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Abstract—This paper proposes a band-subset-based clustering
and fusion technique to improve the classification performance
in hyperspectral imagery. The proposed method can account for
the varying data qualities and discrimination capabilities across
spectral bands, and utilize the spectral and spatial information
simultaneously. First, the hyperspectral data cube is partitioned
into several nearly uncorrelated subsets, and an eigenvalue-based
approach is proposed to evaluate the confidence of each subset.
Then, a nonparametric technique is used to extract the arbitrarily-
shaped clusters in spatial-spectral domain. Each cluster offers a
reference spectral, based on which a pseudosupervised hyperspec-
tral classification scheme is developed by using evidence theory to
fuse the information provided by each subset. The experimental
results on real Hyperspectral Digital Imagery Collection Experi-
ment (HYDICE) demonstrate that the proposed pseudosupervised
classification scheme can achieve higher accuracy than the spa-
tially constrained fuzzy c-means clustering method. It can achieve
nearly the same accuracy as the supervised K-Nearest Neighbor
(KNN) classifier but is more robust to noise.

Index Terms—Evidence theory, hyperspectral, image segmenta-
tion, information fusion.

I. INTRODUCTION

C LASSIFICATION is a challenging but important task for
hyperspectral remote sensing applications, including land

use analysis, pollution monitoring, wide-area reconnaissance,
and field surveillance [1], [2]. Various hyperspectral imagery
classification methods have been proposed, such as statistical
method [1], [3], [24], soft computing-based methods [2], and
information fusion methods [2], [4]. Most of these methods
apply the classifier to the complete data set, neglecting the
varying data quality and discrimination ability across bands.
It is necessary to investigate the spectra signature variation of
hyperspectral data to improve the classification performance
[1], [2].

There are many factors affecting the hyperspectral data
quality, ranging from the external factors such as atmospheric
conditions to the internal factors such as sensor noise, sensor
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transfer characteristics, and material spectrum. For a specific
object or material, the noise-dominated bands will certainly
deteriorate the discrimination capability, and hence degrade
the classification performance. On the other hand, the spectral
difference among materials also varies across bands. In this
paper, we propose a divide-and-conquer approach that employs
information fusion to classify the hyperspectral data. It parti-
tions the hyperspectral data into contiguous subsets that have
similar characteristics so that the discrimination information
within each subset can be maximized [6].

Traditionally, only spectral information was employed to
classify the hyperspectral data set [1]–[3]. The current hyper-
spectral imagery has fine spatial resolution, and therefore not
only the spectral information but also the spatial information
can be used to classify the scene. By integrating the spatial
information into hyperspectral classification process, higher
classification accuracy can be expected [17]. Rand and Keenan
[18] proposed a hyperspectral segmentation method to jointly
utilize the spectral and spatial information by using the Markov
random field technique. However, this method is computation-
ally intensive because of the recursive and global optimization
procedures.

In this paper, we propose a new algorithm to exploit the
spectral and spatial characteristics of hyperspectral imagery. We
first partition the complete hyperspectral data cube into several
nearly uncorrelated subband cubes, each of which contains
contiguous bands. These subbands are referred to as informa-
tion sources. Channels within a subband cube are assumed to
have similar noise characteristics and discrimination ability.
A nonparametric clustering method is then used to extract
the joint spatial-spectral features of the hyperspectral data.
The clustering result from each information source is called
a clustering map. Due to the variation of data quality and
discrimination ability across bands, there exist uncertainties
and errors in clustering maps. The next key issue is how to
effectively fuse the features extracted from these information
sources to improve the final classification performance.

Fuzzy models and evidence theory are widely used in
dealing with uncertainty and inaccurate information [5],
[13], [22], [23]. Fuzzy theory usually represents the inaccurate
information in terms of explicit functions of membership, while
evidence theory represents the inaccuracy and uncertainty
simultaneously using confidence, plausibility, and credibility
functions [5], [6]. Thus evidence theory can combine the items
of evidence supporting certain hypotheses of a pattern from
multiple information sources. In this paper, each subband set
provides an evidence of the pixel’s label, and the final classifica-
tion is made by fusing the evidences using the Dempster’s rule.
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The rest of the paper is organized as follows. Section II
describes the model of hyperspectral imagery, the correlation-
based subband partition and confidence estimation. Section III
presents a clustering fusion-based classifier for hyperspectral
imagery. Section IV presents experiments on Hyperspectral
Digital Imagery Collection Experiment (HYDICE) data in
comparisons with the spatially constrained fuzzy c-means clus-
tering method, which exploits the spatial information in spectral
clustering, and the K-Nearest Neighbor (KNN) classification
method. Section V concludes the paper.

II. SUBBAND PARTITION IN HYPERSPECTRAL IMAGERY

A. Subband Partition

Hyperspectral imagery is represented as a 3-D data cube
obtained through both spatial and spectral sampling. The
data cube can be written as an L × N matrix: Y =
[y1, . . . ,yl, . . . ,yL]T , where yl is the 1 × N row vector for the
lth band yl = [y1

l , . . . , yn
l , . . . , yN

l ] and N is the total number
of spatial pixels in each band. Y can be written as a linear
mixture of target signals and background noise

Y = X + W (1)

where X = [x1, . . . ,xl, . . . ,xL]T is the signal matrix and
W = [w1, . . . ,wl, . . . ,wL]T is the noise matrix.

Traditional hyperspectral imagery classification methods [1],
[3] work directly on all bands without considering the different
qualities and discrimination capabilities across bands. However,
in actual application, both the internal sensing factors and the
external environment factors will affect the data quality and
lead to large quality variations among different bands. It has
been demonstrated that the statistical behavior of hyperspectral
imagery varies across bands [1]. Therefore, we partition the
whole data cube into several subband sets, in which the bands
exhibit similar characteristic and can be modeled using the
same model.

A widely used tool to measure the similarity between dif-
ferent bands is the correlation coefficients between them. The
correlation coefficient between the ith and the jth bands is
given by

Rc(i, j) = Σ(i, j)/
√

Σ(i, i)Σ(j, j) (2)

where Σ is the L × L covariance matrix of Y

Σ(i, j) = (yi − E(yi)) (yj − E(yj))
T . (3)

An example of the correlation coefficient matrix of HYDICE
data is illustrated in Fig. 3(a), where the brightness represents
the magnitude of the coefficient. Based on the correlation
coefficient matrix Rc, the data cube can then be partitioned
into Q nonoverlapped subband sets, which are viewed as nearly
independent information sources. Denote by lq the total number
of bands in the qth source, q = 1, 2, . . . , Q.

B. Confidence Estimation

The confidence level of an information source could reflect
the reliability of the classification result by using that source.
We assume that the noise in the hyperspectral data is indepen-
dently and identically distributed (i.i.d) Gaussian white noise
[19]. With (1), the data cube for the qth source can be written
as Yq = Xq + Wq. We assume that the noise level in the qth
source is approximately constant across the lq spectral bands
in that source, while different sources may have different noise
levels. Then, the signal in the qth source can be estimated by
using eigenvalue analysis [21].

The spectral covariance matrix of the qth source can be
represented as

ΣYq
= UqΛqUT

q (4)

where Λq = diag(β2
1 , β2

2 , . . . , β2
lq

) with β2
1 ≥ β2

2 ≥ · · · ≥ β2
lq

are the eigenvalues of noisy signal in the qth source. The power
of noiseless signal in the qth source is estimated by computing
the average of the Rq largest singular values of covariance
matrix RYq

[21]

σ̂(Xq)2 = 1/Rq

Rq∑
i=1

β2
i . (5)

The noise power σ̂(Wq)2 is estimated by computing the av-
erage of the lq − Rq smallest singular values of covariance
matrix RYq

σ̂(Wq)2 = 1/(lq − Rq)
lq∑

i=Rq+1

β2
i . (6)

Considering that the performance of the classifier is affected by
the signal-to-noise ratio (SNR), we define the confidence gq of
information source q as

gq =
σ̂(Xq)2

σ̂(Wq)2
(7)

which is actually the ratio between the estimated signal power
to the noise power.

Now only the parameter Rq is left to estimate. We estimate
this parameter by minimizing the Akaike information criterion
(AIC) [16]

AIC(rq) = −2Mq

lq∑
i=rq+1

ln βi + Mq(lq − rq)

× ln

⎛
⎝ 1

lq − rq

Iq∑
i=kq+1

ln βi

⎞
⎠ + 2rq(lq − rq) (8)

where βi, i = 1, 2, . . . , lq , are the lq singular values of RYq
and

Mq is the number of columns of Yq. The estimated rank Rq is
set to be the rq which minimizes AIC

Rq = arg min
rq

AIC(rq). (9)
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III. MULTISOURCE IMAGERY CLUSTERING FUSION

The hyperspectral imagery can be typically represented as
a 2-D lattice of L-dimensional spectral vectors. The space of
the lattice is known as the spatial domain while the spectral
information is represented in the spectral domain. The spectral
vectors can be concatenated locally to obtain a spatial-spectral
domain. Hyperspectral imagery classification is performed by
assigning a label to each voxel in the 2-D lattice. Kernel-based
methods are widely used in hyperspectral imagery classifica-
tion. One way to implement the kernel-based method is to find a
kernel density estimate in the data space and then search for the
model of the estimated density. The mean shift is a simple but
effective technique that can be used to find the mode of a kernel
density estimate [10]–[12], [14], [15]. Once the location of a
mode is determined, the cluster associated with it is delineated
based on the local structure of the feature space. Here, we
use the mean shift as a feature extraction method to locate the
cluster center by searching for the mode in the spatial-spectral
domain.

After the mean shift-based feature extraction, each cluster
provides a map of spatial-spectral homogeneous regions. We
will use the average spectral vectors in homogeneous regions to
form a set of reference spectrums. Then, the whole image can be
classified based on these reference spectrums by using evidence
theory. We call this classification method a pseudosupervised
hyperspectral classification method.

A. Feature Extraction by Mean Shift Clustering

The qth subband set can be represented as N voxel points
Yq

n, n = 1, 2, . . . , N in the lq-dimensional space Rlq , where
lq is the band number in the qth subband set. The mean shift
procedure [7] is a simple gradient based technique to find
the modes of voxel’s probability density, which is acquired
by kernel density estimate. Therefore, the first step of feature
extraction is to estimate the probability density of Yq

n. Let
K : Rlq → R be a kernel with K(y) = k(‖y − Yq

n‖2). The
probability density function is estimated by the multivariate
kernel density estimator

f̂K(y) =
N∑

n=1

k
(
‖y − Yq

n‖2
)

w (Yq
n) (10)

where w(·) is a weight function. The gradient of the estimated
density is

∇f̂K(y) = 2
n∑

n=1

(y − Yq
n) k′

(
‖y − Yq

n‖2
)

w (Yq
n) . (11)

Suppose that there exists a kernel G : Rlq → R with G(y) =
g(‖y − Yq

n‖2) such that k′(y) = cg(y), where c is a constant.
Substituting k′(y) = cg(y) into formula (11) and letting the
gradient estimator ∇f̂K(y) be zero, we can derive a mode
estimate as

y =

∑N
n=1 g

(
‖y − Yq

n‖2
)

w (Yq
n)Yq

n∑N
n=1 g

(
‖y − Yq

n‖2
)

w (Yq
n)

. (12)

Based on the above analysis, the feature extraction for the qth
subband set can be summarized as follows.

1) Initialize the nth voxel as yn,1 = Yq
n and then update the

voxel yn,j+1 according to (12) until ‖yj+1 − yj‖ < ε,
where ε is a small positive number.

2) Let yn,center = yn,j , where n is the spatial location of
the voxel and j is the number of iteration.

3) Identifying clusters {Cp,q}p=1,...,m by linking all
yn,center which are closer than a given threshold, where
m is the number of clusters in the qth subband set.
The final feature extraction result is represented as a
clustering map Cq = {C1,q , . . . , Cm,q}, and there are m
homogeneous regions in this clustering map.

To utilize the spectral and spatial information jointly in the
classification process, a proper kernel should be chosen in the
feature extraction process. It should be a multivariate kernel,
which can take several factors into consideration. For more in-
formation, please refer to [10]–[12]. To integrate the spatial and
spectral information in the clustering process, the multivariate
kernel for the joint spatial-spectral domain is used [12]. It is the
product of two radially symmetric kernels and allows a single
bandwidth parameter for each kind of information

Ghs,hp
(x) =

T

h2
sh

3
p

g

(∥∥∥∥xs

hs

∥∥∥∥
2
)

g

(∥∥∥∥xp

hp

∥∥∥∥
2
)

(13)

where xs is the spatial part and xp is the spectral part of a
feature vector, g(x) is the common profile used in joint spatial-
spectral domain, hs and hp are the employed bandwidths, and
T is the corresponding normalization constant. In the simu-
lation, the Epanechnikov kernel is used. The Epanechnikov
kernel is optimal when considering approximation accuracy and
it is widely used in classification. The bandwidth is chosen
according to the texture characteristics of the scene [12]. The
mean shift feature extraction algorithm requires the selection of
the bandwidth (hs, hp), which determines the resolution of the
mode detection by controlling the size of the kernel.

B. Pseudosupervised Fusion

After performing feature extraction, there are Q clustering
maps C = {C1, C2, . . . , CQ}. Here, we assume that there are
R different homogeneous regions in all Q clustering maps, and
the spectral voxels in the same homogeneous region are similar.
For a homogeneous region r, the average value of all voxels
in the qth subband set is named as the average spectrum and
it is denoted by Sr,q , where r = 1, . . . , R and q = 1, . . . , Q.
The average spectrums of R different homogeneous regions
form a reference spectrum set S = {S1,1, . . . ,Sr,q, . . . ,SR,Q},
and it will be clustered into K groups, denoted by Ω =
{ω1, . . . , ωK}.

With these reference spectrums and their correspond-
ing class labels, a pseudosupervised fusion based clas-
sification method is proposed. The automatically labeled
reference spectrum set is viewed as a training set Γ =
{(S1,1, ω

1), . . . , (Sr,q, ω
r), . . . , (SR,Q, ωR)} of R × Q refer-

ence spectrum Sr,q and their corresponding group label ωr,
∀ωr ∈ Ω, r = 1, . . . , R and q = 1, . . . , Q. Suppose n ∈ Cp,q is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

in the pth homogeneous region of the qth clustering map. To
determine the class label of the ith pixel, three situations are
considered here.

1) If the Q homogeneous regions are the same, then the ith
pixel is assigned to the kth class if the average spectrum
belongs to the kth group.

2) If the Q homogeneous regions are not the same but their
average spectrums belong to the same group, say the kth
group, then the class label of the ith pixel is assigned as k.

3) If the Q homogeneous regions are not the same and their
average spectrums belong to different groups, the class
label of the ith pixel is determined by decision fusion,
which is described as follows.

Suppose the average spectrum of homogeneous region in
the qth subband set, denoted as ASq, belongs to class k. The
spectral distance dq

i,k between ASq and the spectral vector
at the ith pixel can be regarded as an evidence that the ith
pixel belongs to class k. Based on this evidence and gq, the
confidence value of the qth information source, the reliability
function of the ith pixel belonging to class k based on the qth
information source can be defined as

αq
k = gq exp

(
−γq

(
dq

i,k

)2
)

(14)

where γq is a positive parameter associated to class ωq. The
reliability function αq

k represents the reliability that the ith
location is labeled as ωq based on the information provided by
the qth information source. While the reliability of the ith pixel
is label as αq

k, the reliability of the rest of Ω is defined as 1 − αq
k.

If the average spectrums of Q regions belong to different
groups, it implies that there are some conflicts and disagree-
ments among the decisions made by the Q information sources.
As mentioned in Section I, evidence theory [5], [8] is a proper
tool to deal with these conflicts and disagreements. Here, we
use the evidence theory to fuse these decisions. Through fusion,
the reliability that the ith pixel is label as ωq can be calculated

m ({ωk}) =
1
Υ

⎛
⎝1 −

∏
i∈Θq

(
1 − αq

i,k

)⎞
⎠ ∏

r 	=q

∏
i∈Θq

(
1 − αq

i,k

)
(15)

where ΘQ = {θ1, . . . , θQ} contains the indices provided by the
Q information sources, Θq is the subset of ΘQ corresponding
to those reference spectrums belong to class ωq, and Υ is a
normalization factor

Υ =
Q∑

q=1

αq
k

∏
r 	=q

(1 − αr
k) +

Q∏
q=1

(1 − αq
k) . (16)

The final decision is made by assigning the ith voxel to the
group ωq max with maximum credibility

ωk max = arg max
k

m ({ωk}) . (17)

By fusing the decisions made from the Q information
sources, the different discrimination information provided by
different information sources can be effectively exploited, and

Fig. 1. Flow chart of the proposed classification algorithm.

a more accurate classification result can be expected. On the
other hand, as the classification is performed locally based on
the joint spatial-spectral information, the classification map will
be smoother than that by using only the spectral information.
Fig. 1 shows the flow chart of the whole classification method.
The following experiments validate the performance of the
proposed algorithm.

IV. EXPERIMENTAL RESULTS

The data used in this experiment were recorded by the
HYDICE sensor (16-bit BIL, 307 rows by 307 columns by
210 bands). There are five different materials in the scene,
including asphalt, concrete, grass, trees, and soil. Fig. 2(a) is the
false color image of the scene, and Fig. 2(b) shows the spectral
characteristics of the five typical materials in the scene.

A. Hyperspectral Subband Source Generation

Fig. 3(a) shows the correlation coefficient matrix of the
HYDICE image, based on which the hyperspectral bands can be
partitioned. The correlation matrix shown in Fig. 3(a) contains
bright off-diagonal blocks, which means that the corresponding
bands are correlated. The correlation among bands in each di-
agonal block is the highest. The bright off-diagonal blocks also
correspond to the intersection between two different diagonal
blocks. We apply the Canny edge detector to Fig. 3(a), where
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Fig. 2. Scene of interest. (a) False color image of the scene (R: band 49,
G: band 35, B: band 18). (b) The spectral characteristics of the five materials in
the scene.

the correlation coefficient is scaled to 1 ∼ 255. The detected
edge map is shown in Fig. 3(b). We use the edge to determine
the number of subband source [26], [27]. If two edges are
closer than a given threshold, these two edges will be merged.
The threshold is set to preserve the original correlation of
bands and remove the influence of noise. If the threshold is too
small, the influence of noise cannot be removed efficiently and
some subband sources will contain little useful classification
information. If the threshold is too big, the original correlation
of bands will be changed. Here, we set the threshold as 5 based
on experience. Based on this principle, the hyperspectral data
can be grouped into 5 subband sources, as listed in Table I.
The numbers of bands in these subband sources are 57, 45, 34,
11, and 59, respectively. To reduce the volume of data before
clustering and to obtain the same number of features for all the
subsets, the principal component analysis (PCA) [4] is applied
to each subband source.

For the data cube of the qth source Yq, there are lq images in
this source, and then the data cube Yq can be represented in a
matrix form: Y q = [Y q,1, . . . , Y q,lq ]. The covariance matrix of
Y q is

Ω =
1
N

ȲqȲ
T
q . (18)

Fig. 3. (a) Correlation coefficient matrix of the HYDICE image. The bright-
ness corresponds to the magnitude of the matrix elements. (b) The Canny edge
detection result of the correlation coefficient matrix.

TABLE I
SEGMENTATION OF THE BANDS

Let ri and ⇀
e i be the ith eigenvalue and the associated eigenvec-

tor of the covariance matrix Ω and r1 ≥ r2 ≥ · · · ≥ rlq . The
projection Yq · ⇀

e i is called the ith principal component (PC)
of Yq. Since Yq is redundant, in general by using only the
several most significant PCs (i.e., those PCs corresponding to
the most significant eigenvalues) of Yq, most of the energy of
Yq can be preserved. Therefore, the number of bands in each
source can be reduced by PCA transform. For the convenience
of discussion, suppose that by using only three PCs, 99% of the
energy of each source can be preserved. Then we project Y q

onto ⇀
e1, ⇀

e2 and ⇀
e3 to obtain the first three most significant PCs

as Y q,λ1 = Y q · ⇀
e1, Y q,λ2 = Y q · ⇀

e2 and Y q,λ3 = Y q · ⇀
e3.

Reformatting the three vectors into 2-D image format results
in three images Y q,λ1 , Y q,λ2 and Y q,λ3 .

B. Feature Extraction and Classification

In the feature extraction process, the bandwidth (hs, hp)
should be selected carefully as they will determine the
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Fig. 4. Mean shift clustering results of different subband groups. (a)–(e) are group 1 to group 5.

resolution of the mode detection. As in [12], features with
large spatial support will be represented when hs increases,
and features with large spectral difference will be represented
when hp increases. Mean shift clustering is used to divide the
scene into a series of homogeneous regions, and the average
spectrum in every homogeneous region is regarded as training
data. The setting of bandwidth depends on the data points and is
decided by using pilot density estimation. The simplest way to
obtain the pilot density estimate is the nearest neighbor method
[29]. Let xi,k be the kth nearest neighbor of point xi in spa-
tial domain, then hs = ‖xi − xi,k‖. The number of neighbors
should be chosen large enough to assure that there is an increase
in density within the support of kernel having bandwidths hs

[28]. The bandwidth hp is determined similarly. To make the
classification accurate, the number of different materials in each

homogeneous region should be as small as possible. Based on
this principle and to capture the small variation of texture and
spectrum, we choose the parameters hs = 7 and hp = 6.5. The
smallest region has 20 pixels. Fig. 4(a)–(e) shows the mean shift
clustering results of the different groups.

There are 110 different homogeneous regions in five mean
shift clustering subsets. Every homogeneous region can be
labeled as one of the five different materials: asphalt, concrete,
grass, trees, and soil. As described in Section III, the 550
average spectrums can be extracted from these homogeneous
regions, and then clustered into five groups to form a training
set Γ = {(S1,1, ω

1), . . . , (Sr,q, ω
r), . . . , (S110,5, ω

110)}. The
mean shift clustering algorithm is used. As the training set
is obtained from the clustering results, sometimes it may not
match the real class, and this is the main source of classification
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Fig. 5. Classification results by using different methods. (a) FCM_S method.
(b) KNN method. (c) Proposed method. (d) The ground truth.

TABLE II
CLASSIFICATION RESULTS BY DIFFERENT METHODS

ON THE HYDICE DATA

TABLE III
CLASSIFICATION RESULTS BY DIFFERENT METHODS ON

WASHINGTON DC MALL DATA

errors. On the other hand, as the method is unsupervised clas-
sification, the final class label is assigned based on the training
set. The Mahalanobis distance is used to measure the spectral
difference dq

i,k between the testing sample S and the training
sample Si

dq
i,k = (S − Si,q)T Σk(S − Si,q) (19)

where Σk is the covariance matrix of the samples in group k,
i = 1, . . . , 110 and q = 1, . . . , 5. The hyperspectral imagery is
classified by using the pseudosupervised fusion classification
proposed in Section III. The final classification result is shown
in Fig. 5(c).

C. Evaluation Measures

The proposed method is an unsupervised classification
method that combines the spectral and spatial information in
the classification process, and it also utilizes the idea of a
supervised classifier. In order to illustrate the effectiveness
of our method, the unsupervised classification method, which
utilizes the spectral and spatial information, and the supervised
classification method are used for comparison. Specifically, we
compare the proposed method with the unsupervised fuzzy
c-means clustering method with spatial constraints (FCM_S for
short), which incorporates spatial information into the member-
ship function [13], [22], [23], and the supervised KNN method
[8]. Similar to that in the proposed method, PCA is used to
reduce the dimension before performing FCM_S and KNN.
Both the global measure and local measure as outline below
are used to evaluate the performance.

1) Global Measure is used to characterize the classification
accuracy [20]. The overall accuracy (OA) is employed to
measure the labeling accuracy of the whole scene, and
the kappa coefficient is employed to measure the corre-
spondence of the labeling with three categories—trees,
grass, and asphalt. The kappa coefficients of the three
categories are represented as K-tree, K-grass, and
K-asphalt.

2) Local Measure is used to characterize the classification
smoothness. Smoothness in classification labeling can be
measured from the viewpoint of clutter Kclutter [18]. In a
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Fig. 6. Classification results of Scene Washington DC Mall by using different methods. (a) False color image of the scene (R: band 60, G: band 27, B: band 17).
(b) FCM_S method. (c) KNN method. (d) The proposed method. (e) Ground truth.

homogenous region, all the pixels should be assigned to
one label. Clutter can be defined as the number of pixels
assigned to labels that are different from the predominant
label in the region.

D. Results

Fig. 5(a) shows the results of FCM_S classification method.
It can be seen that the classification result provides a poor par-
tition of the scene. The concrete and soil are not well separated,
the shade and asphalt are mixed, and there is a lot of clutter.
Fig. 5(b) shows the results of KNN classification method (the
training data is the average spectrum of 5 × 5 regions which
is chosen based on ground truth). We see that the classification
result is much better than the FCM_S classification. However,
it is sensitive to noise in the forested areas and still has too
much clutter. As shown in Fig. 5(c), the proposed classification
method is more robust to the noise than previous classification
methods, as it exploits the spatial and spectral information in
the classification process.

Table II presents quantitative results of FCM_S cluster-
ing method, KNN classification method and the proposed
algorithm. The proposed algorithm achieves good results in
terms of classification accuracy. As an unsupervised scheme,
it achieves almost the same global measures (OA, K-tree,
K-grass, and K-asphalt) as the supervised KNN classifica-
tion method. Table II also summarizes the measures of local
smoothness Kclutter. There is clearly an improvement in ho-
mogeneity over the FCM_S and KNN algorithms by using the
proposed clustering fusion algorithm.

The proposed algorithm is applied to a sample hyperspectral
image that was taken over Washington DC Mall. The data con-
sist of 260 (1001:1260) × 307 pixels with 210 bands, recorded
with the HYDICE sensor. Fig. 6 shows the classification results
using FCM_S, KNN, and the proposed classification method.
The quantitative results are listed in Table III. By comparing
Fig. 6(b) and (c) with Fig. 6(d) and results in Table III, we see
that the proposed algorithm also achieved good results either in
classification accuracy or in homogeneity.
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TABLE IV
CLASSIFICATION RESULTS BY DIFFERENT METHODS

ON THE NOISY HYDICE DATA

E. Robustness to Noise

The hyperspectral imagery was corrupted by noise in the
data acquisition process. The additive Gaussian white noise
(AGWN) model is often used to model the instrumental
photonic or electronic noise. To simplify the noise analysis,
only AGWN is considered in the hyperspectral noise analysis
process [21], [30]. To test the robustness to noise by different
classification methods, AGWN is added to the hyperspec-
tral image with peak signal-to-noise ratios (PSNRs) of 10,
16, and 20.13 dB, respectively. The classification results with
PSNR of 20.13 dB are shown in Fig. 6. Both the FCM_S
and KNN classifiers give poor partitioning of the scene in
comparison to their segmentation on the original hyperspectral
data. However, the classification results of the proposed method
give almost the same segmentation as the original hyperspectral
data. The quantitative results are listed in Table IV. We see that
the proposed method achieves much better performance than
the FCM_S and KNN classifiers. FCM_S and KNN perform
classification at the pixel level, while the proposed method is
a region-based classification scheme. The pixel-level classifica-
tion is sensitive to noise, while region-based classification can
reduce the errors introduced by noise through averaging. On
the other hand, by comparing Fig. 7(a) and (b) with Fig 7(c),
it can be concluded that even in a noisy condition, the pro-
posed method can obtain better classification performance than
FCM_S and KNN classifiers applied to the denoised sources.
This conclusion can be validated by the quantitative results in
Tables II and IV. As discussed, the proposed method is robust
to noise.

V. CONCLUSION

In this paper, we proposed a clustering and fusion method
to improve the classification performance of hyperspectral im-
agery. Due to the various external environment factors and
internal factors of imaging system, the quality of hyperspectral
imagery data varies across the spectral bands. Therefore, the
segmentation of hyperspectral data should account for the
quality variation of different bands. On the other hand,
the spatial redundancy should also be exploited to improve
the hyperspectral imagery segmentation performance. The pro-
posed algorithm combines the spatial and spectral information
by using the mean shift clustering, and then classifies the
hyperspectral data by using a pseudosupervised fusion method.
The proposed method was verified on the real HYDICE hyper-

Fig. 7. Noisy hyperspectral data classification results by different methods.
(a) The FCM_S method. (b) The KNN method. (c) The proposed method.

spectral imagery data. The experimental results demonstrated
the robustness and the higher accuracy of the proposed classi-
fication method over the fuzzy c-means clustering with spatial
constraints and KNN schemes.
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