
ARTICLE IN PRESS

Pattern Recognition 43 (2010) 706–719
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.de/locate/pr
Rotation invariant texture classification using LBP variance (LBPV) with
global matching
Zhenhua Guo, Lei Zhang, David Zhang �

Biometrics Research Centre, Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
a r t i c l e i n f o

Article history:

Received 24 April 2009

Received in revised form

2 July 2009

Accepted 19 August 2009

Keywords:

Texture classification

Local binary pattern

Rotation invariant

Global matching
03/$ - see front matter & 2009 Elsevier Ltd. A

016/j.patcog.2009.08.017

esponding author.

ail address: csdzhang@comp.polyu.edu.hk (D.
a b s t r a c t

Local or global rotation invariant feature extraction has been widely used in texture classification. Local

invariant features, e.g. local binary pattern (LBP), have the drawback of losing global spatial information,

while global features preserve little local texture information. This paper proposes an alternative hybrid

scheme, globally rotation invariant matching with locally variant LBP texture features. Using LBP

distribution, we first estimate the principal orientations of the texture image and then use them to align

LBP histograms. The aligned histograms are then in turn used to measure the dissimilarity between

images. A new texture descriptor, LBP variance (LBPV), is proposed to characterize the local contrast

information into the one-dimensional LBP histogram. LBPV does not need any quantization and it is

totally training-free. To further speed up the proposed matching scheme, we propose a method to

reduce feature dimensions using distance measurement. The experimental results on representative

databases show that the proposed LBPV operator and global matching scheme can achieve significant

improvement, sometimes more than 10% in terms of classification accuracy, over traditional locally

rotation invariant LBP method.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Texture analysis is an active research topic in the fields of
computer vision and pattern recognition. It involves four basic
problems: classifying images based on texture content; segment-
ing an image into regions of homogeneous texture; synthesizing
textures for graphics applications; and establishing shape in-
formation from texture cues [1]. Among them, texture classifica-
tion has been widely studied because it has a wide range of
applications, such as fabrics inspection [2], remote sensing [3] and
medical image analysis [4].

Early methods for texture classification focus on the statistical
analysis of texture images. The representative methods include
the co-occurrence matrix method [5] and filtering based
approaches [6], such as Gabor filtering [7,8], wavelet transform
[9,10] and wavelet frames [11]. In general their classification
results are good as long as the training and test samples have
identical or similar orientations. However, the rotations of real-
world textures will vary arbitrarily, severely affecting the
performance of the statistical methods and suggesting the need
for rotation invariant methods of texture classification.

Kashyap and Khotanzad were among the first researchers to
study rotation-invariant texture classification using a circular
ll rights reserved.

Zhang).
autoregressive model [12]. Later models include the multiresolu-
tion autoregressive model [13], hidden Markov model [14,15],
Gaussian Markov random field [21], and the autocorrelation
model [20]. Many Gabor and wavelet based algorithms were also
proposed for rotation invariant texture classification [16–
19,22,25,26]. Ojala et al. [24] proposed using a local binary
pattern (LBP) histogram for rotation invariant texture classifica-
tion. Recently, Varma and Zisserman [23] presented a statistical
algorithm, MR8, where a rotation invariant texton library is first
built from a training set and then an unknown texture image is
classified according to its texton distribution. The LBP and MR8
methods are both state-of-the-art algorithms and yield good
classification results on large and complex databases [23,34].
Scale and affine invariance is another issue to be addressed in
texture classification, and some pioneer works have been recently
proposed by using affine adaption [36], fractal analysis [37] and
combination of filters [38].

Many rotation invariant texture classification methods
[12,13,23,24], such as LBP, extract rotation invariant texture
features from a local region. However, such features may fail to
classify the images. Fig. 1 shows an example. Fig. 1(a) and (b) are
the LBP codes of two texture images, each of which is composed of
two LBP micro-patterns. Obviously, each image exhibits different
texture information, yet if the locally rotation invariant LBP micro-
pattern in Fig. 1(c) is used to represent and classify the textures, the
two images will be misclassified as of the same class. This is
because we lose global image information when only the locally
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Fig. 1. (a, b) The LBP codes of two texture images, each of which is composed of

two LBP micro-patterns. By using the LBP rotation invariant LBP micro-pattern in

(c), the two different images will be misclassified as the same class.

Fig. 2. Circular symmetric neighbor sets for different (P, R).
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rotation invariant features are used. Jafari-Khouzani and Soltanian-
Zadeh [22] proposed a method to solve this problem. First, the
Radon transform was used to estimate the principal orientation of
the texture image and then the wavelet energy features were
computed along the principal orientation. Unfortunately, using the
Radon transform to align the image makes the computational cost
of this method high.

A further difficulty associated with image texture classification
is the robust and accurate representation of texture information.
Generally, texture can be characterized by a spatial structure (e.g.
a pattern such as LBP) and the contrast (e.g. VAR, the variance of
local image texture) [24]. Spatial structures vary with rotation
while contrast does not. Ojala et al. [24] proposed using the joint
histogram of the two complementary features, namely LBP/VAR,
for rotation invariant texture classification. The drawback of this
approach is that the value of VAR is continuous so that a
quantization step is needed to calculate the histogram. However, a
good quantization depends upon a large number of and
comprehensive training samples.

In this paper, we propose an efficient global matching scheme that
uses LBP for feature extraction. Our approach does not extract locally
rotation invariant LBP as in [24], but instead first builds a rotation
variant LBP histogram and then applies a global matching procedure.
This global matching can be implemented using an exhaustive search
scheme such as [27,28] to find the minimal distance in all candidate
orientations yet is nonetheless computationally extensive. Fortu-
nately, the extracted LBP features can be used to estimate the
principal orientations and hence we can compute the matching
distances along the principal orientations only.

Our proposed approach also applies a joint histogram as in [24]
but addresses the quantization problem by proposing a new
operator called the Local Binary Pattern Variance (LBPV). Instead
of computing the joint histogram of LBP and VAR globally, the LBPV
computes the VAR from a local region and accumulates it into the
LBP bin. This can be regarded as the integral projection [30] along
the VAR coordinate. Associated with the proposed global matching
scheme, the LBPV operator could reduce greatly the requirement
for and dependency on a large number of training samples.

The rest of the paper is organized as follows. Section 2 briefly
reviews the LBP and VAR, and then presents the proposed LBPV
operator and the dissimilarity metric. Section 3 presents the
proposed global matching scheme. Section 4 reports the experi-
mental results on two comprehensive public texture databases.
Section 5 gives the conclusion and future work.

2. Feature descriptor and dissimilarity metric

In this section, the LBP and VAR feature extractors are first
reviewed. To address the limitation of VAR, the LBPV is then
proposed. Finally, the matching dissimilarity metric in this work is
presented.

2.1. LBP

LBP [24] is a gray-scale texture operator which characterizes
the spatial structure of the local image texture. Given a central
pixel in the image, a pattern number is computed by comparing
its value with those of its neighborhoods:

LBPP;R ¼
XP�1

p ¼ 0

sðgp � gcÞ2
p

ð1Þ

sðxÞ ¼
1; xZ0

0; xo0

(
ð2Þ

where gc is the gray value of the central pixel, gp is the value of its
neighbors, P is the number of neighbors and R is the radius of the
neighborhood. Suppose the coordinates of gc are (0, 0), then the
coordinates of gp are given by ð�R sinð2pp=PÞ;R cosð2pp=PÞÞ. Fig. 2
shows examples of circularly symmetric neighbor sets for
different configurations of ðP;RÞ. The gray values of neighbors
that are not in the center of grids can be estimated by
interpolation.

Suppose the texture image is N�M. After identifying the LBP
pattern of each pixel (i, j), the whole texture image is represented
by building a histogram:

HðkÞ ¼
XN

i ¼ 1

XM
j ¼ 1

f ðLBPP;Rði; jÞ; kÞ; kA ½0;K� ð3Þ

f ðx; yÞ ¼
1; x¼ y

0; otherwise

(
ð4Þ

where K is the maximal LBP pattern value. The U value of an LBP
pattern is defined as the number of spatial transitions (bitwise 0/1
changes) in that pattern

UðLBPP;RÞ ¼ jsðgP�1 � gcÞ � sðg0 � gcÞj

þ
XP�1

p ¼ 1

jsðgP � gcÞ � sðgp�1 � gcÞj ð5Þ

For example, LBP pattern 00000000 has a U value of 0 and
01000000 of 2. The uniform LBP pattern refers to the uniform
appearance pattern which has limited transition or discontinuities
(Ur2) in the circular binary presentation [24]. It was verified that
only ‘‘uniform’’ patterns are fundamental patterns of local image
texture.

Fig. 3 shows all uniform patterns for P=8. All the non-uniform
patterns (U>2) are grouped under a ‘‘miscellaneous’’ label. In
practice, the mapping from LBPP;R to LBPu2

P;R (superscript ‘‘u2’’
means that the uniform patterns have U values of at most 2),
which has P*(P�1)+3 distinct output values, is implemented with
a lookup table of 2P elements.

As shown in each of the first seven rows of Fig. 3, any one of the
eight patterns in the same row is a rotated version of the others.
So a locally rotation invariant pattern could be defined as

LBPriu2
P;R ¼

XP�1

p ¼ 0

sðgp � gcÞ if UðLBPP;RÞr2

Pþ1 otherwise

8>><
>>: ð6Þ
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Fig. 3. Uniform LBP patterns when P=8. The black and white dots represent the bit values of 1 and 0 in the 8-bit output of the LBP operator.
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Similar to LBPu2
P;R, the mapping from LBPP;R to LBPriu2

P;R , which has P+2
distinct output value, can be implemented with a lookup table.

2.2. Rotation invariant variance measures (VAR)

A rotation invariant measure of the local variance can be
defined as [24]

VARP;R ¼
1

P

XP�1

p ¼ 0

ðgp � uÞ2 ð7Þ

where u¼ 1=P
PP�1

p ¼ 0 gp. Since LBPP;R and VARP;R are complemen-
tary, their joint distribution LBPP;R=VARP;R can better characterize
the image local texture than using LBPP;R alone. Although Ojala et
al. [24] proposed to use only the joint distribution LBPriu2

P;R =VARP;R

of LBPriu2
P;R and VARP;R, other types of patterns, such as LBPu2

P;R, can
also be used jointly with VARP;R. However, LBPu2

P;R is not rotation
invariant and it has higher dimensions. In practice, the same (P, R)
values are used for LBPriu2

P;R and VARP;R.

2.3. LBP variance (LBPV)

LBPP;R=VARP;R is powerful because it exploits the complemen-
tary information of local spatial pattern and local contrast [24].
However, VARP;R has continuous values and it has to be quantized.
This can be done by first calculating feature distributions from all
training images to get a total distribution and then, to guarantee
the highest quantization resolution, some threshold values are
computed to partition the total distribution into N bins with an
equal number of entries. These threshold values are used to
quantize the VAR of the test images.
There are three particular limitations to this quantization
procedure. First, it requires a training stage to determine the
threshold value for each bin. Second, because different classes of
textures may have very different contrasts, the quantization is
dependent on the training samples. Last, there is an important
parameter, i.e. the number of bins, to be preset. Too few bins will
fail to provide enough discriminative information while too many
bins may lead to sparse and unstable histograms and make the
feature size too large. Although there are some rules to guide
selection [24], it is hard to obtain an optimal number of bins in
terms of accuracy and feature size.

The LPBV descriptor proposed in this section offers a solution
to the above problems of LBPP;R=VARP;R descriptor. The LBPV is a
simplified but efficient joint LBP and contrast distribution
method. As can be seen in Eq. (3), calculation of the LBP histogram
H does not involve the information of variance VARP;R. That is to
say, no matter what the LBP variance of the local region, histogram
calculation assigns the same weight 1 to each LBP pattern.
Actually, the variance is related to the texture feature. Usually the
high frequency texture regions will have higher variances and
they contribute more to the discrimination of texture images [8].
Therefore, the variance VARP;R can be used as an adaptive weight
to adjust the contribution of the LBP code in histogram
calculation. The LBPV histogram is computed as

LBPVP;RðkÞ ¼
XN

i ¼ 1

XM
j ¼ 1

wðLBPP;Rði; jÞ; kÞ; kA ½0;K� ð8Þ

wðLBPP;Rði; jÞ; kÞ ¼
VARP;Rði; jÞ; LBPP;Rði; jÞ ¼ k

0 otherwise

�
ð9Þ
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If we view LBP and VAR as the two orthogonal axes in a coordinate
system, the LBPV could be regarded as an integral projection [30]
along the VAR axis. This would be a simplified representation of
the 2D LBP/VAR distribution. Because LBPVu2

P;R ðLBPV riu2
P;R Þ is a

simplified descriptor of LBPu2
P;R=VARP;R ðLBPriu2

P;R =VARP;RÞ, its feature
size is much smaller than that of LBPu2

P;R=VARP;R ðLBPriu2
P;R =VARP;RÞ and

is the same as that of LBPu2
P;R ðLBPriu2

P;R Þ. Furthermore, it can be seen
that the proposed LBPV is training free and it does not need
quantization.

2.4. Dissimilarity metric

The dissimilarity of sample and model histograms is a test of
goodness-of-fit, which can be measured with a non-parametric
statistic test. There are many metrics for evaluating the fit
between two histograms, such as histogram intersection, log-
likelihood ratio, and chi-square statistic [24]. In this study, a test
sample S was assigned to the class of model M that minimizes the
chi-square distance:

DðS;MÞ ¼
XN

n ¼ 1

ðSn �MnÞ
2

SnþMn
ð10Þ

where N is the number of bins and Sn and Mn are, respectively, the
values of the sample and model images at the nth bin. Here, we
use the nearest neighborhood classifier with chi-square distance
because it is equivalent to the optimal Bayesian classification [31].
3. Rotation invariant global matching

In this section, we describe our global matching scheme,
namely rotation invariant global matching. The reasoning behind
our proposed scheme can be seen by again considering Fig. 3. It
shows eight rows of patterns in which each of the first seven rows
shows a rotated version of the same pattern. Traditionally, LBP
histogram calculation achieves rotation invariance by clustering
each row into one bin. However, as was illustrated in Fig. 1, such
an operation loses the global information, and hence two different
texture images may have the same number of locally rotation
invariant patterns. In Fig. 3, each column in the first seven rows is
a 451 or �451 rotation of its adjacent column. Fig. 4 shows
another example. Suppose an image contains 256 (i.e. P=8)
possible LBP patterns and the frequency with which each pattern
occurs in the image is represented by the number in the pattern,
as shown in Fig. 4(a). If the image is rotated 901 clockwise, then a
new LBP histogram will be created, and Fig. 4(a) becomes (b).

This observation suggests the feasibility of designing a rotation
invariant matching scheme using rotation variant LBP patterns.
This could be done by exhaustively searching for the minimal
distance from all candidate orientations [27,28] but that would be
computationally prohibitive. Rather, our proposed global match-
ing scheme first uses the extracted LBP features to estimate the
principal orientations, and then aligns the features to the principal
orientations to compute the matching distance. Further feature
dimension reduction can be achieved by reducing less important
patterns.

3.1. Matching by exhaustive search

The exhaustive matching search method is simple and
intuitive. Taking Fig. 4 as an example,1 the LBP histogram can be
divided into two sets: the first seven rows being rotation variant
1 For simplicity, only P=8 is presented in this section to explain the matching

scheme. The method is applied to P=16 or 24 in the same way.
and the last row being rotation invariant. For a given sample, we
shift one column of the first seven rows and compute the
dissimilarity with the models. This procedure is iteratively run
eight times to find the minimal dissimilarity as the final distance.
To present the method explicitly, the LBP histogram is reorganized
and represented by two matrixes, Hrv (rotation variant histogram)
and Hri (rotation invariant histogram), as shown in Fig. 5. Then for
any two texture images, the matching distance could be
calculated as

DESðHS;HMÞ ¼DminðH
ri
S ;H

ri
MÞþDrvðH

rv
S ;H

rv
M Þ

DriðH
ri
S ;H

ri
MÞ ¼DðHri

S ;H
ri
MÞ

DminðH
rv
S ;H

rv
M Þ ¼minðDðHrv

S ;H
rv
M ðjÞÞÞ; j¼ 0;1; . . . ;7

Hrv
M ðjÞ ¼ ½h

M
modð0�j;8Þ;h

M
modð1�j;8Þ; . . . ;h

M
modð7�j;8Þ�

8>><
>>: ð11Þ

where modðx; yÞ is the modulus x of y, D(X, Y) is the chi-square
distance defined in Eq. (10), HS and HM are the LBP histograms of a
sample and model image, and HrvðjÞ is the new matrix which is
obtained by shifting j columns of the original matrix Hrv. From
Eq. (11) we see that the distance between two given histograms is
composed by two parts: one ðDriðH

ri
S ;H

ri
MÞÞ is derived from rotation

invariant part ðHriÞ, and the other one ðDminðH
rv
S ;H

rv
M ÞÞ is obtained by

searching the minimal distance within rotation variant part ðHrvÞ.
Although the exhaustive matching method is simple and

intuitive, it is computationally expensive because the feature
dimension can be very high. For example, when P=24, using (11),
we need to compute the chi-square distance between two feature
sets of (24�23+3)=555 dimensions along 24 orientations
(equivalent to compute chi-square distance between two features
of (24�23�24+3)=13251 dimensions) for all the models. Such a
high complexity may prohibit the real time application of texture
recognition. Therefore, a fast matching scheme must be developed
to reduce the computational cost.
3.2. Global matching along principal orientations

It is also intuitive that if a principal orientation could be
estimated for the test image, then the distance can be computed
with the features aligned by that orientation. In this way the
matching complexity can be reduced significantly. Similar idea
has been exploited by Jafari-Khouzani and Soltanian-Zadeh [22].
However, this algorithm uses Radon transform to estimate the
orientation of the texture image and requires much computational
cost. In this section, we proposed to use LBP features to estimate
the principal orientations directly.

In the first seven rows of Fig. 5, we can see that the accumulated
histogram along one column corresponds to how many patterns are
in one orientation. Because most of these patterns are edges of
varying positive and negative curvatures [24], the orientation along
which there is a peak of the histogram could be defined as a
principal orientation of the texture image. Fig. 6 shows an example.
Fig. 6(a) and (b) are the same texture captured under different
orientations. The accumulated histograms along different
orientation are plotted in Fig. 6(c) and (d). We see that 901 will
be the principal orientation of Fig. 6(a) and 01 the principal
orientation of Fig. 6(b) (the two images are not the identical
images, so their LBP histograms are not shifted equally).

Owing to the complexity of structure of some textures, some
images may have multiple peaks, i.e. multiple principal orienta-
tions. If only one principal orientation is preserved we may
sometimes fail to get a good alignment of the texture. For
example, for the same texture in Fig. 7, if only selecting one
principal orientation, the principal orientation of Fig. 7(a) will be
2701, while that of Fig. 7(b) is 3151. The two images will not be
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Hrv=[h0, h1, h2, h3, h4, h5, h6, h7] Hri

H={Hrv, Hri}

Vector Representation 

Reorganisation

Fig. 5. The vector representation of histogram for P=8.

Fig. 4. The LBP histogram on the left is rotated 90o clockwise to become the histogram on the right. The number in each pattern represents how often that pattern occurs in

the image. (a) LBP histogram of the original image and (b) LBP histogram of rotated image (90o clockwise).
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aligned correctly if only one orientation is kept. While, the second
principal orientation of Fig. 7(a) and (b) are 3151 and 2701,
respectively (because of the symmetry, the difference between the
first and second principal orientation should not be 1801), which
are accordance with the first principal orientation of Figs 7(b) and
(a). Therefore, if two principal orientations are used for matching,
better classification results can be expected. Similar to Eq. (11),
the dissimilarity between two images is computed as follows:

DPD2ðHS;HMÞ ¼DminðH
rv
S ;H

rv
M ÞþDriðH

ri
S ;H

ri
MÞ ð12Þ

with

DminðH
rv
S ;H

rv
M Þ ¼minfDðHrv

S ;H
rv
M ðj

M
PD1ÞÞ;DðH

rv
S ;H

rv
M ðj

M
PD2ÞÞ;

DðHrv
S ðj

S
PD1Þ;H

rv
M Þ;DðH

rv
S ðj

S
PD2Þ;H

rv
M Þg ð13Þ

where jS
PD1 ðj

M
PD2Þ and jS

PD2 ðj
M
PD2Þ, respectively, represent the first and

second principal orientations of S(M).

3.3. Feature dimension reduction

The use of principal orientations can significantly speed up
feature matching but it does not reduce the dimensionality of
features. For example, using P=24 and Eq. (12) is equivalent to
compute the chi-square distance between two feature vectors of
(24�23�4+3)=2211 dimensions. Clearly, this is not acceptable
for high speed and real time applications. In this paper, we
propose a simple and efficient feature reduction method that
makes use of the feature distribution and dissimilarity metric.

From Eqs. (12) and (13), we see that the high dimensionality of
features is caused by keeping all of rotation variant texture
patterns. As shown in the first seven rows of Fig. 4, there are
8�7=56 patterns and each row corresponds to a rotation
invariant pattern. If a row is clustered into its rotation invariant
pattern, using the same matching scheme above, the dimension
could be reduced. In some sense, this can be viewed as a hybrid
matching scheme, which works on rotation invariant features and
rotation variant features with a rotation invariant matching. In the
extreme case, all rows are clustered into their corresponding
rotation invariant patterns, this is equivalent to the traditional
LBPriu2

P;R .
The chi-square distance in Eq. (10) could be rewritten as

follows, which could be regarded as a weighted L2-norm:

DðS;MÞ ¼
XN

n ¼ 1

ðSn �MnÞ
2

SnþMn
¼
XN

n ¼ 1

1

SnþMn

� �
� ðSn �MnÞ

2
ð14Þ

where 1=SnþMn can be viewed as the weight and is inversely
proportional to the sum of frequencies of two histograms at one
bin. Thus, clustering more frequent patterns into rotation
invariant patterns will have little influence on accuracy because
1=SnþMn will be very small.



ARTICLE IN PRESS

Fig. 6. One principal orientation texture sample: (a) canvas006 01 [32]; (b) canvas006 901; (c) LBPriu2
8;1 pattern frequency versus angle for image (a); and (d) LBPriu2

8;1 pattern

frequency versus angle for image (b).
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Taking Fig. 4 as an example, a new histogram H0 ¼ ½H1
0 ;

H2
0 ; . . . ;H7

0 � for the whole training set is computed by accumulat-
ing each row into one bin for every image:

H
0

j ¼
XN

i ¼ 1

Hi
j ; j¼ 1;2; . . . ;7 ð15Þ

where Hi
j is the value of the jth bin in the ith image and N is the

number of training images. The new histogram H0 is sorted in
descending order, H00 ¼ ½H1

00 ;H2
00 ; . . . ;H7

00 �;Hi
00
ZHj

00 if ir j. As each
bin in H00ðH0Þ corresponds to one row of Fig. 4, the row
corresponding to the largest value bin will be clustered into one
rotation invariant pattern. Fig. 8 shows an example of before and
after one step feature reduction. In Fig. 8, the third row in Fig. 8(a)
is clustered into one pattern, marked in the rectangle of Fig. 8(b).
This reduces the number of histogram bins from 59 to 52. This
procedure is repeated to remove the largest bin in the remaining of
H00 until desired dimension is reached. The test set will reduce their
LBP histogram dimension according to the training procedure.

The dissimilarity metric is defined as

DRN
PD2ðH

RN
S ;HRN

M Þ ¼DminðH
RNrv
S ;HRNrv

M ÞþDðHRNri
S ;HRNri

M Þ ð16Þ
with

DminðH
RNrv
S ;HRNrv

M Þ ¼minfDðHRNrv
S ;HRNrv

M ðjM
PD1ÞÞ;

DðHRNrv
S ;HRNrv

M ðjM
PD2ÞÞ;DðH

RNrv
S ðjS

PD1Þ;H
RNrv
M Þ;

DðHRNrv
S ðjS

PD2Þ;H
RNrv
M Þg ð17Þ

where RN is the number of remaining rows of rotation variant
patterns. HRN is the new histogram after feature reduction. For
example, RN=7 in Fig. 8(a) and RN=6 in Fig. 8(b). Similar to what
is shown in Fig. 5, HRNrv and HRNri are the rotation variant and
rotation invariant parts of the HRN .
4. Experimental results

To evaluate the effectiveness of the proposed method, we
carried out a series of experiments on two large and comprehen-
sive public texture databases, Outex [32], which includes 24
classes of textures collected under three illuminations and at nine
angles, and the Columbia-Utrecht (CUReT) database, which
contains 61 classes of real-world textures, each imaged under
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Fig. 7. Two principal orientations texture sample: (a) canvas031 01 [32]; (b) canvas031 01; (c)LBPriu2
8;1 pattern frequency versus angle for image (a); and (d) LBPriu2

8;1 pattern

frequency versus angle for image (b).
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different combinations of illumination and viewing angle [33]. As
in [23], we chose 92 sufficiently large images for each class with a
viewing angle o601. We used these databases because their
texture images were acquired under more varied conditions
(viewing angle, orientation and source of illumination) than the
widely used Brodatz database.

We evaluated the performance of different methods in terms of
classification rate using chi-square distance and the nearest
neighborhood classifier. For VARP;R and LBPriu2

P;R =VARP;R quantization
we used 128 and 16 bins, respectively, as in [24]. The LBPriu2

P;R ,
VARP;R, LBPriu2

P;R =VARP;R and the state-of-the-art local rotation
invariant texture classification algorithm MR8 [23] were used
for comparison. In MR8, 10 textons are clustered from each texture
class using training samples, and then a histogram based on the
n�10 textons is computed for each model and sample image,
where n is the number of texture class [23].

In the following, ‘‘GM’’ represents the proposed global match-
ing scheme, while ‘‘ES’’ represents exhaustive search, ‘‘PD2’’
represents using 2 principal orientations for each image and
‘‘RN’’ means preserving RN rows of the rotation variant patterns. If
all rows are kept, ‘‘RN’’ will be omitted. For example, LBPu2

8;1GMES

represents applying exhaustive search to LBPu2
8;1 histogram, while
LBPVu2
8;1GM6

PD2 represents using 2 principal orientations and 6 rows
of rotation variant patterns of LBPVu2

8;1. The source codes of the
proposed algorithm can be downloaded in http://www.comp.
polyu.edu.hk/�cslzhang/LBPV_GM.
4.1. Results on the outex database

This section reports the experimental results on two test suites
of Outex: Outex_TC_00010 (TC10) and Outex_TC_00012 (TC12).
These two test suites contain the same 24 classes of textures as
shown in Fig. 9. Each texture class was collected under three
different illuminants (‘‘horizon’’, ‘‘inca’’ and ‘‘t184’’) and nine
different angles of rotation (01, 51, 101, 151, 301, 451, 601, 751 and
901). There are 20 non-overlapping 128�128 texture samples for
each class under each setting. Before LBP feature extraction, each
128�128 texture sample was normalized to an average intensity
of 128 and a standard deviation of 20 [24]. The experimental
setups are as follows:
1.
 For TC10, classifier was trained using samples of illuminant
‘‘inca’’ and 01 angle in each texture class and the classifier was

http://www.comp.polyu.edu.hk/~cslzhang/LBPV_GM
http://www.comp.polyu.edu.hk/~cslzhang/LBPV_GM
http://www.comp.polyu.edu.hk/~cslzhang/LBPV_GM
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Fig. 8. Feature dimensionality reduction. The number in each pattern represents how frequently that pattern occurs in an image: (a) LBP histogram of original image and

(b) LBP histogram after feature reduction of (a).

Fig. 9. Samples of the 24 textures in TC10 and TC12.
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tested using the other eight angles of rotation, under the same
illuminant. There are a total of 480 (24�20) models and 3,840
(24� 8�20) validation samples.
2.
 For TC12, the classifier was trained with the same training
samples as TC10 and tested with all samples captured under
illuminant ‘‘t184’’ or ‘‘horizon’’. There are a total of 480
(24�20) models and 4320 (24�20�9) validation samples
for each illuminant.
Table 1 presents the results on TC10 and TC12 by different
methods. The best results for each test suite are marked in bold
font. Based on Table 1, we can make the following four
observations.

First, except for (P, R)=(8, 1), globally exhaustive search
matching has better results than locally rotation invariant feature
based matching. The improvement can be very significant. For
example, LBPu2

24;3GMES achieves 12.7% higher classification rate
than LBPriu2

24;3 in TC12 (‘‘horizon’’). The result for (P, R) configuration
of (8, 1) is worse because the angular quantization is 451, which is
coarser than the true rotation angle.

Second, although LBPV has the same feature dimensions as
LBP, the use of LBPV adds additional contrast measures to the
pattern histogram and this usually produces significantly better
results than using LBP. For example, Fig. 10 shows two texture
images from different texture classes. Note that they have similar
LBP histograms but different LBPV histograms. If LBPriu2

8;1 is used,
they are put into the same class. However, if LBPVu2

8;1 is used, they
are well classified.

Third, the contrast and pattern of a texture are complementary
features and so we can expect to get better results using both than
using just one alone. As a simplified descriptor of LBPriu2

P;R =VARP;R,
LBPV riu2

P;R works worse than LBPriu2
P;R =VARP;R because useful informa-

tion is lost in the integral projection. However, better results than
LBPriu2

P;R =VARP;R can be obtained by using a suitable matching
scheme such as the LBPV riu2

P;R GMES.
Fourth, the classification performance of locally rotation

invariant features, LBPriu2
P;R and LBPV riu2

P;R is 10% worse on average
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a

b

d

Fig. 10. Two texture images with similar LBP histograms but different LBPV histograms.

Table 1
Classification rate (%) for TC10 and TC12 using different methods.

P, R 8, 1 16, 2 24, 3

TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’

VARP;R 90.00 62.93 64.35 86.71 63.47 67.26 81.66 58.98 65.18

LBPriu2
P;R =VARP;R 96.66 79.25 77.98 97.83 85.69 84.56 98.15 87.15 87.03

LBPriu2
P;R

84.89 65.30 63.75 89.24 82.29 75.13 95.18 85.04 80.81

LBPV riu2
P;R

91.56 76.62 77.01 92.16 87.22 84.86 95.26 91.31 85.04

LBPu2
P;RGMES 66.04 65.37 68.98 89.19 85.94 89.56 97.23 93.49 93.51

LBPVu2
P;RGMES 73.64 72.47 76.57 93.90 90.25 94.28 97.76 95.39 95.57

MR8 92.5 (TC10), 90.9 (TC12, ‘‘t184’’), 91.1 (TC12, ‘‘horizon’’)
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when the models and samples are captured under different
illumination conditions than when they are captured under the
same illumination. The performance worsens as the feature size
decreases because locally rotation invariant features are very
small (for example, LBPriu2

8;1 and LBPV riu2
8;1 have only 10 bins) and

such a small size of features cannot represent each class well.
When the difference between textures is very small, LBPriu2

8;1 and
LBPV riu2
8;1 are sensitive to illumination change. This can be seen in

the Fisher criterion [35]

f ¼
jZ1 � Z2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1þs2
2

q ð18Þ

where Z1 and Z2 are, respectively, the means of the intra-class and
inter-class distances. s1 and s2 are, respectively, the standard



ARTICLE IN PRESS

Z. Guo et al. / Pattern Recognition 43 (2010) 706–719 715
deviations of the intra-class and inter-class distances. The Fisher
criterion represents the distance between two clusters relative to
their size. The larger the Fisher criterion is, the better the
separability of the two clusters.

Table 2 lists the Fisher criterion values by different descriptors.
The global matching schemes that use rotation variant features, i.e.
LBPu2

P;RGMES and LBPVu2
P;RGMES, have bigger Fisher criterion values

because they have bigger feature sizes and utilize global matching
schemes. Since the texture separability are relatively high,
LBPu2

P;RGMES and LBPVu2
P;RGMES are more robust to illumination change.

Table 3 lists the classification rates by LBPriu2
P;R =VARP;R on four

example classes of textures, two (Canvas026 and Carpet005)
having minimal classification rate differences and two (Canvas031
and Canvas038), under different illuminations, having maximal
differences. As can be seen in Table 3, Canvas026 and Carpet005
show robustness to illumination variation. The classification rate
is perfect even when the illumination changes. However,
Canvas031 and Canvas038 are very sensitive to illumination
change, and the accuracy drops significantly when the
illumination changes. Table 4 lists the average variance
measures of these four classes. We see that LBPriu2

P;R =VARP;R

achieves good accuracy on TC10 but bad accuracy on TC12.
There are two reasons for this. First, the variations of illumination
affect the contrast of textures; second, once the training data has
been quantized, it no longer represents the test samples as well. It
can be seen that the VARP;R change of Canvas026 and Carpet005 is
smaller than that of Canvas031 and Canvas038. The large VARP;R

variation of Canvas031 and Canvas038 makes the quantization
Table 2
Fisher criterion values by different descriptors.

P, R 8, 1 16, 2

TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12

P;Rriu2 0.77 0.72 0.72 0.90 0.89

P;Ru2GMES 0.82 0.82 0.85 1.14 1.12

P;Rriu2 1.02 0.99 1.03 1.06 1.06

P;Ru2GMES 1.06 1.05 1.10 1.26 1.25

Table 3

LBPriu2
P;R =VARP;R classification rate (%) under different illuminations and operators.

Class ID (P, R)=(8, 1) (P, R)=(16, 2)

TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12

Canvas026 100.00 100.00 100.00 100.00 100.0

Carpet005 100.00 100.00 100.00 100.00 100.0

Canvas031 98.12 5.00 13.88 99.37 47.2

Canvas038 100.00 55.00 20.55 100.00 66.6

Table 4
Average VARP;R under different illuminations and operators.

Class ID (P, R)=(8, 1) (P, R)=(16, 2)

‘‘inca’’ ‘‘t184’’ ‘‘horizon’’ ‘‘inca’’

Canvas026 164.97 163.62 166.64 279.00

Carpet005 39.86 38.61 40.74 107.41

Canvas031 60.39 65.11 72.15 126.92

Canvas038 82.07 91.22 95.35 168.08
learned from training samples fail to represent the test samples,
so the accuracy drops quickly once the illumination changes.

Exhaustive searching is effective but it is time consuming. For
example when P=24, it needs to compute the chi-square distance
between two features of (24�23�24+3)=13251 dimensions.
One way to speed up matching is to find the principal orientations
and match the histogram along the principal orientations only.
Table 5 lists the experimental results of using the principal
orientations. Since the principal orientations are estimated
individually, this process is training-free.

As was demonstrated in the earlier discussion of Fig. 6, the
complexity of the structure of image can mean that it is not
accurate enough to use just one principal orientation although we
can usually accurately represent a texture image using two
principal orientations. We see this in Table 5, where keeping
two principal orientations achieves very close results to exhaus-
tive search, while the feature dimension of former is only 1

2, 1
4 and 1

6

of that of the latter when P=8, 16 and 24, respectively.
To further reduce the feature size, some rotation variant

patterns could be clustered into their rotation invariant patterns
as discussed in Section 3.3. Fig. 11 shows the classification rates
when we use different numbers of rotation variant rows under
settings of (P, R)=(16, 2) and (P, R)=(24, 3). When RN=0, the
proposed feature reduction scheme degrades to use local rotation
invariant features only, and when RN=P�1, it does not reduce
feature dimension.

We see that the classification rate increases gradually as RN

increases in general. As a tradeoff between accuracy and feature
24, 3

‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’

0.91 1.03 1.00 1.01

1.18 1.29 1.24 1.28

1.08 1.09 1.07 1.08

1.30 1.34 1.28 1.32

(P, R)=(24, 3)

‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’

0 100.00 100.00 100.00 100.00

0 100.00 100.00 100.00 100.00

2 35.00 100.00 66.11 43.88

6 17.22 100.00 56.11 17.22

(P, R)=(24, 3)

‘‘t184’’ ‘‘horizon’’ ‘‘inca’’ ‘‘t184’’ ‘‘horizon’’

275.67 269.79 268.74 266.86 259.24

104.23 107.77 167.68 163.25 167.15

135.09 144.35 158.25 165.79 174.00

184.26 182.91 209.14 225.06 218.21
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Table 5
Classification rate (%) using principal orientations.

P, R 8, 1 16, 2 24, 3

TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’

LBPu2
P;RGMES 66.04 65.37 68.98 89.19 85.94 89.56 97.23 93.49 93.51

LBPu2
P;RGMPD1 62.55 63.93 66.85 84.60 80.23 84.28 86.58 78.95 81.11

LBPu2
P;RGMPD2 66.06 65.25 68.86 89.03 86.01 89.39 96.38 92.03 93.35

LBPVu2
P;RGMES 73.64 72.47 76.57 93.90 90.25 94.28 97.76 95.39 95.57

LBPVu2
P;RGMPD1 65.59 65.30 68.33 89.60 86.29 90.11 95.07 88.72 89.02

LBPVu2
P;RGMPD2 72.99 72.19 76.15 92.99 89.49 93.95 97.55 94.23 94.18
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Fig. 11. Classification rates when using different numbers of rows. (a)
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dimension, in general RN=P/2�1 can be chosen for LBPu2
P;RGMRN

PD2

and LBPVu2
P;RGMRN

PD2. The corresponding feature dimensions are
(16�7�4+3+8)=459 and (24�11�4+3+12)=1071 for P=16
and P=24, respectively, which are comparable with MR8
((24�10)=240) and LBPriu2

P;R =VARP;R ((18�16)=288 and
(26�16)=416). Table 6 lists the classification accuracies when
those feature dimensions are used. The accuracies listed in Table 6
are similar to those of LBPu2

P;RGMPD2 and LBPVu2
P;RGMPD2 listed in

Table 1. Interestingly, sometimes, because some trivial features
are removed after feature size reduction, the classification rate
could be improved a little. For example, with (P, R)=(24, 3), the
accuracy for TC10 is increased to 98.67% ðLBPu2

P;RGMP=2�1
PD2 Þ from

98.15% ðLBPu2
P;RGMPD2Þ.

The proposed feature reduction method needs an unsupervised
training procedure to cluster the rows of rotation variant patterns
into rotation invariant patterns. Because the most frequent
patterns are usually stable across different classes, the proposed
feature reduction method is robust to the training set selection.
Fig. 12 plots the classification accuracies with RN=11 when P=24,
where the most frequent patterns are determined using different
numbers of training classes. Fig. 12 shows that the proposed
feature reduction scheme is robust to training sample selection as
the variation of classification rate is very small.

4.2. Experimental results on CUReT database

The CUReT database contains 61 textures, as shown in Fig. 13,
and there are 205 images of each texture acquired at different
viewpoints and illumination orientations. There are 118 images
which have been shot from a viewing angle of o601. Of these 118
images, we selected 92 images, from which a sufficiently large
region could be cropped (200�200) across all texture classes
[23]. We converted all the cropped regions to gray scale and
normalized the intensity to zero mean and unit standard
deviation to give invariance to global affine transformations in
the illumination intensity [23]. Here, instead of computing error
bar (i.e. mean and standard deviations of results calculated over
multiple splits), the experiments were performed on two different
settings to simulate two situations:
LBPu2
P;R GMRN

PD2 with different number of RN and (b) LBPVu2
P;R GMRN

PD2 with different

number of RN.
1.
 T46: The 92 images for each class were partitioned evenly into
two disjoint training and test sets for a total of 2806 (61�46)
models and 2806 testing samples.
2.
 T23: The 92 images for each class were partitioned into two
unequal disjoint sets. The training set was formed of the first
23 images for a total of 1403 (61�23) models and 4209
(61�69) testing samples.

Using the above two settings rather than just one made it
possible to better investigate the properties of different operators
[23,32]. The T46 setting can simulate the situation when we have
comprehensive training samples while the T23 setting can
simulate the situation when we have only partial training
samples. Table 7 lists the classification results by different
operators. The best accuracy for different settings is marked in
bold.

Table 7 presents similar findings to those in Table 1, such as
LBPV being better than LBP, global matching schemes improving
accuracy, LBPriu2

P;R =VARP;R being sensitive to training sample selec-
tion, etc. In this database MR8 gets the best result in the T46 test
suite. This is because MR8 is a statistical approach and fortunately
comprehensive training samples are available in this database to
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Table 6
Classification rate (%) when RN=P/2�1.

P, R 8, 1 16, 2 24, 3

TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’ TC10 TC12 ‘‘t184’’ TC12 ‘‘horizon’’

LBPu2
P;RGMP=2�1

PD2
76.43 67.80 69.67 85.80 81.75 83.42 98.67 91.85 88.49

LBPVu2
P;RGMP=2�1

PD2
89.32 80.94 78.84 89.63 85.23 88.68 97.63 95.06 93.88
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Fig. 12. The classification accuracy of feature reduction under different training

setting. (a) LBPu2
24;3 GM11

PD2 accuracy vs. the training class number and (b)

LBPVu2
24;3 GM11

PD2 accuracy vs. the training class number.
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find representative textons. However, if this condition could not
be satisfied, its accuracy would decrease, such as in T23 and in
Outex (see Section 4.1).

Multiresolution analysis could be used to improve the
classification accuracy, that is, by employing multiple operators
of varying (P, R). In this study, we use a straightforward
multiresolution analysis that measures the dissimilarity as the
sum of chi-square distances from all operators [24]:

DN ¼
XN

n ¼ 1

DðSn;MnÞ ð19Þ

where N is the number of operators, and Sn and Mn are,
respectively, the sample and model histograms extracted with
the nth ðn¼ 1; . . . ;NÞ operator.
As can be seen in Table 8, multiresolution analysis is a simple
but effective way to increase the accuracy of LBP and LBPV. The
classification rates can be improved to 96.04% for T46 and 81.77%
for T23. Of the different multiresolution operators, ‘‘(8, 1)+(24, 3)’’
gets the best results in most cases. This is because there are
redundancies between LBP patterns of different radius, while (8,
1) and (24, 3) have fewer redundancies. This also explains why
using three operators may not get better results than using two.

4.3. Comparison of LBP based methods and MR8 method

Both LBP-based and MR8 methods classify an image in three
steps: feature extraction, histogram creation, and classification. In
the feature extraction stage, while LBP uses a nonlinear filter or a
series of linear filters [29] to form the pattern, and uses a
nonlinear filter to measure the contrast for each pixel, MR8
requires 38 linear filters to extract an 8-dimensional feature
vector for each pixel.

It is simple and fast to build a traditional LBP histogram. It is
not so simple for MR8, which must find for each pixel the most
similar texton from a learned dictionary (240 textons for Outex
and 610 textons for CUReT). Its histogram is built based on the
texton frequency. This process is time consuming, especially when
the feature vector is long and the size of texton dictionary is large.

MR8 and LBP based methods using the same dissimilarity
measure and classifier. The only difference is the dimensions of
the histogram. The main drawback of the proposed matching
schemes is relatively big feature size. When the number of models
increases, comparison takes longer time. However, the proposed
feature dimension reduction method can significantly reduce the
feature size. For example, the feature size of LBPriu2

24;3GM11
PD2 is 1071,

only several times the feature sizes of LBPriu2
24;3=VAR24;3 (416) and

MR8 (240 for Outex and 610 for CUReT). In addition, there are
methods to reduce the number of models of each texture class,
such as the SOM algorithm [34] and the greedy algorithm [23].
Usually, it is possible to get better accuracy by removing some
outlier models [23,34].
5. Conclusion

To better exploit the local and global information in texture
images, this paper proposed a novel hybrid LBP scheme, globally
rotation invariant matching with locally variant LBP features, for
texture classification. Based on LBP distribution, the principal
orientations of the texture image were first estimated, and then
the LBP histograms can be aligned. These histograms were in turn
used to measure the dissimilarity between images. A new texture
descriptor, namely LBP variance (LBPV) was proposed to improve
the performance of LBP by exploiting the local contrast informa-
tion. Finally, a feature size reduction method was proposed to
speed up the matching scheme.

The experimental results on two large databases demonstrated
that the proposed global rotation invariant matching scheme with
rotation variant LBP or LBPV feature leads to much higher
classification accuracy than traditional rotation invariant LBP.
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Fig. 13. Textures from the Columbia–Utrecht database. In this work, all images are converted to monochrome so color is not used to discriminate between different

textures.

Table 7
Classification rates (%) using different operators.

P, R 8, 1 16, 2 24, 3

T46 T23 T46 T23 T46 T23

VARP;R 69.17 44.73 64.61 41.29 63.22 39.15

LBPriu2
P;R =VARP;R 93.65 70.70 93.90 70.82 93.90 70.91

LBPriu2
P;R

81.61 57.97 85.56 63.55 87.38 66.59

LBPV riu2
P;R

88.23 71.56 89.77 73.10 91.09 74.26

LBPu2
P;RGMP=2�1

PD2
89.41 66.90 93.44 74.86 90.80 71.77

LBPVu2
P;RGMP=2�1

PD2
93.19 75.26 94.15 79.66 92.97 76.69

MR8 97.54 (T46), 77.57 (T23)

Table 8
Classification rates (%) of multiresolution analysis.

P, R (8, 1)+(16, 2) (8, 1)+(24, 3) (16, 2)+(24, 3) (8, 1)+(16, 2)+

(24, 3)

T46 T23 T46 T23 T46 T23 T46 T23

LBPriu2
P;R

91.55 70.82 94.04 74.22 91.30 71.01 93.83 74.36

LBPu2
P;RGM

P=2�1
PD2

95.11 76.00 95.36 77.80 93.97 76.76 95.58 78.21

VARP;R 71.31 47.96 73.55 50.22 63.36 42.50 67.46 47.37

LBPriu2
P;R =VARP;R 95.18 72.74 96.04 74.50 94.51 72.29 95.61 74.38

LBPV riu2
P;R

93.47 78.28 94.65 80.16 92.76 76.45 94.47 79.94

LBPVu2
P;RGMP=2�1

PD2
95.36 81.77 96.04 81.37 95.26 80.01 96.04 81.58

Z. Guo et al. / Pattern Recognition 43 (2010) 706–719718
Meanwhile, using two principal orientations for matching could
achieve similar result to that by exhaustive searching and this
reduces much the searching space. As a simplified version of LBP/
VAR, the proposed LBPV achieves much better results than LBP and
higher accuracy than LBP/VAR in coupling with the global matching
scheme. The proposed feature dimension reduction scheme based
on distance measurement could reduce the feature size significantly
while keeping the classification performance good enough.
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of real-world textures, Pattern Recognition 37 (2) (2004) 313–323.

[35] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic, New
York, 1990.

[36] S. Lazebnik, C. Schmid, J. Ponce, A sparse texture representation using local
affine regions, IEEE Transactions on Pattern Analysis and Machine Intelligence
27 (8) (2005) 1265–1278.

[37] Y. Xu, H. Ji, C. Fermuller, A projective invariant for texture, in: International
Conference on Computer Vision and Pattern Recognition, 2006,
pp. 1932–1939.

[38] M. Mellor, B. Hong, M. Brady, Locally rotation, contrast, and scale invariant
descriptors for texture analysis, IEEE Transactions on Pattern Analysis and
Machine Intelligence 30 (1) (2008) 52–61.
About the Author—ZHENHUA GUO received the B.S. and M.S. degree in Computer Science from Harbin Institute of Technology in 2002 and 2004, respectively. From 2005
to 2007, he was a Research Assistant with the Department of Computing, the Hong Kong Polytechnic University. Since August 2007, he has been a Ph.D. candidate at Department
of Computing, the Hong Kong Polytechnic University. His research interests include pattern recognition, texture classification biometrics, etc.
About the Author—LEI ZHANG received the B.S. degree in 1995 from Shenyang Institute of Aeronautical Engineering, Shenyang, PR China, the M.S. and Ph.D. degrees in
Control Theory and Applications from Northwestern Polytechnical University, Xi’an, PR China, respectively, in 1998 and 2001. From 2001 to 2002, he was a Research Associate
in the Department of Computing, The Hong Kong Polytechnic University. From January 2003 to January 2006 he worked as a Postdoctoral Fellow in the Department of Electrical
and Computer Engineering, McMaster University, Canada. Since January 2006, he has been an Assistant Professor in the Department of Computing, The Hong Kong Polytechnic
University. His research interests include image and video processing, biometrics, pattern recognition, multisensor data fusion and optimal estimation theory, etc.
About the Author—DAVID ZHANG graduated in Computer Science from Peking University in 1974 and received his M.Sc. and Ph.D. degrees in Computer Science and Engineering
from the Harbin Institute of Technology (HIT), Harbin, PR China, in 1983 and 1985, respectively. He received the second Ph.D. degree in Electrical and Computer Engineering at the
University of Waterloo, Waterloo, Canada, in 1994. From 1986 to 1988, he was a Postdoctoral Fellow at Tsinghua University, Beijing, China, and became an Associate Professor at
Academia Sinica, Beijing, China. Currently, he is a Chair Professor with the Hong Kong Polytechnic University, Hong Kong. He was elected as an IEEE Fellow on 2009. He is the
Founder and Director of Biometrics Research Center supported by the Government of the Hong Kong SAR (UGC/CRC). He is also the Founder and Editor-in-Chief of the Inter-
national Journal of Image and Graphics (IJIG), Book Editor, The Kluwer International Series on Biometrics, and the Associate Editor of several international journals. His research
interests include automated biometrics-based authentication, pattern recognition, biometric technology and systems. As a principal investigator, he has finished many bio-
metrics projects since 1980. So far, he has published over 200 papers and 10 books.


	Rotation invariant texture classification using LBP variance (LBPV) with global matching
	Introduction
	Feature descriptor and dissimilarity metric
	LBP
	Rotation invariant variance measures (VAR)
	LBP variance (LBPV)
	Dissimilarity metric

	Rotation invariant global matching
	Matching by exhaustive search
	Global matching along principal orientations
	Feature dimension reduction

	Experimental results
	Results on the outex database
	Experimental results on CUReT database
	Comparison of LBP based methods and MR8 method

	Conclusion
	Acknowledgments
	References




