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Adaptive Filtering for Stochastic Systems
With Generalized Disturbance Inputs

Yan Liang, Member, IEEE, Donghua Zhou, Senior Member, IEEE, Lei Zhang, Member, IEEE, and
Quan Pan, Member, IEEE

Abstract—This letter presents a new class of discrete-time linear
stochastic systems with the statistically-constrained disturbance
input, which can represent an arbitrary linear combination of
dynamic, random, and deterministic disturbance inputs to gen-
eralize the complicated modeling error encountered in actual
applications. An adaptive filtering scheme is proposed for such
systems by recursively constructing and adaptively minimizing
the upper-bounds of covariance matrices of the state predictions,
innovations, and estimates. The minimum-upper-bound filter is
then obtained via online scalar convex optimization. The exper-
iment on maneuvering target tracking shows that the proposed
filter can significantly reduce the peak estimation errors due to
maneuvers, compared with the well-known IMM method.

Index Terms—Adaptive Kalman filtering, discrete time systems,
stochastic systems.

I. INTRODUCTION

A S an optimal linear minimum mean square error esti-
mator, the Kalman filter (KF) is widely used in signal

processing. However, its performance will degrade greatly if
the modeling errors caused by parameter variations and external
disturbances cannot be well represented. It has motivated many
studies of adaptive filtering in the presence of disturbance
inputs (DI) to the system model of KF.

Many strategies were proposed to model DI. First, it is
modeled as zero-mean random noise with unknown covariance.
The filter design is based on the online covariance identification
via Bayesian or maximum likelihood estimation for stationary
noise process in linear time-invariant systems [1], [2]. Re-
cently, filter design was extended to time-variant covariance
[3] and jump Markov stochastic systems [4]. Second, the DI
is assumed to be deterministic. Using least-square estimation
and moving-window hypothesis testing, the filters can deal
with the DI which is piecewise-constant [5] or a sum of basis
functions with piecewise-constant weights [6]. Third, the DI
is arbitrary but the rank of its distribution matrix is less than
that of measurement matrix. The corresponding filter is an
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asymptotically-stable and DI-decoupling observer [7]. Fourth,
the DI is norm-bounded and the robust filters are designed
offline to minimize the gain of the transfer function from DI to
the estimation error [8]. Fifth, the DI is a randomly switching
parameter obeying a known Markov chain. The filters are
multiple model estimators [9]–[13], such as the interacting
multiple model (IMM) which is well-known in maneuvering
target tracking.

In general, the above filters are DI-specific due to their sig-
nificant differences in both DIs and solutions. The actual ap-
plications, however, encounter much more complicated DIs. It
is highly demanded to generalize the DIs and pursue the corre-
sponding filter. To the best of our knowledge, little research has
been reported on this topic.

This letter presents a generalized type of DI – a class of
statistically constrained DIs, which can represent an arbitrary
linear combination of dynamic DIs, random DIs, and determin-
istic DIs. The proposed filter can adaptively minimize the upper
bounds of covariance matrices of the state prediction, filtering
residual, and state estimate.

Throughout this letter, for any two square matrices, and
, and mean that is positive

semi-definite and positive definite, respectively. Symbol “ ”
means definition.

II. PROBLEM FORMULATION

Consider a new discrete-time linear stochastic system

(1)

where , , and represent the system state,
control input, and measurement, respectively. The matrices ,

, , and are known with proper dimension. The process
noise and measurement noise are zero-mean
white noises with known covariance and ,
respectively. Noises and and the initial state are indepen-
dent. The introduced new term satisfies

(2)

where and are zero matrices with dimension

and , respectively. Denote by ,

, , and
, where is a random noise which is uncorre-

lated with and but whose mean and covariance are unknown.
Let be an arbitrary linear time-variant function of ,

, and ; let be an arbitrary deterministic time-variant
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function; and let be an arbitrary linear weighted sum of ,
, and .

1) Remark 2.1: Repeatedly substituting by ( ),
it is clear that is a linear function of , , , and

. With the fact that , , , and are linearly
independent of and ( ), it is concluded that is
linearly independent of and , and thus, satisfies
(2). Therefore, can represent an arbitrary linear weighted sum
of , , and even the corresponding weight matrices are
unknown. Here , , and represent a class of DIs with
dynamic property, deterministic DIs, and random DIs, respec-
tively. That is to say, in (1) is a type of generalized DI (GDI)
to represent the complicated modeling error. Because the ex-
isting filters are DI-specific and cannot be extended to deal with

, the new filter is required.

III. UPPER BOUND FILTER DESIGN

1) Definition 3.1: A linear filter (3)–(5) for system (1)–(2) is
called an upper bound filter (UBF)

state prediction (3)

filtering residual (4)

state estimate (5)

if there exist a sequence of positive-definite matrices ,
, and that satisfy

(6)

(7)

(8)

where

state prediction error (9)

state estimate error (10)

and the filter gain is a function of and .
2) Remark 3.1: Here cannot be determined from the mea-

surements up to time and thus cannot be compensated in state
prediction. Thus, the expression of the state prediction and mea-
surement prediction (3)–(4) is the same as those of KF with the
nominal model [equivalently (1)–(2) with ]. Because (5)
is suitable for any linear estimate, the filter (3)–(5) is general.

3) Remark 3.2: Putting (1), (3), and (10) into (9), the state
prediction error is

(11)

From (2) and the fact that the zero-mean white noises and
are independent, it is easy to testify the linear independence be-
tween and and the linear independence between

and . Thus, putting (11) into (6) will lead to (12);
putting (1), (4), and (9) into (7) will lead to (13); and putting (5)
and (8) into (10) will lead to (14) as follows:

(12)

(13)

(14)

The GDI in (12) is the barrier to filter implementation. It
is not feasible to directly estimate with
independent parameters except for because the measure-
ment at time can only supply at most independent equations
for possible parameter estimation. This is based on the fact that
the rank of the measurement matrix is less than .
Therefore, it is infeasible to design the filter by estimating the
covariance of system (1)–(2). The idea of the UBF design is mo-
tivated by the fact that determining the upper bound, instead of
the covariance, requires fewer parameters to be estimated.

As shown in (12), appears in the covariance of the state
prediction in UBFs, as the system uncertainty. Thus, we have

Meanwhile, and have nothing to do with
given . Hence, the following recursive upper-bound
structure is considered:

(15)

(16)

(17)

where the fading factor is a parameter to be estimated.
It is needed to know whether there exists a UBF based on

(15)–(17). If a UBF exists, it is further needed to determine the
optimal filter parameters through minimizing the upper bounds
so that the minimum UBF (MUBF) can be obtained. The fol-
lowing theorem provides the solution.

4) Theorem 3.1: If the following three conditions are satis-
fied:

(18)

is of full column rank

(19)

(20)

then there exists a UBF with structure (15)–(17) and optimal
parameters and . For any satisfying

and any filter gain , there exist

(21)

(22)

(23)

and the optimal filter parameters are

(24)

(25)

where .
Proof: See the Appendix .
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5) Remark 3.3: In the traditional KF, is known a priori.
In the UBF proposed in this letter, only its upper bound is
needed. Constraint (19) requires that the current measurement
of system (1)–(2) should provide enough information for distur-
bance compensation. The third condition of Theorem 3.1 means
that the fading factor should be large enough to guarantee the
existence of (7).

Putting (13) and (16) into (24), the optimal fading factor is
the solution to the following scalar convex optimization:

(26)

which is subject to
1)
2)

.
In (26), is unknown and thus substituted by its unbiased es-
timate . Then linear matrix inequality (LMI)
[14] is used to solve (26). The MUBF is expected robust to such
approximation due to its robustness to parameter inaccuracy in
pursuing the best solution in the “worst” possible case.

The recursive MUBF algorithm is summarized as follows:
compute by (3) and by (4); then determine
via LMI optimization using (26), where is substituted by

; compute by (15), by (16),

by (25), by (5), and by (17).

IV. EXPERIMENT

The experiment of maneuvering target tracking in the bench-
mark target tracking scenario [10] was performed to evaluate
the proposed MUBF in comparison with the well-known IMM
[9]. The position, velocity, and acceleration of a maneuvering
target in a two-dimensional - plane are shown in Fig. 1. The
sampling period is 1 s. The observation is

(27)

where is zero-mean Gaussian measurement noise with co-
variance . Through the first-order lin-
earization of (27), as in the extended Kalman filter (EKF), the
parameters of measurement equation in (1) are

Here the design of IMM is the same as that in [10]. The
proposed MUBF treats the unknown maneuver changes in ve-
locity as GDIs to a nominal constant-velocity model. In MUBF
design, the state equation in (1) has ,

. and are 4 1 zero vec-

tors and . It should be stressed that the process
noise is set to be zero in the MUBF. That is to say, unlike in

Fig. 1. State to be estimated in the orthogonal �-� (Cartesian) coordinates. (a)
Position trajectory in �-� coordinates. (b) and (c) Velocity and acceleration tra-
jectories in � (solid line) and � (dashed line). (d) Acceleration magnitude.

Fig. 2. RMSE of position estimation and prediction.

IMM, the MUBF supposes that the target maneuver is unknown
a priori and treats it completely as GDI. In maneuvering target
tracking, the tracking loss comes mainly from the abrupt maneu-
vering actions, which lead to significant uncertainties in target
position. Therefore, the peak root-mean-square-error (RMSE)
in the position prediction and estimation are the most impor-
tant indexes for filter performance evaluation. Fig. 2 shows the
RMSE of the IMM and MUBF via 1000 Monte Carlo simula-
tions. Compared with the IMM, the MUBF reduces greatly the
peak RMSE in target position estimation and prediction due to
abrupt maneuvers.

The simulation PC is a HP nc4010. The programming lan-
guage is Matlab 6.5 with LMI solver “mincx.m”. The average
running time for each simulation is 6.06 ms in MUBF and 6.70
ms in IMM. The 10% computation burden is saved.

V. CONCLUSION

This letter proposed a new discrete-time linear stochastic
system model with the statistically-constrained DI, to which
the existing DI-specific filters cannot be applied. Through
constructing and minimizing the upper bounds of covariance
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matrices of state prediction, filtering residual, and state esti-
mate, the MUBF was presented with adaptive filter parameters.
The simulation of maneuvering target tracking showed that
MUBF can significantly decrease the peak error in position,
compared with the well-known IMM method.

APPENDIX

PROOF OF THEOREM 3.1

Existence of UBF: It is needed to testify the existence of
(6) and (8) because the third condition (7) of Theorem 3.1 is
loose. As the first condition of Theorem 3.1, is
guaranteed. Using mathematical induction, we assume

and testify (6) and (8). Substituting (13) and (16) into (20),
there is

(A1)

Left multiply and right multiply in both sides of
(A1), and there is

(A2)

Because the rank of equals to that of , and
the rank is according to the second condition of Theorem 3.1,
it is concluded that is of full rank. Left and right
multiply in both sides of (A.2), and we obtain (6). Substituting
(6) into (17) leads to

(A3)

and (8) is obtained from (A3) and (14).
Optimal Filter Parameters: According to Definition 3.1,

the set will not be empty if a UBF exists.
For any , if , then because

. Thus

is not empty, and hence, there exists
. It is only needed to testify that

and guarantee (21)–(23). From the definition of
, exists to any . Thus

(A4)

(A5)

(A6)

In deriving (A4) and (A6), the expressions of in (15) and
in (17) are used, respectively. To obtain (A5), both

expressions of in (15) and in (16) are used.

From (16) and , exists. Rep-
resent the symmetric and positive definite matrix

by , where is of full rank. Letting

, there is

(A7)

where

(A8)

With the fact that
, the inequality (A7) is

obtained. Thus, reaches its minimum

(optimal) value if and only if (A8) is satisfied. As shown above,
a UBF exists and . Thus, (6)–(8) are obtained and
(21)–(23) are further obtained based on (6)–(8) and (A4)–(A7).
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