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robust face recognition. First, multi-partition max pooling is used to enhance the SLF’s
invariance to image registration error. Then, a kernel based representation model is proposed to
fully exploit the discrimination information embedded in the SLF, and robust regression is
adopted to effectively handle the occlusion in face images. Extensive experiments are
conducted on benchmark face databases, including Extended Yale B, AR, Multi-PIE, FERET,
FRGC and LFW, which have various variations of lighting, expression, pose and occlusions,

demonstrating the promising performance of the proposed method.
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1. Introduction

Automatic face recognition (FR) is one of the most active and visible research topics in computer vision,
machine learning and biometrics [11] due to its wide range of applications such as access control, video
surveillance, and the like. After many years’ investigation, FR is still very challenging due to the low quality
of face images [1], and the rich variations of facial images from the same or different subjects, e.g., lighting,
expression, occlusion, misalignment, etc [11]. In order for different communities to benchmark and verify
their FR methods, many large scale face databases, such as FERET [22-23], FRGC [35], LFW [24][32] and
PubFig [25], have been established and used as evaluation platforms.

Although facial images have a high dimensionality, their discriminative characteristics usually lie or can
be extracted in a lower dimensional subspaces or sub-manifolds. Therefore, subspace and manifold learning
methods have been dominantly used in appearance based FR [2-9][42]. Classical methods such as the
Eigenface and Fisherface [2-3][42] mainly consider the global scatter of training samples and may fail to
reveal the essential data structures nonlinearly embedded in the high dimensional space. The manifold
learning methods were proposed to overcome this limitation [5-6], and the representative manifold learning
methods include locality preserving projection (LPP) [7], local discriminant embedding (LDE) [8],
unsupervised discriminant projection (UDP) [9], etc. In addition, kernel based subspace learning was also
proposed for FR. For instance, Yang et al. [60] presented a Kernel Fisher discriminant framework for feature
extraction and recognition; Zafeiriou et al. [4] proposed a robust approach to discriminant kernel-based
feature extraction for face recognition and verification.

The subspace or manifold learning methods only consider the holistic feature of face images, which are
usually very sensitive to the variations of misalignment, pose, and occlusion. Recent researches have shown
that local feature based methods [16-18][43-48][26] are very promising in object recognition, texture
classification and uncontrolled FR. Gabor filters, which could effectively extract local directional features on
multiple scales, have been successfully used in FR [17-18]. Compared to the holistic feature based
approaches such as Eigenface [2] and FisherFace [3], Gabor filtering is less sensitive to image variations
(e.g., illumination, expression). Another type of local feature widely used in FR is statistical local feature
(SLF), such as histogram of local binary pattern (LBP) [43]. The main idea is that a face image can be seen

as a composition of micro-patterns [26]. By partitioning the face image into several blocks, the statistical



feature (e.g., histogram of LBP) of these blocks is extracted, and finally the description of the image is
formed by concatenating the extracted features in all blocks. Zhang et al. [45-46] proposed to use Gabor
magnitude or phase map instead of the intensity map to generate LBP features. New coding technologies on
Gabor features have also been proposed. In [47], Zhang et al. extracted and encoded the global and local
variations of the real and imagery parts in multi-scale Gabor representation. Xie et al. [48] proposed local
Gabor XOR patterns (LGXP), which utilizes XOR (exclusive or) to encode the local variation of Gabor
phase, to fuse Gabor magnitude and phase information. These local pattern based statistical features have
shown very promising results in large scale face databases, such as FERET [22-23] and FRGC [35].

Apart from the employed features, the employed classifier is also important to the performance of FR.
Nearest Neighbor (NN), SVM and Hidden Markov Models are the widely used classifiers in face recognition
[43]]45-48][59][27]. Moreover, in order to better exploit the prior knowledge that face images from the
same subject construct a subspace, nearest subspace (NS) classifiers [19][36-38][51][58] were also
developed, which are usually superior to the popular NN classifier. Recently an interesting classifier, namely
sparse representation based classification (SRC), was proposed by Wright et al. [10] for robust FR. In
Wright et al.’s work, a testing image is sparsely coded on the whole training set by /;-norm minimization,
and then classified to the class that yields the least coding residual. By assuming that the outlier pixels in the
face image are sparse and by using an identity matrix to code the outliers, SRC shows good robustness to
face occlusion and corruption. SRC has been attracting much interest and has been widely studied in the
computer vision research community [28-31]. Very recently, Zhang et al. [33] indicated that the /;-norm
sparsity may not be the key of the success of SRC, and they proposed the collaborative representation based
classification (CRC), which uses /,-norm to regularize the coding coefficients instead of the time consuming
[/1-norm, for FR and achieved similar result to SRC but with much less time complexity.

Although the statistical local features (SLF) and SRC/CRC have shown powerful abilities in the field of
feature extraction and signal classification, few works have been proposed to integrate them together for
better performance. Many works either use NN/NS/SVM as the classifier with SLF as inputs (e.g., NN in
[43][45-48]) or use SRC/CRC to do classification with holistic features [10][31][33]. Although the methods
[12-13] aim to combine LBP and sparse representation together, no effective representation model was

proposed to deal with variations such as occlusion and misalignment, etc.



In this paper, we proposed a novel SLF based robust kernel representation (RKR) model for FR. First, we
propose a multi-partition max pooling technology to enhance the invariance of local features to image
registration error (e.g., misalignment). Second, we propose a robust kernel representation model, which not
only uses kernel representation to fully exploit the discrimination information embedded in the local features,
but also adopts a robust regression function as the measure to effectively handle the occlusion in facial
images. Compared to the previous classification methods, e.g., NN with SLF features and SRC with holistic
features, the proposed SLF based RKR model shows much stronger robustness to various face image
variations (e.g., illumination, expression, occlusion and misalignment), as demonstrated in our extensive
experiments conducted on benchmark face databases.

The rest of the paper is organized as follows. Section 2 briefly reviews some related work. Section 3
presents the proposed SLF based robust kernel representation algorithm. Section 4 presents the experimental

results. Section 5 summarizes the paper.

2. Related Work

2.1. Statistical Local Feature

The extraction of statistical local features (SLF) has three steps: feature map generation, pattern map coding,
and histogram computing. The commonly used feature maps include original intensity map [43] and Gabor
feature maps (e.g., magnitude [45], phase [46]). LBP [43][45-46], local XOR (exclusive or) operator [48] or
others [47][49] could be adopted for pattern map coding. Finally the encoded pattern map is partitioned into
non-overlapping blocks, in which the local histogram feature is computed. The descriptor of the input face

image is the concatenation of all the histograms computed in each block.

2.2. Sparse Representation or Collaborative Representation based Classifier

Different from Nearest Neighbor (NN) and Nearest Subspace (NS) classifiers [19][36-38][51][58], which
forbids representing the query sample across classes, the recently developed /[ -regularized sparse
representation [10] or l-regularized collaborative representation [33] represents the query image by the

training samples from all classes, which could effectively overcome the small-sample-size or overfitting

problem of NN and NS. Let X, =[s,,,s;,,...,s,, | "™ denote the set of training samples of the i object



class, where s;;, j=1,2,...,n; is an m-dimensional vector stretched by the jth sample of the i™ class?. Let
yeR" be a query sample to be classified. The representation model of sparse representation based

classifier (SRC) or collaborative representation based classifier (CRC) could be written as

a= arg rnina {"yo - Xa”z + ﬂ“”a"l,, } v

where X=[X|, X;, ..., X.] and c is the number of classes; | ||] is the /,-norm, and p=1 for SRC in [10], while

p=2 for CRC in [33].

The classification of y is done by

identity( y) = arg miin{”y -X6(a)

) @

where &,(-):R" —R" s the characteristic function that selects from @ the coefficients associated with

the i™ class [10]. It is shown in [33] that CRC has very competing accuracy with SRC in FR without
occlusion but with much faster speed. In the case of occlusion or corruption, Robust-SRC [10] classifies the

occluded face image y by

A

identity(y) =arg mjn{"y -X,0(a)- X,

e e

) @

where

z +/1||[a;a€]

N 4)

[&;¢,]|=argmin,, {"y -Xa-X,a,

e

and X, is an occlusion dictionary to code the outliers. X, is simply set as the identity matrix 7 in [10].

2.3. Robust Sparse Coding

The representation model of Robust-SRC [10] is equivalent to
min, |y - Xe|, st |af <o 6))

which is actually a Maximum Likelihood Estimation (MLE) of @ when the representation residual y-Xa
follows Laplacian distribution. However, for the real occlusion and disguise in practical facial images, the
representation residual rarely follows Laplacian model, making robust-SRC less effective to handle
occlusions in FR.

Yang et al. [31] proposed a robust sparse coding model to achieve robust face recognition with outliers.

2 More generally, 8ij»j=1,2,...,n;, could be the feature vector extracted from the jth sample of the " class.



Instead of using /;-norm to regularize the data fidelity term in the coding model, Yang et al. formulated the

signal representation as an MLE-like estimator:

min,, Zi:lpa (y,. - r,.a) s.t. ||a||1 <o (6)
where r; is the i row vector of X and y; is the i element of y. This robust sparse coding could be efficiently
solved by an iterative reweighted sparse coding algorithm. In each iteration, the original robust sparse

coding model becomes

min,, ”Wl/2 (y- Xa)”j stlaf, <o (7

where W is a diagonal matrix with W, :a)(el.):‘/(lwtexp(yef— y&)), e~y-r.a, 1 and & are two

i,i

automatically updated scalar parameters in the weight function [31]. After the representation coefficient &
is obtained, the weighted representation residual is used for classification, i.., identity(y)=argmin,||W"*(y-

Xio(a))ll.

3. Statistical Local Feature based Robust Kernel Representation

3.1. Multi-partition max pooling (MPMP)

Facial image misalignment caused by factors such as scaling, translation and rotation can make a lot of
troubles in less-controlled face recognition system. Even using some advanced face detector (e.g., the Viola
and Jones’ face detector [53]) to crop and align the query face image, there are still registration errors of
several pixels, which will deteriorate much the FR performance [54]. Although there are some pre-
processing methods [55][52] to align the query face image to the well cropped training images, it is more
interesting that we could improve the robustness of the feature extraction step to face misalignment. In this
section, we propose a simple but very effective pooling technique to this end.

Pooling techniques are widely used in object and image classification to extract invariant features. In
general, there are two categories of pooling methods, sum pooling [50][57] and max pooling [39][56-57].
Denote by f; the i feature vector in a pool, and by {f} ; the J™ element of the feature vector £. In the case of
sum pooling, the output feature vector f; is computed by {f;}={fi}; +if2}; +...+{fs},, while in the case of
max pooling the output feature f, is {f,.}; =max{|{fi},| , [{f2}/ ..., [{fa};l}. A simple 1-D example with

fi€[0,1] and /,€[0,1] is shown in Fig. 1. It can be seen that the domain of (f}, 2) with f,=1 is larger than the



domain of (f}, ;) with f;=1, which indicates that max pooling is more robust to the changes of f; or f;. The
experiments in [39][56-57] also show that max pooling is more robust than sum pooling to image spatial
variations. In addition, spatial discrimination information can be introduced by using spatial pyramid, which

divides the images into multi-scale regions (e.g., 1x1, 2x2, and 4x4 for a total 21 regions in [39][56].)

Figure 1: A simple 1-D example for illustrating sum pooling and max pooling.

In the paper we propose a multi-partition max pooling (MPMP) scheme for the statistical feature of local
pattern. The main differences between the proposed MPMP and previous max pooling methods lie in the
image partition and feature generation. Different from the partition of spatial pyramid, such as 1x1, 2x2, and
4x4, we adopt a more flexible partition. As shown in the first row of Fig. 2, for example, the partition of the
pattern map (e.g., LBP) can be made as 2x2, 3x3 and 4x4, respectively, with 29 blocks of three different
sizes in total. This kind of partition could flexibly set the number of blocks in each scale and is expected to
capture more spatial discrimination information than the spatial pyramid.

In the proposed MPMP based statistical local feature (SLF) extraction, we adopt S+1 level block partition,
where s=0, 1, ..., S. That is to say, in the s™ level, the whole image is divided into PxQ, blocks, each of
which is further partitioned into p,xg, sub-blocks. The pooling technology is operated on a series of local
features generated in each partitioned sub-block. Different from the feature generation (e.g., the coding
coefficients of local patches’ descriptors, such as SIFT or raw intensity) in previous works of pooling
[39][50][56], here we extract a sequence of statistical local features (SLF) which are simpler and widely
used in face recognition. As shown in the second row of Fig. 2, in each sub-block we first create a sequence
of sliding boxes (e.g., the red box shown in Fig. 2), and then compute the histogram of each box’s local

feature (e.g., LBP). Here the size of the box is smaller than the block, and usually the height and width of the



box are set as ratio, (ratio, < 1) times of those of the sub-block in the s™ scale partition. In this paper, MPMP
is defined as the one with the following setting: p,=2 and ¢g,=2 for partition scale s=0 and 1; p,~=1 and ¢,=1
for s>1; ratio~=1 for s=0; and ratio, = 0.5 for other values of s.

Take the feature generation in one sub-block as an example. Denote by f; the feature vector (e.g., the
histogram feature) extracted from the i sliding box, and suppose that there are n feature vectors, fi, £, ..., fo,
which are extracted from all possible sliding boxes in this sub-block, and then the final output feature vector,

denoted by f, after max pooling is

Uiy =max{ il a5 - s [V ®)

I
|
1
Slide the red box in the blue 1
sub-block and  extract |
feature f; from the i-th box max pooling 1
1
I
I

> {fi.fo ...y ———» f

Figure 2: Illustration of the proposed multi-partition max pooling.

Let’s suppose that the image is partitioned into B blocks in total. In each block, after extracting the
MPMP based SLF of every sub-block, we concatenate the SLFs of all sub-blocks as the output feature vector.
Denote by y; the output feature vector in the i block. Then the concatenation of all feature vectors extracted
from all blocks, i.e., y = [y1, y», ..., ¥5] could be taken as the descriptor of the image. The proposed MPMP
based SLF could not only introduce more spatial information to LSF due to its use of multi-partition, but

also enhance the robustness of LSF to image misalignment due to its use of max pooling.



3.2. Robust kernel representation

How to measure the similarity of two features is an important issue in pattern classification. The commonly
used classifiers, such as the linear SVM, NN and NS classifiers [19][36-38][51][58], as well as the SRC and
CRC classifiers [10][33], often adopt the L,-norm to measure the distance (i.e., Euclidean distance). Apart
from l-norm based measurement, kernel methods have become increasingly popular for pattern
classification, especially face recognition [4][60]. The kernel trick could map the non-linearly separable
features into a high dimensional feature space, in which features of different classes can be more easily
separated by linear classifiers. From the view of kernel representation, /,-norm measurement, which could be
regarded as a linear kernel, is effective to solve the linearly separable problem. For SLF, more specifically
the local histogram feature, it has been shown that histogram intersection and Chi-square distances are more
powerful than /-norm distance in classification [26][43-48]. Therefore, more discriminant information
embedded in SLF could be exploited if the histogram intersection kernel [34] or Chi-square kernel could be
adopted in the /,-norm distance based classifiers such as SRC and CRC. However, directly applying these
kernels to SLF based representation may not be robust to facial occlusions. In this section, we propose a new
model, namely robust kernel representation, to improve the robustness of SLF based face representation and

classification.
Suppose that there exists a kernel function K(vj,vk)=<¢(vj),¢(vk )>, where () is the inner product
operator, and ¢:R? — R" is a feature mapping function, which maps the feature vectors v and v to a

higher dimensional feature space. For a matrix Z = [zl,zz,---,zq] e R, we define K77 as a gxq matrix

with {Kzz}f’k:K(zj’zk) and kz, as a g¢x1 vector with {kZV}jzic(zj,v). Denote by

$(Z)= [¢(z1 )>: -,¢(zq )J , we could have

#(v) )]

After the MPMP based SLF extraction on the query image, B blocks of multiple partitions are obtained,
and B sub-feature vectors, denoted by y, y», ..., ys, are extracted. Similarly, for each of the training samples,
we can extract the sub-feature vectors, and let’s denote by A; the matrix formed by all the sub-feature vectors
of the i™ block from all training samples. Take the i block as an example, the kernel representation of y,

over the matrix 4; could be formulated as



min|¢(y,)-4(4)a], st |, <o (10)

where @; is the coding coefficient vector in the high dimensional feature space mapped by the kernel
function ¢. If we enforce that @; = o; for different blocks i#j, i.e., we assume that the different blocks y;
extracted from the same test sample have the same representation over their associated matrix 4;, then kernel

representation of the query image by combining all the block features could be written as

min|[¢(1,):9(3,):+50(3s)]-[#(4):6(4)s--30(4, )] st |a], <o (11

where « is the coding coefficient vector of the query sample. The above model seeks the regularized
representation for a mapped feature under the mapped basis in the high dimensional space.

In the kernel representation model Eq. (11), the L-norm is used to measure the representation residual.
Such a kernel representation is effective when there are no outliers in the query image. However, in FR the
facial occlusion and facial disguises (e.g., sunglasses and scarf) can often appear in the query face image. In
such case, the block in which outliers appear will have a big representation residual, reducing the role of
clean blocks in the final classification. In short, the representation model in Eq. (11) is very sensitive to
outliers [31].

In order to make the kernel representation robust to block occlusion and disguises, we propose to adopt

some robust fidelity term in the modeling. Denote by e = [e), ey, ..., ep] the representation residual vector,

where e; is the kernel representation residual of the i block, i.e., e = \/||¢( yi)—¢(A,,)a||§ . We assume that

e; is independent from e; if i#j since they represent the representation residuals of different blocks.

The proposed robust kernel representation can then be formulated as

min p(e) s.t. ||a||l) <o (12)

where p(e) = Zil p(e,.) and the cost function p(-) is expected to be insensitive to the outliers in the query
sample. Usually, we require that p(0) is the global minimal of p(x) and o(x,)> o(x,) if |xi[>|x,|. Without loss
of generality, we let p(0)=0.

Obviously, if we define the cost as p(el.): (el. )2 (ie., p(e)= ||e||z ), the robust kernel representation in

Eq. (12) will be reduced to the normal kernel representation in Eq. (11). However, as shown in Fig. 3, this

simple setting of p(x) will make the representation very sensitive to outliers because the cost (i.e., p(e;)) of

10



those representation residuals corresponding to outliers are often very big. We can also set p(ei) = |e,.| (i.e.,

p(e)=|e||,)- As can be seen in Fig. 3, p(e)=|e| is much less sensitive to outliers than p(e,)=(e, )2
since the absolute value of an outlier’s representation residual is less significant than its square. However,
with p(el. ) = |ei| Eq. (12) is difficult to solve because |e;| is not differentiable, while |e;| is not bounded with
e;, making o(e;) not robust enough to large outliers. Intuitively, if we can find a function p(e;) such as the

blue curve in Fig. 3, which is differentiable and bounded when |e;| is big, then a good instantiation of the

robust kernel representation in Eq. (12) can be implemented.

4 \ \
== Desired cost function
35Fs-——-—-—-—--| T T T
——-p(e)=le|
3-8 pe)=(e)? [ i

Cost function value

Figure 3: Three typical settings of the cost function p(e;).

3.3. Solution of the robust kernel representation

After doing Taylor expansion of p(e) in the neighborhood of e, an approximation of p(e) could be written as

ple)=5 e+, >

where b, is a scalar constant determined by e, W is a diagonal matrix and its i"™ diagonal element is

th

/4

g =a)(eo,,-)= pl(eO,i ) /eo,,- , p’is the derivative of p, and ey, is the i~ element of ey,. According to the

property (i.e., p(x1)> p(xy) if |x;[>|x,|) of p, we could see that W;; is a positive scalar. Clearly, a(-) can be
viewed as a weight function applied to e. A good weight function should be robust to outliers, i.e., @(e;) has
big value when |e] is small (e.g., blocks without outliers), and small value when |e; is big (e.g., blocks with

outliers). The widely used logistic function can be chosen as the weight function:

11



a)(el.)zl/(1+exp(yei2—y§)) (14)
The above weight function could effectively assign the outliers with big representation residual low weights,
and assign inliers with small representation residual high weights (here the weight value is normalized to the
range of [0, 1]). It should be noted that the weight values of each testing sample are estimated online, and
there is not a training phase of them. The corresponding cost function p to the weight function in Eq. (14)
will be differentiable and bounded, as the blue curve shown in Fig. 3.
With the above development, the original robust kernel representation in Eq. (12) could be approximated
by
min|[ e[, s Jaf, <o (15)

After some derivation, Eq. (15) could be rewritten as

minY! 0,[¢(5)-4(4)ef, st |a], <o (1o

where @, is computed by Eq. (14) with e, = \/||¢(yl.)— ¢(A[)a0||§ , and a is an known coding coefficient

vector. Here 1 and 9 are scalar parameters, which could be set as a constant value or automatically updated.
10 1s usually set as 8 to make the weight close to 1 when e~=0, Jis set as the L8] largest elements of the set

{&*|i=1,..., B}, where | 7B outputs the largest integer smaller than zB, and 7 is discussed in the section 4.1.

With the defined kernel matrix K7 and kernel vector kz, in Eq. (9), Eq. (16) could be re-written as

B

d=argminZila)ik(yl.,yi)+aTZila),.KAl_Aia—2aTz wk,, st o <o (17)

i=l1

From Eq. (17) we can see that the weighted-sum kernel terms, including Zil a)l.k( Vi yl.) , ZB oK, , .

=1 D
and Zil wk,, , could exploit the discrimination information in the mapped higher dimensional feature
space; at the same time, the weight @; can effectively remove the outliers’ effect on computing the coding
vector. The coding vector & is regularized by /,-norm. In this paper, we discuss two important cases: p=1 for
sparse regularization and p=2 for non-sparse regularization. When p=1, /;-norm minimization methods such
as the efficient feature-sign search algorithm [40] could be used to solve the sparse coding problem of Eq.
(17).  When p=2, a closed-form solution of Eq. (17) «could be derived as
a= (Zil oK, + /H)_l Zil wk,, , where 4is the Lagrange multiplier.

12



Because the approximation of ﬁ(e) (i.e., Eq. (13)) is the Taylor expansion of p(e) in the neighborhood
of ey, the solving of robust kernel representation (Eq. (12)) is an iterative and alternative process: the weight
value (i.e., @ in Eq. (17)) is estimated via Eq. (14) with known coding coefficient, and then the coding

coefficient is computed via Eq. (17) with known weight value. After getting the solution @ after some

iterations, the classification of the query sample is done via

o . 18
identity(y) = mjm {Zil D, ; } (18)

2
where ¢, = H¢( y)- ¢(Ai,j )d il is the i"-block kernel representation residual associated with the /" class,

i

A~=[A,~,1:A,~,za"',Ai,c] with A;; being the sub-matrix of A; associated with the ;™ class, and

0?=[0?1;0?2;---;0?c] with dj being the representation coefficient vector associated with the /™ class. From

Eq. (18) it can be seen that the classification criteria is based on a weight sum of kernel representation
residuals, which utilizes both the discrimination power of kernel representation in high dimensional feature

space and the insensitiveness of robust representation to outliers. In addition, the kernel representation

residual, &, could be rewritten as ¢, =k(y,,y,)+a, K, , & -2ak, , .
. 4, % K4,

3.4 The algorithm
The whole algorithm of the proposed statistical local feature based robust kernel representation (SLF-RKR)
is summarized in Table 1. It includes three steps. The first step extracts the SLF using the proposed MPMP.
The second step performs robust kernel representation, and the last step performs classification. Given the
feature type (e.g., histogram of LBP) and the partition parameters of MPMP (e.g., S, ratio,, P; and (), the
algorithm of SLF-RKR could be run. The second step is an iterative process. By experiments, we found that
this process converges fast. For instance, when there is no occlusion, only 2 or 3 iterations are needed, and
when there is occlusion in the query image, about 10 iterations can lead to a good solution. We denote by
SLF-RKR /; and SLF-RKR [, the implementations of SLF-RKR model with /;-norm regularization and /,-
norm regularization, respectively.

The time complexity of SLF-RKR mainly lies in MPMP based SLF extraction and solving the robust
kernel representation. According to the characteristics of histogram feature, we can adopt the integral image

method [53] to speed up MPMP based SLF extraction. For each pixel in a sub-block, only 2 additions are

13



needed in computing integral image and 3 additions are needed in computing histogram bin value. So the
computing of each histogram bin for this sub-block needs 3Aw(1-ratio)* additions and 1 max operation,
where /4 and w are the height and width of the sub-block, and ratio is the parameter of the sliding box. For

the robust kernel representation, in the case of FR without occlusion, the weight w; in each block could be
. .. . ) ) N B By
fixed as 1. Since the matrix inverse in the closed-form solution (i.e., & = (Zi:l oK, , +1 ) Z,«=l wk,, )

of SLF-RKR_/, could be computed offline, SLF-RKR_/, with w=1 has time complexity of O(n®), where n is
the number of training samples. The solution to SLF-RKR /; with w~=1 can be obtained by standard sparse
coding. The time complexity of /;-norm sparse coding with an mxn dictionary is about O(m°n'?) [62], while
the /;-norm minimizers such as the efficient feature-sign search algorithm [40] used in this paper can have a
much faster speed in practice. Therefore for FR without occlusion, SLF-RKR /, with w,=1 is much faster
than SRC [10], while the time complexity of SLF-RKR /; with w~=1 is similar to that of SRC [10].

For FR with occlusion or disguise, the weight w; in each block needs to be updated online. In this case,
the time complexity of SLF-RKR [/, will increase to about 7" times of that of SLF-RKR [/, with w~=1, where
T is the total number of iterations to update ;. For SLF-RKR /; with updated weight, the step a) (i.e.,
weighted kernel representation with p=1) is an iterative process itself, and the steps b), ¢) and d) could be
operated in each iteration of step a). Overall, the time complexity of SLF-RKR /; with updated weight is
almost the same as that of SLF-RKR /; with w~=1, since the former has almost the same solving procedure
as the latter with only an additional step to update weight in each iteration. In FR with occlusion/disguise,
SRC needs an additional occlusion matrix to code the occlusion, and thus its time complexity is very high.

The running speed of SLF-RKR is very fast. Under the programming environment of Matlab version
R2011a in a desktop of 1.86HHz CPU with 2.99G RAM, the running time of SRC (executed by the fast /;-
norm minimizer such as feature-sign search algorithm [40] or Dual ALM [61]) and SLF-RKR is compared
in Table 2. In the experiment of AR database with 7 training samples per class (refer to Section 4.2 for the
detailed experimental setting), the average running time of SLF-RKR /, and SLF-RKR /; is 0.0418 second
and 0.1806 second, respectively; while the average running time of SRC is 0.1239 second. In the experiment
of Extended Yale B with 50% occlusion (refer to Section 4.4 for the detailed experimental setting), the
average running time of SLF-RKR /, and SLF-RKR /; is 0.8073 second and 0.8439 second, respectively,

which are much less than that of SRC (1.8800 seconds).
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Table 1: Algorithm of statistical local feature based robust kernel representation (SLF-RKR).

Statistical Local Feature based Robust Kernel Representation (SLF-RKR)

3.

Extract statistical local features via multi-partition max pooling.

Robust kernel representation:
Initialize the weight in each block as 1: @, =1.

While not converge, Do

a). Weighted kernel representation:

B

a-= argnEnZil a)l.k(yl.,yl.)+ozTZ:i1 ok, a-2a") ok, st "a"/,, <o
b). Compute the reconstruction residual in each block:
e =|¢(v)-o(4)al =k(y.»)+d&'K, a-2d"k,,
¢). Estimate the weight value as
w, = 1/(1 + exp(,uef —yé‘)) ,
where 1=8/5, 0 =yi(e).), LtB] outputs the largest integer smaller than B, and wi(e); is the &™
largest element of the set {¢; , /=1,...,B} [31].

d). Checking convergence condition:

2 2
Zi(w[([) _wi([il)) /Zi(a)i(lil)) <7,
where y is a small positive scalar and a),.(') is the weight value of block 7 in iteration ¢.

End While

Do classification:

identity = mjm{zlil a)l.k(y,.,yi)+deila)iKA’v/Awdj - ZdjTZila)ikA,‘]y’ }

where A,; is the sub-matrix of A; associated with the J™ class and a; is the representation coefficient vector
associated with the j™ class.

Table 2: Average running time (second) of SLF-RKR and SRC.

Method AR database Extended Yale B with 50% occlusion
SLF+SRC 0.1239 1.8800
SLF-RKR / 0.1806 0.8439
SLF-RKR /, 0.0418 0.8073

4. Experimental Results

In this section, we present experimental results on benchmark face databases to illustrate the effectiveness of
our method. In section 4.1, we discuss the parameter setting. In section 4.2 we present the experimental
results on Extended Yale B [58][20] and AR [21] databases captured in controlled environments. In section

4.3 we demonstrate the robustness of SLF-RKR to pose variation and misalignment. Then in section 4.4, we
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test FR against block occlusion and real disguise. Finally, the comprehensive evaluations on large-scale face
databases, including FERET [22-23], FRGC [35] and LFW [32], are presented in section 4.5.

4.1 Parameter setting

The proposed SLF-RKR consists of two main procedures: feature extraction and robust kernel representation.
If no specific instruction, the parameters of SLF-RKR are set as what shown in Table 3. In feature extraction,
the histogram of LBP encoded on the raw image is used as the SLF, and the number of histogram bins for
each sub-block is set to 16. In the proposed MPMP based SLF extraction, we set S=0, Py=5, and Qy=4 for
FR with well aligned images. For FR with registration error (e.g., misalignment and pose), we set =3, and

(Ps, 09)={(5,4), (3,2), (4,2), (2,1)} for s={0, 1, 2, 3}. In the procedure of robust kernel representation, the

histogram intersection kernel [34] (i.e., K(Vj,vk ) = Z/min{v}.’l,

Vk,l} with v; and v, the o entry of v; and
Vv, respectively) is used as the kernel function. In the online updating of weights, we set 7=0.6 for FR with
occlusion and 7=0.8 for FR without occlusion. The Lagrange multiplier A of SLF-RKR /; (refer to Eq. (17))
is set as 0.005, while the Lagrange multiplier A of SLF-RKR_/, is usually set as a larger value (e.g., 0.1) for

l,-norm regularization is weaker than /;-norm regularization.

Table 3: Parameter setting of SLF-RKR.

Procedure parameter setting
MPMP POZS, Q0:4 when S:(),
Feature (Po,Q0)=(5,4), (P1,01)=(3,2),
extraction (P2,0,)=(4,2), (P3,03)=(2,1) when S=3.
histogram bin number 16
kernel function histogram intersection kernel
Robust kernel . . .
. weight update 7=0.6 for occlusion; 7=0.8 for non-occlusion
representation .
Lagrange multiplier A=0.005 (SLF-RKR /;); ~=0.1(SLF-RKR 1,)

4.2 Face recognition on Extended Yale B and AR

We first evaluate the performance of the proposed algorithm on two representative face image databases
captured in controlled environment: Extended Yale B [58][20] and AR [21]. The original SRC with holistic
Eigenface feature [10] is used as the baseline method, and we then apply the proposed MPMP based SLF
feature to SRC [10], CRC [33], Linear Regression for Classification (LRC) [38], histogram intersection
kernel based Support Vector Machine (HISVM) and Nearest Neighbor (NN) with histogram intersection as

its similarity measurement, and compare them with SLF-RKR.
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1) Extended Yale B Database: The Extended Yale B database consists of 2,432 frontal-face images of 38
individuals (each subject has 64 samples), captured under various laboratory-controlled lighting conditions
[58][20]. For each subject, N, samples are randomly chosen as training samples and 32 of the remaining
images are randomly chosen as the testing data. Here the images are normalized to 96x84 and the
experiment for each N, runs 10 times.

The FR results, including mean recognition accuracy and standard variance, of all the competing methods
are listed in Table 4. The proposed SLF-RKR achieves the best performance, with more than 2%
improvement over all the others when N, is small (e.g., 5, and 10). When 20 training samples are selected,
an accuracy of 99.5% is achieved by SLF-RKR. It could also be seen that those methods based on
collaborative representation (e.g., SLF-RKR, SLF+CRC, SLF+SRC and original SRC) are more powerful

than other kinds of linear representation methods (e.g., SLF+LRC, SLF+NN).

Table 4: Face recognition results (%) on Extended Yale B database.

Ny 5 10 20

Original SRC [10] 80.0+0.82 91.4+0.70 97.3+0.49
SLF+NN 59.7+1.70 76.8+£1.30 89.7+0.87
SLF+LRC 59.0£1.70 78.9+1.80 93.3+0.83
SLF+HISVM 72.0£2.20 91.6+0.18 99.0+0.32
SLF+CRC 83.0+£1.90 95.5+0.88 99.2+0.32
SLF+SRC 82.8+1.80 95.5£0.91 99.3+0.30
SLF-RKR_/ 85.6+£1.80 97.4+0.76 99.5+0.18
SLF-RKR_/, 85.8+1.80 97.5+0.73 99.5+0.18

2) AR database: The AR database consists of over 4,000 frontal images from 126 individuals [21]. For
each individual, 26 pictures were taken in two separate sessions. As in [10], in the experiment we chose a
subset of the dataset consisting of 50 male subjects and 50 female subjects. For each subject, the seven
images with illumination change and expressions from Session 1 were used for training, and the other seven
images with only illumination change and expression from Session 2 were used for testing. The size of
original face image is 83x60. The recognition rates of all the competing methods versus different number
training samples are listed in Table 5. In each test we selected the first N, training samples as the training
data set. We could see that SLF-RKR achieves the highest recognition rates, followed by SLF+SRC and
SLF+CRC. In all cases with less than 6 training samples, at least 2% improvement of SLF-RKR over other

methods could be achieved. In this experiment, original SRC gets the worst results for that the holistic
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features (e.g., Eigenfaces) has much less discrimination information than the statistical local feature (e.g.,

histogram of LBP) in dealing with variations of expression and time.

Table 5: Face recognition results (%) on the AR database.

N, 2 3 4 5 6 7

Original SRC [10] 67.0 70.1 77.9 87.4 93.7 93.1
SLF+NN 88.1 88.7 923 97.0 98.0 98.3
SLF+LRC 83.3 82.7 85.0 90.0 93.7 94.3
SLF+HISVM 86.7 87.0 90.6 94.1 96.6 96.6
SLF+CRC 87.9 87.4 88.0 93.9 98.3 98.3
SLF+SRC 87.6 88.0 89.9 95.7 98.7 98.8
SLF-RKR_I 90.1 91.0 924 97.0 99.4 99.4
SLF-RKR_/, 90.6 91.1 92.0 97.4 99.4 99.4

Apart from LBP, recently Tzimiropoulos et al. [63] utilized image gradient orientation as local feature to
perform subspace learning for face recognition. The results in [63] show that image gradient orientation
could lead to better performance than LBP. For example, with image gradient orientation feature, the
recognition rate could be 95.65% on Extended Yale B by using 5 training samples per subject, while the
recognition rate could be 98.66% on AR by using the first 4 training samples of session 1 per subject. From
Table 4 and Table 5, we can see that the recognition rate of the proposed SLF-RKR could achieve 99.5% on
Extended Yale B and 99.4% on AR by using LBP as its SLF. This clearly shows that the use of robust kernel
representation significantly increases the recognition rates. Further improvement could be achieved for SLF-
RKR if image gradient orientation is used to design the statistical local feature. In addition, in this
experiment the /;-norm regularization and /,-norm regularization in SLF-RKR lead to little difference in the

recognition rates, but the later has much less time complexity.

4.3 Robustness to misalignment and pose
In this section, we test the robustness of the proposed method to local deformation, including image
misalignment introduced by face detector and pose variation. Here the number of histogram bin in each sub-

block is set to 30.
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Table 6: Face recognition rates (%) on the MPIE databases with misalignment. The numbers in round brackets show
the recognition rates of SLF-RKR without MPMP.

Session Session 2 Session 3 Session 4
Original SRC 33.6 36.3 353
SLF+NN 66.0 67.0 64.7
SLF+LRC 60.8 60.4 58.1
SLF+HISVM 67.6 66.6 64.3
SLF+CRC 77.1 74.7 74.0
SLF+SRC 80.2 77.3 77.4
SLF-RKR_I 84.5(81.4) 83.3(80.2) 82.6(79.0)
SLF-RKR [, 84.3(79.5) 82.1(78.4) 80.8(75.0)

1) Large-scale Multi-PIE database: The CMU Multi-PIE database [41] contains images of 337 subjects
captured in four sessions with simultaneous variations in pose, expression, and illumination. In the
experiments, all the 249 subjects in Session 1 were used. For the training set, we used the 7 frontal images
with illuminations {0,1,7,13,14,16,18} and neutral expression. For the testing sets, 10 typical frontal images
of even-number illuminations taken with neutral expressions from Session 2 to Session 4 were used. Here
the training samples are cropped and normalized to 90x72 based on the coordinates of manually located eye
centers; while the testing samples are automatically detected using Viola and Jone’s face detector [53]
without manual intervention, and thus there are often some misalignments in the testing samples.

Table 6 lists the results of all the competing methods. It can be seen that the proposed SLF-RKR achieves
the highest recognition rates, with at least 4%, 5% and 3% improvements than all the other methods in
Session 2, Session 3 and Session 4, respectively. The original SRC with Eigenfaces gets the worst
recognition rates, much lower than SLF+SRC. This validates that SLF is robust to misalignment to some
extent. Collaborative representations (e.g., CRC and SRC) combined with SLF could have about 10%
improvements over other kinds of classifiers (e.g., HISVM, LRC and NN). In addition, SLF-RKR /; slightly
outperforms SLF-RKR 1/, in this experiment. In order to show the effectiveness of MPMP, we also give the
recognition rate of SLF-RKR without the step of MPMP in Table 6. One can see that even without MPMP,
SLF-RKR [ still outperforms SLF+SRC by 1.9% in average, while SLF-RKR /, outperforms SLF+CRC by
2.3%. It can also be observed that the improvement introduced by MPMP is over 3% in each session, which
clearly show the effectiveness of the proposed MPMP in dealing with misalignment.

2) FERET pose database: In this experiment we use the FERET pose dataset [22-23], which includes
1,400 images from 198 subjects (about 7 each). This subset is composed of the images marked with ‘ba’,

‘bd’, ‘be’, ‘bf’, ‘bg’, ‘bj’, and ‘bk’. Some sample images of one person are shown in Fig. 4. Four tests with
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different pose angles were performed, with images marked with ‘ba’, ‘bj” and ‘bk’ as gallery, and the images
with ‘bg’, ‘bf’, ‘be’ and ‘bd’ as probes, respectively.

Here the image is cropped and normalized to 80%80. Because the width and height of the face image are
equal, we reset the parameters in the MPMP based SLF extraction as follows: (Py, O;) = {(4,4), (2,2), (2,2),
(1,1)} for s={0, 1, 2, 3}. The experimental results on the tests with different pose variations are listed in
Table 7. The proposed SLF-RKR significantly outperforms all the methods. In particular, it has at least 6.5%,
7%, and 17.5% improvement over all the other methods in the testing data with -25 degree, 15 degree and 25
degree pose variations, respectively. The original SRC and SLF+HISVM have the worst performance since
Eigenface feature is sensitive to pose variation and HISVM cannot learn pose variation from frontal training
set. We also give in Table 7 the results of SLF-RKR without MPMP on all poses. Similar conclusion to that
in Multi-PIE could be made, i.e., significant improvements (e.g., over 13% improvement when pose degrees

are +25°) could be achieved by using MPMP.

ba: gallery bj: expression bk: illumination be: +15 bg: -25 bd: +25

Figure 4: Some samples of a subject in the pose subset of the FERET database.

Table 7: Face recognition rates (%) on the FERET pose subset. The numbers in round brackets show the recognition
rates of SLF-RKR without MPMP.

Pose (degree) -25 -15 15 25
Original SRC 32.5 70.5 57.5 28.0
SLF+NN 48.5 94.5 88.0 36.5
SLF+LRC 45.0 94.0 79.0 32.5
SLF+HISVM 12.5 89.0 52.5 13.5
SLF+CRC 34.5 99.0 82.0 35.5
SLF+SRC 31.5 99.5 87.5 37.0
SLF-RKR_[; 55.0(42.0) 100¢99.5) 96.0(88.0) 57.0(39.0)
SLF-RKR [, 56.5(38.5) 99.5(99.5) 95.0(88.0) 54.5(36.0)

From the above experiments of FR with misalignment and pose variation, we could conclude that the
proposed SLF-RKR could not only increase the discrimination and invariance of local features, but also has
powerful classification ability due to the use of robust kernel representation. In addition, we find that SLF-

RKR /; is slightly better than SLF-RKR /, but with more computational costs.
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4.4 Robustness to occlusion and disguise

Facial occlusion and disguise are very challenging issues in FR. One interesting property of SRC [10] is its
robustness to face occlusions. In this section, we test the performance of SLF-RKR to various occlusions,
including block occlusion and real disguise. In SLF-RKR, the robustness to occlusion mainly comes from its
iterative reweighed kernel robust representation. In this section the weight W in each block is automatically
updated. The state-of-the-art methods to deal with face occlusion, including the robust version of SRC [10]
(i.e., using /;-norm to characterize the representation residuals), kernel version of SRC (KSRC) [28] (i.e.,
using RBF kernel to map the original feature to a higher dimensional feature space), kernel version of CRC
(KCRC), and Robust Sparse Coding (RSC) [31], are employed to compare with SLF_RKR.

1) FR with random block occlusion: In the database of Extended Yale B [58][20], we chose Subsets 1 and
2 (717 images, normal-to-moderate lighting conditions) for training, and Subset 3 (453 images, more
extreme lighting conditions) for testing. Similar to the settings in [10], we simulate various levels of
contiguous occlusion, from 0% to 60%, by replacing a randomly located square block of each testing image
with an unrelated image, as illustrated in Fig. 5, where (a) shows a face image with 30% block occlusion and
(b) shows a face image with 40% block occlusion. Here the location of occlusion is randomly chosen for
each image and is unknown to each algorithm, and the image size is normalized to 96x84.

Table 8 lists the FR results versus various levels of occlusions. Here A of SLF-RKR /; is set as 0.1. From
Table 8, we can see that almost all methods could correctly classify all the testing samples when occlusion
level is from 0% to 20%. However, when occlusion percentage is larger than 20%, the advantage of SLF-
RKR over other methods becomes significant. For instance, when occlusion is 50%, SLF-RKR could
achieve at least 94% recognition accuracy, compared to at most 87.4% for other methods. For SLF-RKR /;,
when there is 60% block occlusion, it can still achieve a recognition rate of over 84%. This clearly
demonstrates the effectiveness of the proposed SLF-RKR method to deal with face occlusion. In addition,
both KCRC and KSRC could get better performance than CRC, but worse performance than SRC and SLF-
RKR. This is because the /;-norm fidelity term of the robust version of SRC can deal with outliers to some

extent; however, the RBF kernel is sensitive to signal’s outliers.
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(a) (b)

Figure 5: The examples of face images with occlusion: (a) 30% block occlusion; (b) 40% block occlusion.

Table 8: Face recognition rates (%) of different methods under different levels of block occlusion.

Occlussion 0% 10% 20% 30% 40% 50% 60%
Robust SRC[10] 100 100 99.8 98.5 90.3 65.3 27.8
RSC[31] 100 100 100 99.8 96.9 87.4 60.8
SLF+NN 100 100 100 98.9 96.0 85.9 57.4
SLF+LRC 100 100 98.9 96.0 89.8 69.5 353
SLF+HISVM 100 99.6 98.7 97.8 90.3 77.5 523
SLF+CRC 100 99.8 98.7 93.6 854 61.8 33.6
SLF+KCRC 100 100 99.1 96.9 88.5 66.4 34.7
SLF+SRC 100 100 99.8 98.0 95.1 82.3 50.6
SLF+KSRC 100 99.8 98.0 94.9 88.5 67.3 36.0
SLF-RKR_I 100 100 99.6 99.6 99.6 96.7 84.8
SLF-RKR_/, 100 100 99.6 99.6 98.5 94.0 77.9

2) FR with disguise: A subset of 50 males and 50 females are selected from the AR database [21]. For
each subject, 7 samples without occlusion from session 1 are used for training, with all the remaining
samples with disguises for testing. These testing samples (including 3 samples with sunglass in Sessionl, 3
samples with sunglass in Session 2, 3 samples with scarf in Session 1 and 3 samples with scarf in Session 2
per subject) not only have disguises, but also have variations of time and illumination. Here the image size is
normalized to 83x60. Table 9 lists the FR results on the four test sets with disguise. It can be seen that in the
two tests of Session 1, the proposed methods achieve 100% recognition accuracy, much higher than the
state-of-the-art results reported in literature, for examples, 83.3% (Sunglass-S1) and 48.7% (Scarf-S1) for
original SRC, and 94.7% (Sunglass-S1) and 91.0% (Scarf-S1) for RSC. In the two tests of Session 2, the
improvement of SLF-RKR over all the other methods is at least 6%, which clearly shows the superior
classification ability of SLF-RKR. The SLF-RKR /; is slightly better than SLF-RKR /, in the tests of
Session 2, which again shows that /;-norm regularization could introduce more discrimination into the
coding coefficients but at the price of speed. For large-scale database, SLF-RKR /, can be a good candidate
to balance the recognition accuracy and running speed. In addition, like in the experiments of FR with block
occlusion, one can see that KCRC and KSRC have lower recognition rates than SLF-RKR and SRC since

the standard RBF kernel is not robust to outliers.
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Table 9: Face recognition rates (%) on the challenging datasets with real disguise.

Sunglass-S1 Scarf-S1 Sunglass-S2  Scarf-S2

Robust SRC [10] 83.3 48.7 49.0 29.0
RSC [31] 94.7 91.0 80.3 72.7
SLF+NN 98.7 98.0 82.3 88.7
SLF+LRC 96.7 92.0 68.7 68.7
SLF+HISVM 97.0 95.7 70.3 78.7
SLF+CRC 99.7 98.7 80.3 86.7
SLF+KCRC 100 98.3 82.7 88.0
SLF+SRC 100 99.0 85.0 90.7
SLF+KSRC 100 98.3 84.0 86.7
SLF-RKR_I 100 100 93.0 97.6
SLF-RKR_/, 100 100 91.3 96.0

4.5 Face recognition on large-scale face database

Finally, we verify the performance of SLF-RKR on three large scale face databases: FERET [22-23], FRGC
[35] and LFW [32]. To demonstrate the effectiveness of SLF-RKR, we also report the results of KSRC and
KCRC with RBF kernel. Considering that SLF-RKR /, has similar recognition accuracy to SLF-RKR /; but
has much lower time complexity, in this section we only report the results of SLF-RKR /,. We update the
weight of SLF-RKR /; and set the number of histogram bin in each sub-block as 30.

1) FERET database: The FERET database [22-23] is often used to validate an algorithm’s effectiveness
because it contains many kinds of image variations. By taking Fa subset as a gallery, the probe subsets Fb
and Fc were captured with expression and illumination variations (the images in Fc were captured by a
different camera). Especially, Dupl and Dup2 consist of images that were taken at different times. For some
people, more than two years elapsed between the gallery set and Dupl or Dup2 set.

The image size is normalized to 150x130. Table 10 lists the FR results of competing methods. Because
each subject in the gallery set has only one training sample, the LRC is equivalent to NN so that we only
report the result of NN classifier. The proposed SLF-RKR /; achieves the best performance in all tests.
Especially, it achieves much higher performance than the competitors on Dup 1 and Dup 2. The proposed
RKR has 7.5% and 5.1% average improvement over CRC and SRC, respectively. Standard kernel (e.g., RBF)
could improve the performance of CRC and SRC, but still 6.1% and 3.5% lower than SLF-RKR /, in
average. It is also interesting that the collaborative representation based classifiers (e.g., SRC, CRC, KSRC,
KCRC, and RKR) still have much higher recognition rates than NN and HISVM in the case that each subject

has only one training sample.
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Table 10: Face recognition rates (%) on FERET database.

Method Fb Fc Dupl Dup2
SLF+NN 94.6 50.5 59.7 45.7
SLF+HISVM 95.3 54.6 61.8 41.9
SLF+CRC 98.1 85.1 74.4 60.3
SLF+KCRC 98.2 87.1 75.1 63.2
SLF+SRC 98.2 85.6 77.7 66.2
SLF+KSRC 98.3 88.6 78.3 68.8
SLF-RKR_/, 99.2 89.2 81.9 77.8

Another widely used statistical local feature is the histogram of LBP encoded on the Gabor magnitude
[45]. In addition, the block based Fisher’s linear discriminant (BFLD) proposed in [48] has shown powerful
ability to extract the discriminative low-dimensional feature in each block. Therefore, here we compare the
proposed SLF-RKR (using Gabor magnitude based SLF) with the state-of-the art methods on FERET

database. The feature dimensionality extracted by BFLD in each block is set to 400 and Gaussian kernel
K(Vj,vk)zexp{—uvj v/ 252} is used in SLF-RKR. The results of SLF-RKR_/, SLF+NN, SLF+SVM
and other state-of-the-art methods are listed in Table 11. It shows that the proposed SLF-RKCR /, not only

outperforms SLF+NN and SLF+SVM in all cases, but also has better performance than the best methods

reported in literature. Especially, SLF-RKCR _/, has recognition accuracies of 96.3% and 94.4% in Dupl

and Dup2, respectively, which may be the best results so far.

Table 11: Face recognition rates (%) of SLF-RKR and other state-of-the-art methods on the FERET database.

Method Fb Fc Dupl Dup2
SLF+NN 99.7 98.5 92.8 91.0
SLF+SVM 99.7 98.5 92.8 91.0
Tan’s [14] 98.0 98.0 90.0 85.0
Zou’s [15] 99.5 99.5 85.0 79.5
Xie’s [48] 99.0 99.0 94.0 93.0
SLF-RKR_/, 99.7 99.5 96.3 944

2) FRGC 2.0: FRGC version 2.0 [35] is a large-scale face databases designed with uncontrolled indoor
and outdoor settings. We use the subset (352 subjects having no less than 15 samples in the original target
set) of Experiment 4, which is the most challenging dataset in FRGC 2.0 with large lighting variations,
ageing and image blur. Some examples are shown in Fig. 6. The selected target set contains 5,280 samples,

and the query set has 7,606 samples. The image is normalized to 168x128. The feature dimensionality

extracted by BFLD in each block is set to 220 and Gaussian kernel is used in SLF-RKR.
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Three tests with 5, 10 and 15 target samples for each subject are made in the experiments. The
recognition rates of SLF+NN, SLF+LRC, SLF+HKSVM, SLF+CRC, SLF+SRC, SLF+KCRC, SLF+KSRC,
and the proposed SLF-RKR are listed in Table 12. Again, SLF-RKR performs the best, though the

improvement is not significant since there are no occlusion, misalignment and pose variations in the query

(a)

set.

(b)
Figure 6: Samples of FRGC 2.0. (a) and (b) are samples in target and query sets, respectively.

Table 12: Face recognition result (%) with Gabor magnitude based SLF on the FRGC database.

Method 5 10 15

SLF+NN 0.948 0.966 0.974
SLF+SVM 0.676 0.742 0.797
SLF+LRC 0.951 0.969 0.977
SLF+CRC 0.946 0.967 0.976
SLF+KCRC 0.942 0.965 0.973
SLF+SRC 0.948 0.970 0.977
SLF+KSRC 0.952 0.974 0.980
SLF-RKR_/ 0.955 0.976 0.981

3) LFW: Labeled Faces in the Wild (LFW) [32] is a large-scale database of face photographs designed
for unconstrained FR with variations of pose, illumination, expression, misalignment and occlusion, etc.
Some examples are shown in Fig. 7. Two subsets of aligned LFW [24] are used in the experiments. In subset
1 (LFW6) which consists of 311 subjects with no less than 6 samples per subject, we use the first 5 samples
as training data and the remaining samples as testing data. In subset 2 (LFW11) which consists of 143
subjects with no less than 11 samples per subject, we use the first 10 samples as training data and the

remaining samples as testing data.

(b)

Figure 7: Samples of LFW. (a) and (b) are samples in training and testing sets, respectively.
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Table 13 lists the FR results of competing methods with the MPMP based SLF. The image is normalized
to 127x116. We can see that SLF-RKR still achieves the best performance. Compared with the second best
method, SLF+KCRC/SLF+KSRC, the improvements of SLF-RKR are about 6% in LFW6 and 3% in
LFW11, respectively, which clearly demonstrates the powerful classification ability of the proposed robust

kernel representation.

Table 13: Face recognition rates (%) on the LFW database.

Method  SLF+ SLF+ SLF+ SLF+ SLF+ SLF+ SLF+ SLF-
NN LRC HISVM SRC KSRC CRC KCRC RKR I,

LFW6 0.302 0.338 0.443 0.535 0.555 0.540 0.549 0.619

LFWI11 0.459 0.529 0.630 0.755 0.779 0.768 0.788 0.819

5. Conclusion

In this paper, we proposed a statistical local feature based robust kernel representation (SLF-RKR) model for
face recognition. A robust representation model to image outliers (e.g., occlusion and real disguise) was built
in the kernel space, and a multi-partition max pooling technology was proposed to enhance the invariance of
local pattern feature to image misalignment and pose variation. We evaluated the proposed method on
different conditions, including variations of illumination, expression, misalignment and pose, as well as
block occlusion and disguise occlusion. One big advantage of SLF-RKR is its high face recognition rates
and robustness to various occlusions. The extensive experimental results demonstrated that SLF-RKR is

superior to state-of-the-arts and has great potential to be applied in practical face recognition systems.
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