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Temporal Color Video Demosaicking via
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Abstract—Color demosaicking of charge-coupled device (CCD)
data has been thoroughly studied for single-sensor still digital cam-
eras. However, there has seemingly been little research on color
demosaicking techniques for single-sensor video digital cameras.
The temporal dimension of a color mosaic image sequence can
reveal new information on the missing color components due to the
mosaic subsampling, which is otherwise unavailable in the spatial
domain of individual frames. This paper proposes a temporal
approach to color demosaicking. A pixel of the current frame is
matched to another in a reference frame via motion analysis, such
that the CCD sensor samples different color components of the
same object position in the two frames. The resulting inter-frame
estimates of missing color components are fused with suitable
intra-frame estimates to achieve a more robust color restoration.
Our experimental results demonstrate clear advantages of the pre-
sented temporal color demosaicking approach over its intra-frame
counterparts in reducing the color artifacts.

Index Terms—Bayer pattern, color demosaicking, data fusion,
motion estimation, single-sensor digital video cameras.

I. INTRODUCTION

COLOR demosaicking of charge-coupled device (CCD)
sensor data holds a key to the quality of color images re-

constructed from single-sensor digital still and video cameras.
Such digital cameras capture an image with a single-sensor
array. At each pixel, only one of the three primary colors (red,
green, and blue) is sampled. Fig. 1 shows the widely used
Bayer color filter array (CFA) [3]. The full color image is
reconstructed by interpolating the missing color samples. Color
demosaicking has been extensively studied in spatial domain
for still digital cameras [1], [2], [5]–[13], [15]–[21], [24], [25],
[27], [28]. We call this class of color demosaicking techniques
the intra-frame or spatial demosaicking.

The earlier spatial demosaicking methods, such as
nearest-neighbor replication and bilinear and bicubic inter-
polation [15], can be simply implemented, but they suffer from
many artifacts such as blocking, blurring, and zipper effect at
edges. Lately developed demosaicking methods exploited the
correlation between color channels. The smooth hue transition
(SHT) methods [1], [6] assume images having slowly varying
hue. SHT methods tend to cause large interpolation errors in
the red and blue channels when green values abruptly change.
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Fig. 1. Bayer pattern of color mosaic for digital cameras.

Since human visual systems are sensitive to the edge structures
in an image, many adaptive demosaicking methods try to avoid
interpolating across edges. In the second-order Laplacian filter
proposed by Hamilton and Adams [2], [9], the second-order
color gradients are used as the correction terms to interpolate
the color channels. In the gradient-based scheme of Chang et al.
[5], gradients in different directions are computed, and a subset
of them is selected by adaptive threshold. The missing samples
are estimated from the samples along the selected gradients.
Recently, Zhang and Wu [28] proposed a linear minimum mean
square-error (LMMSE) estimation-based demosaicking method
and achieved very good results. They reconstructed the primary
difference signals (PDS) between the green channel and the red
or blue channel, instead of directly interpolating the missing
color samples. In [18], Lukac and Plataniotis used a normalized
color-ratio model in the color interpolation to suppress the
color artifacts. They also proposed an edge-sensing method by
using color correlation correction based on a difference plane
model [19]. Some color demosaicking techniques are iterative
schemes. Kimmel’s two-step iterative demosaicking process
consists of a reconstruction step and an enhancement step
[13]. Another iterative demosaicking scheme was proposed
by Gunturk et al. [7]. They reconstructed the color images by
projecting the initial estimates onto so-called constraint sets.
A wavelet-based iterative process was employed to update
the high-frequency details of color channels. Other recently
reported demosaicking methods include the method of adaptive
homogeneity by Hirakawa and Parks [10], the primary-consis-
tent soft-decision method of Wu and Zhang [27], the principal
vector method of Kakarala and Baharav [11], and the bilinear
interpolation of color difference by Pei and Tam [20].

However, if the image signal is highly discontinuous in both
chrominance and luminance, spatial demosaicking techniques,
including those recently developed sophisticated ones, are error
prone, due to lack of correlation in both spectral and spatial do-
mains. Some examples of color artifacts of demosaicking are
presented in Fig. 2. The demosaicked images in Fig. 2 are pro-
duced by the recently proposed algorithm in [10], which is con-
sidered one of the best.
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Fig. 2. Top row: original full color images. Bottom row: demosaicked images by the method in [10], one of the best spatial demosaicking methods in the literature.
The color artifacts are clearly visible.

In order to overcome the limitation of spatial color demo-
saicking, additional knowledge and constraints of the original
color signals are needed. For digital CCD video cameras, the
temporal dimension of a sequence of color mosaic images often
reveals more and new information on the color values that are
not sampled by the CFA sensors. This potentially valuable infor-
mation about the color composition of the scene would be un-
available in the spatial domain of individual mosaic frames. The
correlation of adjacent frames can be exploited to aid the color
demosaicking process if the camera and object motions can be
estimated. We call this approach temporal color demosaicking.

However, there seems to be a lack of research reported on
temporal color demosaicking, despite its obvious potential. In
this paper, we present an effective temporal color demosaicking
technique to enhance the color video quality. Without the loss
of generality, we consider the Bayer CFA [3] that is widely used
in digital color video cameras (see Fig. 1). The temporal demo-
saicking techniques to be developed in this paper can be readily
generalized to other CFA patterns. In the Bayer pattern, the sam-
pling frequency of the green channel is twice that of the red or
blue channel. This is because the sensitivity of the human visual
system peaks at the green wavelength, and the green channel
contributes the most to the luminance of an image [4]. For nat-
ural images, there exists high spectral correlation between the
red/blue and green channels. Once the green channel is interpo-
lated with the help of the red/blue channel, it can then be used to
guide the interpolation of the red/blue channel. The main idea
of the proposed temporal demosaicking scheme is to match the
CFA green sample blocks in adjacent frames in such a way that
missing color samples in one frame can be inferred from avail-
able color samples of matched adjacent frames. Since the green
channel has higher spatial resolution than the red/blue channel,
it is naturally employed in the motion-estimation process of the
proposed temporal demosaicking approach.

In order to feed the motion analysis with sufficient informa-
tion, the green channels of all frames are first reconstructed
individually by interpolating the missing green samples via
intra-frame demosaicking. Motion estimation between ad-

jacent frames for temporal color demosaicking is based on
this reconstructed green image sequence. With the estimated
motion vectors, adjacent frames are registered spatially. The
best matched green samples in adjacent reference frames are
then fused with the intra-frame estimates of the missing green
samples of the current frame to improve the quality of the
previously estimated green channel. The resulting improved
green channel will serve as an anchor to reconstruct the red and
blue channels by interpolating the missing red and blue samples
using both the intra-frame and inter-frame information.

The paper is structured as follows. In Section II, we present
a technique for temporal demosaicking of the green channel
through motion estimation and data fusion. This temporal demo-
saicking technique is then extended to reconstruct the missing
red/blue samples at the blue/red sample positions of CFA in
Section III, and to reconstruct the missing red/blue samples at
the green sample positions of CFA in Section IV. Section V pro-
poses a new system workflow for digital video cameras to best
realize the potential of temporal color demosaicking and to keep
its computational complexity reasonable. Section VI presents
experimental results, and Section VII concludes the paper.

II. TEMPORAL DEMOSAICKING OF THE GREEN CHANNEL

In order to perform motion estimation in maximum possible
spatial resolution, we first demosaick the green channel of each
frame separately. This can be done by any of the intra-frame
demosaicking methods. In this paper, we adopt the direc-
tional second-order Laplacian interpolation filter proposed by
Hamilton and Adams [9] for its good performance and low
complexity. The green estimates by intra-frame demosaicking
are to be improved by motion estimation and sample registra-
tion in adjacent frames.

Referring to Fig. 3, we denote the original green samples by
and the interpolated green samples through intra-frame de-

mosaicking by . Obviously, due to the sampling structure of
the Bayer CFA, for an image, there are
original samples, and interpolated samples,
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Fig. 3. Current green frame and its backward and forward neighboring frames.

which are to be temporally updated. In the temporal improve-
ment of these samples in the current frame, we employ ad-
jacent reference frames: backward and forward. For
each sample in the current frame, we use a block centered
at it to find the best matched sample from the reference
frames by block matching. Fig. 4 illustrates the reference sample
matched to the considered sample from the th refer-
ence frame, . We denote original and interpolated
green samples in the th reference frame as and , respec-
tively. The dashed green squares on a red/blue background rep-
resent the green estimates at these positions that are generated
by intra-frame interpolation.

Referring to Fig. 4(a), consider the block centered at
, the sample to be temporally updated, in the current frame,

and denote this block as . Let a corresponding block in the th
reference frame with displacement be .
Fig. 4(b) shows, for example, the relationship between and

. Due to the structure of the Bayer pattern, if the mo-
tion vector satisfies

or (2-1)

where , are integers, then can be matched to an original
green sample in the th reference frame. Denote by
the set of all motion vectors determined by (2-1) in
a suitable search range ,
where is an integer.

Considering block as a vector consisting of the 25 green
samples in a window, no matter original or estimated by
intra-frame demosaicking; likewise, block is the
corresponding vector in the th reference block. Applying the
block matching of to all the reference frames, we select
the best matched block of from all the ,

. Let

(2-2)

(2-3)

If the difference value is no more than a preset threshold
, i.e., , then block is taken as the best

matched reference block of current block . If the scenes in

adjacent frames change sharply, the redundancies between ad-
jacent frames are low, and will be of high value. In this case,
the unreliable reference block found by (2-2) can be ruled out by
the threshold . The value of can be determined in a training
process. In this paper, we set it as . The block-
based motion-estimation scheme is similar to that of MPEG
[14]. The differences are that the motion vectors are confined
to the set , and multiple reference frames are searched. The
objective here is to find the existing green sample in the
best matched block that provides a good measure-
ment of the missing green sample in the current frame.

This technique works well if the following three conditions
are met: the object/camera motion is translation; the luminance
does not change in a small time window; and a matched block

can be found. For relatively high frame rates, the
first two conditions can be met satisfactorily, because the mo-
tion vectors are small and the illumination in the scene changes
little, if at all. Regarding the last requirement, there is a prob-
ability of 1/2 that the motion vector is of the form in (2-1),
i.e., the offsets in the and directions have different parities.
Under the assumptions that motion vectors are measured up to
the precision of integer pixels, and motions are equally prob-
able in all directions, there is equal chance for the parities of
the motion offsets to be one of the four combinations
(even, even), (odd, odd), (even, odd), (odd, even). Thus, if one
reference frame is used, the probability of not finding an existing
reference sample for the considered sample (i.e., not satis-
fying (2-1)) is . If two reference frames are used,
the probability of finding a reference sample for from any
of the two reference frames is . Therefore,
if one searches adjacent frames, the probability of finding a
reference sample from any one of the frames is very high,
namely, . On the rare occasion when the matching cri-
terion cannot be met, then no temporal
estimate will be generated, and we resort to infra-frame
demosaicking only.

If the motion estimation yields the best matched green sample
that spatially corresponds to , we fuse and
to get a more robust estimate of , the unknown true

green value at the position of . Both and can
be viewed as the noisy measurements of true value , and
can be written as

(2-4)

where terms and are the measurement errors of and
. Generally, and are zero mean and uncorrelated

with each other.
We employ the weighted-average strategy to fuse and

(2-5)

To make an unbiased estimator of , i.e.,
, we let

. The optimal weights to minimize the mean square
error (MSE) of fused green value are given by

(2-6)
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Fig. 4. Registration of green samples of the Bayer pattern in current and reference frames. Solid green squares are the green pixel positions of CFA; the dashed
green squares on red/blue background are the red/blue pixel positions of CFA, where the missing green samples are interpolated by intra-frame demosaicking.

Fig. 5. (a) A test image. (b) Curve of � versus � for the test image.

Denote by and the variances of noises and . Since
and are uncorrelated, we have

Differentiating with respect to and letting it be zero, we
have

and (2-7)

and can be estimated as follows. Referring to Fig. 4(a),
we see that the four nearest neighbors of are the original

green pixels , , , and . Write the variance of
, as

(2-8)

We empirically observed that is nearly linearly proportional
to . This observation reflects the fact that demosaicking ar-
tifacts typically accompany high-frequency contents. Fig. 5(a)
shows a test image, and Fig. 5(b) plots the curve of versus

for the test image. The curves for other images are similar.
These curves suggest that , and .

Having the estimated , we proceed to estimate . Based
on (2-4) and the assumption that and are uncorrelated, we
have

(2-9)
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Fig. 6. Registration of red samples of the Bayer pattern in current and reference frames. Solid red squares are the red pixel positions of CFA; the dashed red
squares on a blue background are the blue pixel positions of CFA, where the missing red samples are interpolated by intra-frame demosaicking.

Referring to Fig. 4(b), the four nearest original green pixels of
in the chosen reference frame are , , ,

and , and we estimate as

(2-10)

Now both and are obtained, and then the fusing weights
are determined by (2-7). Finally, the missing green sam-

ples are recovered by the fused green estimates made by
(2-5).

III. RECOVERY OF THE MISSING RED/BLUE

SAMPLES AT BLUE/RED PIXEL POSITIONS

An inherent drawback of the Bayer pattern is its inferior sam-
pling scheme for the blue and red color components. Not only is
the sampling frequency of red and blue only half of the sampling
frequency of green, the 2-D sampling grid for red and blue also
has a poor shape of square lattice, which deviates greatly from
the optimal hexagonal lattice. By contrast, the green color com-
ponent is preferentially sampled with twice as many samples as
red and blue, and a far more efficient sampling grid of checker-
board lattice. Naturally, we seek ways of using the denser and
better-shaped green sample grid to increase the sampling fre-
quency of red and blue via temporal color demosaicking. Specif-
ically, in this section, we discuss the temporal demosaicking
technique to recover the missing red/blue samples at the blue/red
sample positions in CFA, and then in the next section, the tech-
nique to recover the remaining missing red/blue samples at the
green sample positions.

With the help of the already temporally recovered green
channel, the missing red/blue samples at original blue/red
positions are first spatially interpolated by using a bilinear
strategy: 1) compute the average green/red or green/blue color
difference with the four nearest neighbors along diagonal
directions (45 and 135 ); and 2) subtract the computed color

difference from the green sample to get the missing red or
blue sample. Note that such a spatial interpolation of red/blue
samples also exploits some temporal information, because the
employed green channel has been temporally updated.

The spatially recovered red/blue samples are to be temporally
enhanced. Due to the symmetry of the Bayer pattern, updating
the red sample at the blue pixel position is the same problem
as updating the blue sample at the red pixel position by simply
switching the role of red and blue. Therefore, it suffices to only
discuss the former case. Referring to Fig. 6, denote by the
original red sample and by the red estimate at the blue pixel
position by spatial demosaicking. Correspondingly, let and

be the original and estimated red samples in the th refer-
ence frame. Notice that at the original red and blue sample posi-
tions, we have temporally recovered the green samples, and we
label these estimated green samples by and .

Again, we use to denote the block centered at the
interested sample in the current frame, and
for the corresponding block in the th reference frame with dis-
placement . It is easy to see from the sample layout of
Bayer pattern that if the motion vector is of the form

(3-1)

then can be matched to an original red sample in
the th reference frame. The same motion-estimation technique
of Section II can be used to search for the best matched block

in the adjacent frames. Because the green channel
is the most reliable one in the three color channels, we conduct
motion estimation based on green samples, despite searching for
the matching blocks of red/blue samples.

Fig. 6 shows that when the motion vector sat-
isfies (3-1), an original green sample in the current block

will match an original green sample in the reference
block , while an estimated green sample in
will match an estimated green sample in .
We denote by the vector consisting of all 12 original
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Fig. 7. Red and blue channel outputs after temporally recovering the missing red/blue samples at blue/red pixels. (a) Bayer pattern. (b) R, B outputs after temporal
demosaicking.

green samples in block , and by the vector consisting
of all 13 estimated green samples in block . Correspond-
ingly, and denote the vectors of
the original and estimated green samples in reference block

. When measuring the difference between
and , we place higher confidence on the original
green samples than on the estimated ones, namely

(3-2)

where confidence factors and , and is the
set of motion vectors of (3-1) in a suitable search
range . Our experiments
showed that and worked well. Nonetheless,
the demosaicking results are not sensitive to the values of and

.
Let be the best matched block to over all

searched frames, and let be the original red sample at
the center of that spatially corresponds to .
We fuse and to achieve a better estimation of

: . As in Section II, the
weights are determined by (2-7). The sample set

is used to estimate the measurement
error of , i.e., the variance ; similarly, the sample set

is used to estimate
the measurement error of , i.e., the variance .

The above scheme reconstructs the missing red sample at the
blue pixel position and the missing blue sample at the red pixel
position in the current frame. Consequently, the resolution of
red and blue components can be increased to be as high as that
of the green component. Fig. 7 depicts the outcomes of the red
and blue channels after such temporal demosaicking, in which
the dotted cells represent those recovered missing color com-
ponents. The temporal demosaicking of red and blue channels
generates a checkerboard pattern of either of these two color
components. This facilitates spatial interpolation of the other
missing red and blue samples.

IV. RECOVERY OF THE MISSING RED/BLUE SAMPLES

AT THE GREEN PIXEL POSITIONS

Having doubled the number of red and blue samples in the
previous section, there are still half of the red and blue sam-
ples missing at the positions of original green samples. From
Fig. 7(b), we observe that there are four neighbors of the same

color around each missing red or blue sample at the green pixel
positions, two original and two estimated. With the help of these
neighbors and the already recovered green channel, the missing
red and blue samples are first spatially interpolated by the bi-
linear strategy described in Section III (any good spatial inter-
polation method will do). Then the spatially estimated red/blue
samples are to be improved by additional information from ad-
jacent frames. Next, we describe the temporal demosaicking
process for the red channel. The case for the blue channel can
be treated analogously.

As shown in Fig. 8, the temporally demosaicked red samples
(by the scheme in Section III) at the blue pixels are represented
by red cells with blue dots. The spatially demosaicked red sam-
ples at the green pixels are represented by dashed red cells with
a green background. The current block is defined as the
windows centered at the considered sample in the current
frame. It is to be matched to a reference block ,
whose center is an original red sample . Again, it should
be stressed that the green channel is employed in searching for
the best matched block.

It can be seen that for a spatially interpolated red sample
that lies to the right/left of an original red sample, if the mo-
tion vector is of form , then can
be matched to an original red sample in the th refer-
ence frame. For those spatially interpolated red samples that are
above/below the original red pixels, the desired motion vector
is . The motion-estimation process
is similar to that in Section II. After finding the best matched
block of , and are fused to gen-
erate . The calculation of weights

is done in the same way as in Sections II and III.
Summarizing all the steps described in the preceding sections,

we present the proposed temporal demosaicking algorithm in
the following pseudocode.

1) Spatially interpolate individual green frames. (The
second-order Laplacian filter in [9] is used in this paper.)

2) Temporally update the green channel via the procedure
developed in Section II.

3) Spatially interpolate the missing red/blue samples at the
original blue/red pixel positions by using the temporally
updated green channel in step 2) to bilinearly interpolate
the green/red or green/blue color difference.

4) Temporally update the red/blue samples interpolated in
step 3), as described in Section III.

5) Spatially interpolate the missing red/blue samples at
original green pixel positions, similar to step 3).
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Fig. 8. Registration of red samples of the Bayer pattern in current and reference frames. Solid red squares are the red pixel positions of CFA; the red squares with
blue dots are the blue pixel positions of CFA where the missing red samples have already been temporally recovered; the dashed red squares on green background
are the green pixel positions of CFA where the missing red samples are interpolated by intra-frame demosaicking.

6) Temporally update the red/blue samples interpolated in
step 5), as described in Section IV.

V. SYSTEM WORKFLOW AND COMPLEXITY

The workflow of current video capture devices is spatial
color demosaicking followed by lossy video compression via
either intra-frame (e.g., motion JPEG) or inter-frame coding
(e.g., MPEG). In this system workflow, color demosaicking is
a real-time process, and only a simple spatial demosaicking
algorithm can be applied. Lossy compression of demosaicked
video further aggravates the problem. MPEG compression,
for instance, introduces artifacts of its own on high-frequency
contents due to errors in motion vectors. Therefore, lossy
compression of a spatially demosaicked video sequence denies
the opportunity of achieving the best video fidelity allowed by
the original mosaic data, even ample computation resources
and time are permitted at a later time.

For high-end applications such as digital cinema, where
the visual quality has paramount importance, spatio-temporal
color demosaicking should be performed on original mosaic
data. This can be achieved by a new system workflow. First,
the captured raw mosaic data are compressed by a real-time
mathematically lossless or near-lossless coder [29] and stored
on camera. Then, in an offline process, the raw mosaic data
are decompressed and processed by spatio-temporal demo-
saicking to reconstruct the full color video sequence. Finally,
the high-quality demosaicked video sequence is compressed,
possibly by MPEG, to meet the bandwidth requirement of the
application.

A seeming drawback of the new workflow is the relatively low
compression ratio obtainable by lossless coding of raw mosaic
data. However, keep in mind that the raw mosaic image is only
one-third of the demosaicked image in size. This effectively
triples the compression ratio if measured in terms of the size of
the demosaicked image. In fact, color demosaicking makes the
task of compression more difficult. It increases the amount of

input data twofold. Ironically, a necessary step of compression
is to decorrelate the color bands, which is essentially an attempt
to reverse the color demosaicking process. Obviously, a direct
compression on the raw mosaic data can avoid such problems.

Admittedly, the proposed spatiotemporal demosaicking is
computationally more expensive than spatial demosaicking
techniques. The complexity of the proposed spatio-temporal
demosaicking is dominated by the computation cost of mo-
tion estimation. However, this cost can be shared with the
process of video compression that is to immediately follow
spatio-temporal demosaicking in the new system workflow. In
video compression, motion estimation is also an indispensable
and computationally expensive step. Since the motion vectors
computed for the purpose of temporal demosaicking are needed
in video compression anyway, the overall system complexity
remains roughly the same, regardless of whether spatial or
spatiotemporal demosaicking is used.

One can also significantly reduce the complexity of spatio-
temporal demosaicking by invoking it only when spatial demo-
saicking cannot produce good outputs. In smooth regions, which
typically constitute the major portion of an image, the sampling
frequency of the color mosaic is high enough to allow correct
color demosaicking solely in the spatial domain. Only at local-
ities of sharp edges and finely structured textures the CPU-in-
tensive temporal color demosaicking will be activated.

VI. EXPERIMENTAL RESULTS

We present the experimental results on two video clips to
evaluate the proposed temporal demosaicking algorithm in com-
parison with nine existing methods. The first video sequence is
originally captured on film at a rate of 24 frames/second (fps)
and then digitized by a high-resolution scanner. The frame spa-
tial resolution is , and Fig. 9(a) shows the scene of
it. The original image has all three of the red, green, and blue
color channels in full resolution, which provides the true sample
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Fig. 9. (a) Scene in the first test clip. (b) Scene in the second test clip.

Fig. 10. (a) Original full-color image. Demosaicked images by the methods in (b) [9], (c) [5], (d) [11], (e) [18], and (f) [19]. Demosaicked images by the methods
in (g) [17], (h) [20], (i) [10], (j) [28], (k) [26], and (l) the proposed method.

values to measure the demosaicking errors. The mosaic data are
simulated by subsampling the true color image, according to the
Bayer pattern. The second video sequence is captured directly
by a single-sensor digital video camera at a rate of 25 fps. The
spatial resolution is , and Fig. 9(b) shows the scene of
it (the mosaic image is displayed as a gray image).

Nine state-of-the-art spatial demosaicking algorithms and
our earlier temporal method in [26] are included in our
comparison study. The spatial methods are the second-order
Laplacian filtering by Hamilton and Adams [9], the gra-
dient-based method by Chang et al. [5], the principal vector
method by Kakarala and Baharav [11], the bilinear interpola-
tion of color difference by Pei and Tam [20], the normalized
color-ratio modeling by Lukac and Plataniotis [18], the dif-

ference-plane-based color correlation correction by Lukac et
al.[19], the demosaicked image postprocessing scheme by
Lukac et al. [17] (in our experiments, the associated demo-
saicking process is [9]), the method of adaptive homogeneity
by Hirakawa and Parks [10], and the directional filtering and
fusion method by Zhang and Wu [28].

In the first movie clip, on the car, where some sharp color
edges happen, spatial demosaicking produces severe color
artifacts. Fig. 10(a) shows a portion of the original
frame in the test sequence. Fig. 10(b)–(j) are the demosaicked
images by the spatial methods in [5], [9]–[11], [17]–[20], and
[28]. There are highly visible color artifacts in these recon-
structed images. The color edges, where spatial demosaicking
algorithms fail, have discontinuities in both luminance and
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TABLE I
PSNR RESULTS OF THE 11 DEMOSAICKING METHODS FOR THE FIRST VIDEO SEQUENCE

Fig. 11. (a) Original mosaic image. Demosaicked images by the methods in (b) [9], (c) [5], (d) [11], (e) [18], and (f) [19]. Demosaicked images by the methods
in (g) [17], (h) [20], (i) [10], (j) [28], (k) [26], and (l) the proposed method.

chrominance. Fig. 10(k) is the result by our earlier temporal
demosaicking method in [26]. This method gives better vi-
sual quality than the spatial demosaicking methods, but it
has spot artifacts due to a lack of data fusion of current and
reference samples. Fig. 10(l) is the demosaicked image by the
proposed temporal demosaicking method. Clearly, it is better
than all other images in terms of visual quality. Most of the
color artifacts are eliminated, and many sharp edge structures
that are badly distorted in intra-frame demosaicking are well
reconstructed by the temporal demosaicking procedure. The
peak signal-to-noise ratio (PSNR) results of the three color
channels by these demosaicking methods are listed in Table I.
The proposed method outperforms the existing methods by

dB, depending on the color bands.
In the second clip, the camera is still, but the man is moving

with a colorful bag in hand. Fig. 11(a) shows a portion
of the mosaic image, where sharp edges exist. Fig. 11(b)–(j)

are the results by the spatial demosaicking methods. We can
see many artifacts associated with sharp edges. Fig. 11(k) is the
result of the method in [26], and Fig. 11(l) is the demosaicked
image by the proposed temporal demosaicking method. From
our observation, the proposed method has the best visual quality
among the competing methods.

VII. CONCLUSION

We have proposed a joint temporal-spatial color demo-
saicking approach that uses sample correlations in spatial,
spectral, and temporal domains to recover the missing color
samples of raw mosaic CCD data. A spatially interpolated
sample of the current frame is matched to an original pixel in a
reference frame via motion analysis, and these two estimates of
the missing color component are fused to achieve a more robust
estimate. The experimental results showed that the proposed
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approach outperformed the existing spatial demosaicking
methods by an appreciable margin in both PSNR and visual
quality.
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