
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 6, JUNE 2003 535

Denoising by Spatial Correlation Thresholding
Lei Zhang and Paul Bao

Abstract—This paper presents a spatial-correlation thresh-
olding scheme for noise reduction by wavelet transform. Observing
that edge structures are of high magnitude across wavelet scales
but noise decays rapidly, we multiply two adjacent wavelet scales
to form a spatial-correlation function to enhance significant struc-
tures and dilute noise. Dissimilar to the traditional thresholding
schemes that apply threshold to the wavelet coefficients, the
proposed scheme applies threshold directly to the scale correla-
tion. A robust threshold is presented and experiments show that
the proposed scheme outperforms the traditional thresholding
methods.

Index Terms—Image denoising, spatial correlation, threshold,
wavelet transform.

I. INTRODUCTION

DENOISING is essential in image analysis. Wavelet
transform (WT) [1]–[3] -based schemes have proved to

be effective, especially the nonlinear threshold-based denoising
schemes [6]–[9]. In these approaches, a threshold is preset to
determine if a wavelet coefficient should be preserved (shrunk)
or eliminated.

Donoho proposed awavelet shrinkagemethod [6]. Thesoft
threshold presented in his method proved to
besmoothandadaptivein minimax sense, where is the stan-
dard deviation of the additive noise andis the signal length.
The wordsoft implies that it shrinks the input to zero by
amount , i.e., . Following
Donoho’s pioneering work, some newsoftthresholds were pre-
sented [7]–[9]. Panet al. [8] proposed ahard threshold

for nonorthogonal wavelet transforms, whereis the stan-
dard deviation of noise at theth scale and is a constant be-
tween 3 and 4. The wordhard implies that the input is pre-
served if it is greater than the threshold, otherwise set to zero:

. Generally, soft threshold yields smaller
risk in minimax sense but mayover-smooththe images.

In wavelet domain, the edge structures will evolve with ob-
servable magnitudes across scales while noise decreases rapidly
[1]. Based on this observation, Xuet al. [5] presented a spa-
tially selected filtering technique, where the adjacent scales of
WT are multiplied and an iterative selection is utilized to iden-
tify the edge structures. The scheme was improved in [8]. In [4],
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Sadleret al. employed the multiscale products of WT for step
detection and estimation.

Thresholding is efficient but does not take advantage of the
correlation information across wavelet scales, while the latter
is exploited by the spatial selective technique. To combine the
merits of the two techniques, this paper presents a spatial-cor-
relation thresholding scheme where the adjacent wavelet scales
are multiplied to amplify edge structures and dilute noise.
Then a threshold is determined and applied to the multiscale
products to identify significant structures. The spatial-corre-
lation threshold will better distinguish edge structures from
noise than the traditional threshold imposed directly on wavelet
coefficients.

II. WAVELET SPATIAL CORRELATION

Suppose function is a mother wavelet. Let
be the dilation of mother wavelet on dyadic

sequence . The dyadic wavelet transform (DWT) of
at scale and position is

(1)

where denotes convolution operation. In the case of
images, two wavelets and should be de-
fined. Let be the dilation of

. The DWT of at scale and position
has two components

(2)

The fast algorithm of 2-D DWT is illustrated in Fig. 1 [2].
Singularities and noise have different evolution across

wavelet scales [1]. In the WT domain, edge structures will
evolve with considerable peaks along scales but noise will
deteriorate rapidly. Multiplying the adjacent wavelet subbands
would enhance edges while diluting noise. An edge structure
may be centered with relative shifts at different scales, which
suggests that the adjacent wavelet scales should be multiplied
with some relative translations to maximize the product. In
practice, it is sufficient to amplify the edge structures by em-
ploying two adjacent scales. We define the spatial-correlation
function as

(3)

where the shifts satisfy

(4)
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Fig. 1. 2-D DWT structure, where filterH (G ) is the2 dilation ofH (G )
(putting2 � 1 zeros between each of coefficients ofH (G )) andH (G ) is
the transition ofH (G ).

Shifts and depend on the wavelet basis, i.e., the
filters and in Fig. 1. can be written as

, where the filter is

(5)

Similarly, with

(6)

Mathematically, we can obtain

(7)

where

(8)

(9)

The self-correlation function is symmetric with respect
to -coordinate and maximizes at the origin (0, 0). The Mallat
wavelet [2] used in this paper is an anti-symmetrical
smooth quadratic spline, and thus will be smooth and
symmetrical. Convoluting with will smooth

. The silhouette of is similar to that of

and they maximize at the same position. Thus and can
be determined by the maxima of . We have

(10)

III. T HE THRESHOLDINGSCHEME

A. Algorithm Description

Suppose is the observation of the original image
corrupted byGaussianwhite noise . The de-

noising aims at estimating an imagefrom . Wavelet-based
thresholding schemes have proved to be effective [6]–[9]. Non-
significant wavelet coefficients below a preset threshold are dis-
carded as noise and the image is restored by the remaining co-
efficients. Most schemes apply thresholddirectly to wavelet
coefficients. If is relatively large, some edge structures may

be suppressed as noise. Contrarily, ifis relatively small, many
noisy pixels would be undesirably preserved. These thresholds
make no use of the correlation information distributed between
wavelet scales. In the spatial correlation, image edges would
be strengthened and noise would be diluted, which leads to an
effective discrimination between edges and noise.

In this paper, a new denoising method, thespatial-correlation
thresholding, is proposed. A threshold is applied to
to identify the significant structures. is a scale-dependent
hard threshold. The algorithm is summarized as follows.

1) Transform input into scales to get and
.

2) Calculate the spatial correlation and apply the
threshold to it

(11)

3) Recover the estimated imagefrom and
.

B. Determination of the Threshold

Referring to Fig. 1, suppose the input isGaussianwhite noise
and its DWT is . Due

to the commutativity of the convolution operation, filters and
can be written as

and (12)

where

(13)

is Gaussiancolored noise: , where

(14)

and denotes the norm of a vector .
The spatial correlation of is

(15)

Let . Normalizing as

(16)

we have . Then is normalized as .
Letting

and (17)

we have

(18)
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and areGaussiandistributed:

and , where

(19)

Due to the strong correlation between and
will be greater than

. For the dyadic Mallat wavelet, the ratios of to

at the first three scales are .

Denote by the threshold applied to . For the
de-noising purpose, it is expected that could suppress
almost all the values in , i.e., . Letting

, we have

Because is Gaussian distributed, will
lead to

In applications, the input is , where is
the original image. Due to the linearity of WT,

. At the fine scales, will be predominant in ex-
cept for some significant structures to be preserved. To ensure
an effective de-noising, should not be set too high. Since
the difference between edges and noise is fairly amplified in

, threshold would be more effective in discriminating
edges from noise compared with the traditional thresholding. In
our experiments, a setting of with

– will effectively remove noise while preserving edges.

IV. EXPERIMENTS

This section illustrates the performance of the proposed spa-
tial-correlation thresholding scheme applying on some bench-
mark images. The additive noise is assumed zero mean Gaussian

(a) (b)

Fig. 2. Test images. (a)House. (b) Cameraman.

(a) (b)

(c)

Fig. 3. (a) NoisyHouse (SNR = 14:23 dB). (b) By spatial-correlation
thresholding (SNR = 24:96 dB). (c) By traditional thresholding
(SNR = 23:87 dB).

white. Thehard thresholding scheme in [8] is used for compar-
ison, which is described as follows:

(20)

where threshold with .
Two test imagesHouseandCameramanare shown in Fig. 2.

Fig. 3(a) is the noisyHousewith dB. The de-
noised image by the proposed scheme, illustrated in Fig. 3(b),
achieves a SNR of 24.96 dB. The traditional hard thresholding
result is shown in Fig. 3(c) with dB. Our scheme
achieves a higher SNR. Noticeably, the image in Fig. 3(c) is
little over smoothed. For better illustration, a zoom-in of the
“window” in Houseis shown in Fig. 4, in which we can find that
thewindowedges are better preserved by the spatial-correlation
thresholding while they are obviously blurred by the traditional
method. Furthermore, it should be noticed that in Fig. 4(c) some
stingsgenerated by noise are identified in error by the traditional
thresholding.

For Cameraman, the results are similar to that ofHouse.
Noisy Cameramanof dB is shown in Fig. 5(a)
and the recovered images are shown in Fig. 5(b) and (c), with
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(a) (b)

(c)

Fig. 4. Zoom-in of the “window”. (a) Original. (b) By spatial-correlation
thresholding. (c) By traditional thresholding.

(a) (b)

(c)

Fig. 5. (a) NoisyCameraman(SNR = 9:49 dB). (b) By spatial-correlation
thresholding (SNR = 21:13 dB). (c) By traditional thresholding (SNR =

19:73 dB).

dB and dB, respectively. The
proposed scheme outperforms the traditional scheme in both
the SNR comparison and visual perception.

V. CONCLUSION

In this paper, a wavelet-threshold-based denoising scheme is
presented. Unlike many popular schemes that directly threshold
the wavelet coefficients, the proposed method multiplies adja-
cent wavelet scales to amplify instantaneous structures and then
applies thresholding to the multiplication. It is shown that the
proposed threshold can distinguish edges from noise more ef-
fectively and achieve better results in the SNR measurement and
the visual perception compared with the traditional thresholding
schemes.
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