.770 0.780 0.744 0.751 0.738 0.754 0.721 0.729 0.717 0.730

8 31.58 31.38 31.41 31.34 30.48 30.33 30.35 30.21 29.64 29.54 29.52 29.42 28.94 28.86 28.79 28.80 28.37 28.32 28.24 28.21
0.900 0.894 0.897 0.895 0.879 0.872 0.877 0.872 0.861 0.858 0.860 0.853 0.843 0.840 0.841 0.843 0.828 0.826 0.827 0.829

9 27.58 27.58 27.34 27.40 26.37 26.40 26.18 26.22 25.44 25.48 25.31 25.31 24.73 24.77 24.47 24.57 24.15 24.19 23.92 24.05
0.821 0.822 0.804 0.818 0.778 0.782 0.764 0.777 0.740 0.748 0.729 0.744 0.707 0.716 0.683 0.708 0.677 0.687 0.655 0.684

10 31.23 31.04 30.98 30.98 30.28 30.08 30.03 29.93 29.53 29.36 29.30 29.15 28.92 28.75 28.76 28.74 28.42 28.24 28.28 28.15
0.823 0.818 0.813 0.815 0.791 0.787 0.781 0.782 0.763 0.755 0.755 0.754 0.740 0.732 0.728 0.736 0.721 0.712 0.710 0.711

Avg. 29.42 29.33 29.23 29.25 28.33 28.27 28.16 28.16 27.49 27.43 27.34 27.33 26.81 26.77 26.61 26.69 26.25 26.22 26.07 26.12
0.833 0.832 0.823 0.830 0.799 0.798 0.789 0.795 0.768 0.767 0.760 0.766 0.740 0.740 0.724 0.740 0.716 0.716 0.701 0.716

 

 

(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

 

(f)

Fig. 8: Denoising results on image 7. (a) Noisy image with AWGN of standard deviation 30; cropped and zoom-in denoised images by
(b) SAPCA-BM3D [11], (c) LSSC [12], (d) NCSR [14], and (e) S-GHP; (f) ground truth. The PSNR and SSIM values are shown in the
close-ups.



11

 

 

(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

 

(f)

Fig. 9: Denoising results on image 1. (a) Noisy image with AWGN of standard deviation 30; cropped and zoom-in denoised images by
(b) SAPCA-BM3D [11], (c) LSSC [12], (d) NCSR [14], and (e) S-GHP; (f) ground truth. The PSNR and SSIM values are shown in the
close-ups.

In this subsection, we adopted the strategy in [23] to
compare the subjective quality of denoised images obtained
by different methods. For each of the ten test images and
on each noise standard deviation (20, 25, 30, 35 and 40),
15 student volunteers2 were asked to compare the denoising
results between S-GHP and SAPCA-BM3D, LSSC and NCSR,
respectively. In each test, the volunteers were shown two
denoised images on LCD monitor: one (denoted by A) is
obtained by S-GHP and the other one (denoted by B) is
obtained by the competing method. The volunteers were asked
to make one of the following decisions: A is visually better
than B (labeled by 1), B is visually better than A (labeled by
-1), and there is nearly no visual difference between A and
B (labeled by 0). Then for each pair of competing methods
(i.e., S-GHP vs. SAPCA-BM3D, S-GHP vs. LSSC, S-GHP
vs. NCSR), we have 10 (test images) × 5 (noise standard
deviations) × 15 (volunteers) = 750 test outputs (1, -1, or 0).
In Fig. 11, we plot the distributions of the subjective evaluation
outputs for each pair of competing methods. One can see
that S-GHP is always the more favored method in terms of
subjective evaluation.

VII. CONCLUSION
In this paper, we presented a novel gradient histogram

preservation (GHP) model for texture-enhanced image denois-
ing, and further introduce two region-based GHP variants, i.e.,

2Among the 15 volunteers, 3 have experience on image restoration and 1
has experience on image quality assessment.

B-GHP and S-GHP. A simple but theoretically solid model and
the associated algorithm were presented to estimate the refer-
ence gradient histogram from the noisy image, and an efficient
iterative histogram specification algorithm was developed to
implement the GHP model. By pushing the gradient histogram
of the denoised image toward the reference histogram, GHP
achieves promising results in enhancing the texture struc-
ture while removing random noise. The experimental results
demonstrated the effectiveness of GHP in texture enhanced
image denoising. GHP leads to similar PSNR/SSIM measures
to the state-of-the-art denoising methods such as SAPCA-
BM3D, LSSC and NCSR; however, it leads to more natural
and visually pleasant denoising results by better preserving
the image texture areas. Most of the state-of-the-art denoising
algorithms are based on the local sparsity and nonlocal self-
similarity priors of natural images. Unlike them, the gradient
histogram used in our GHP method is a kind of global prior,
which is adaptively estimated from the given noisy image.

One limitation of GHP is that it cannot be directly applied
to non-additive noise removal, such as multiplicative Pois-
son noise and signal-dependent noise [47]. Thus, it would
be interesting and valuable to study more general models
and algorithms for non-additive noise removal with texture
enhancement. One strategy is to transform the noisy image
into an image with additive white Gaussian noise (AWGN)
and then apply GHP. For example, for image with Poisson
noise, Anscombe root transformation [48], [49] can be used
to transform it into an image with AWGN.
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 Fig. 10: From left to right and from top to bottom: original image, the difference PSNR map (pBM3D − pGHP), the denoised images by
SAPCA-BM3D and S-GHP.

 

(a)
 

(b)
 

(c)
Fig. 11: The distributions of subjective evaluation outputs. (a) S-GHP vs. SAPCA-BM3D; (b) S-GHP vs. LSSC; (c) S-GHP vs. NCSR.
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