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Maximum margin criterion (MMC) based feature extraction is more efficient than linear discriminant
analysis (LDA) for calculating the discriminant vectors since it does not need to calculate the inverse
within-class scatter matrix. However, MMC ignores the discriminative information within the local struc-
tures of samples and the structural information embedding in the images. In this paper, we develop
a novel criterion, namely Laplacian bidirectional maximum margin criterion (LBMMC), to address the
issue. We formulate the image total Laplacian matrix, image within-class Laplacian matrix and image
between-class Laplacian matrix using the sample similar weight that is widely used in machine learning.
The proposed LBMMC based feature extraction computes the discriminant vectors by maximizing the dif-
ference between image between-class Laplacian matrix and image within-class Laplacian matrix in both
row and column directions. Experiments on the FERET and Yale face databases show the effectiveness of
the proposed LBMMC based feature extraction method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Dimensionality reduction is an important research topic in com-
puter vision and pattern recognition fields. The curse of high dimen-
sionality is usually a major cause of limitations of many practical
technologies, while the large quantities of features may even de-
grade the performances of the classifiers when the size of the train-
ing set is small compared with the number of features [1]. In the
past several decades, many feature extraction methods have been
proposed, and the most well-known ones are principle component
analysis (PCA) and linear discriminant analysis (LDA) [2].

Un-supervised learning cannot properly model underlying struc-
ture and characteristics of different classes. Discriminant features
are often obtained by supervised learning. LDA [2] is the traditional
approach to learn discriminant subspace. Unfortunately, it cannot be
applied directly to small size sample (SSS) problems [3] because the
within-class scatter matrix is singular. As we know, face recognition
is a typical small size problem. Many works have been reported to
use LDA for face recognition. The most popular method, called Fish-
erface, was proposed by Swets et al. [4] and Belhumeur et al. [5].
In their methods, PCA is first used to reduce the dimension of the
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original features space to N− c, and the classical FLD is then applied
to reduce the dimension to d (d�c). Since the smallest c − 1 pro-
jection components are thrown away in the PCA step, some useful
discriminatory information may be lost. On the other hand, the PCA
step cannot guarantee the transformed within-class scatter matrix
be nonsingular. More discussions about PCA and LDA can be found
in [6].

To solve the singularity problem, a singular value perturbation
can be added to the within-class scatter matrix [7]. A more system-
atic method is regularized discriminant analysis (RDA) [8]. In RDA,
one tries to obtain more reliable estimates of the eigenvalues by cor-
recting the eigenvalue distortion with a ridge-type regularization.
Penalized discriminant analysis (PDA) is another regularized version
of LDA [9,10]. The goals of PDA are not only to overcome the SSS
problem but also to smooth the coefficients of discriminant vectors
for better interpretation. The main problem of RDA and PDA is that
they do not scale well. In applications such as face recognition, the
dimensionality is often more than 10,000. It is not practical for RDA
and PDA to process such large covariance matrices.

A well-known null subspace method is the LDA + PCA method
[11]. When within-class scatter matrix is of full rank, LDA+PCA only
calculates the maximum eigenvectors of (Sw)

−1Sb to form the trans-
formation matrix. Otherwise, a two-stage procedure is employed.
First, the data are transformed into the null space V0 of Sw. Second,
it maximizes the between-class scatter in V0. LDA + PCA could be
sub-optimal because it maximizes the between-class scatter in the
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null space of Sw instead of the original input space. Direct LDA is
another null space method that discards the null space of Sb [12]. It
is achieved by diagonalizing first Sb and then Sw, which is in the re-
verse order of conventional simultaneous diagonalization procedure.
If St , instead of Sw, is used in direct LDA, it is actually equivalent to
the PCA+LDA. Gao et al. [13] proposed a singular value decomposi-
tion (SVD) based LDA approach to solving the single training sample
per person problem for face recognition. Zhuang and Dai [14,15] de-
veloped an inverse Fisher discriminant analysis (IFDA) method. They
modified the procedure of PCA and derived the regular and irregular
information from the within-class scatter matrix by a new criterion
called inverse Fisher discriminant criterion. Jin et al. [16] proposed
the uncorrelated optimal discrimination vectors (UODV) approach
which maximizes Fisher criterion simultaneously. To avoid the sin-
gularity problem of LDA, Li et al. [17] used the difference of both
between-class scatter and within-class scatter as discriminant crite-
rion, called maximummargin criterion (MMC). Since the inverse ma-
trix does not to be constructed, the SSS problem in traditional LDA is
alleviated. MMC has the advantages of effectiveness and simplicity.

The above-mentioned methods need to transform the 2D im-
ages into 1D vectors. This often leads to the so-called “curse of
dimensionality” problem, which is always encountered in SSS cases
such as face recognition. The matrix-to-vector transform may also
cause the loss of some useful structural information embedding in
the original images. To overcome the problems, Yang et al. pro-
posed the 2-dimensional principal component analysis (2DPCA) [18].
2DPCA is based on 2D image matrices rather than 1D vectors. That
is, the image matrix does not need to be transformed into a vec-
tor. Instead, the image covariance matrix can be constructed directly
from the image matrices, and its eigenvectors are derived for im-
age feature extraction. In contrast to PCA, the size of covariance
matrix using 2DPCA is much smaller. As a result, 2DPCA computes
the corresponding eigenvectors more quickly than PCA. Inspired by
the successful application of 2DPCA to face recognition, 2DLDA was
proposed [19–22]. Recently, Zheng et al. investigated the relations
between vector-based LDA and matrix-based discriminant analysis
[23]. They pointed out that from the bias estimation point of view,
2DLDA might be more stable than 1DLDA.

A drawback of 2DPCA is that it needs more coefficients than PCA
for image representation. Thus, 2DPCA needs more memory to store
features and costs more time to classify. Zuo et al. proposed bidirec-
tional PCA (BDPCA) [24,25] to solve this problem. BDPCA assumes
that the transform kernel of PCA is separable and it is a natural ex-
tension of the classical PCA and a generalization of 2DPCA. Inspired
by 2DPCA, Gao et al. [26] proposed a sequential row–column inde-
pendent component analysis (RC-ICA) for face recognition.

Recently, amethod based on the local geometrical structure called
tensor subspace analysis (TSA) [27] was proposed, which captures
an optimal linear approximation to the face manifold in the sense
of local isometry. However, the computational convergence of the
iterative TSA algorithms is not guaranteed. To address the problem,
Tao et al. proposed a tensor discriminant analysis method for feature
extraction [28,29]. They proposed a convergent solution to discrim-
inative tensor subspace selection and proved the convergence of it.
In [30], Zhang et al. presented a directional multilinear ICA method
by encoding the image or high-dimensional data array as a general
tensor.

Recent studies have shown that the face images possibly reside
on a nonlinear submanifold [31–39]. Many manifold-based learning
algorithms have been proposed for discovering the intrinsic low-
dimensional embedding of the original data. Among the various
methods, the most well-known ones are isometric feature mapping
(ISOMAP) [31], local linear embedding (LLE) [32] and Laplacian eigen-
map [33]. Experiments have shown that these methods can find
perceptually meaningful embedding for facial or digit images and

other artificial and real-world data sets. However, how to evaluate
the maps they generated on novel test data points remains unclear.
He et al. [34,35] proposed the locality preserving projections (LPP),
which is a linear subspace learning method derived from Laplacian
eigenmap. In contrast to most manifold learning algorithms, LPP pos-
sesses a remarkable advantage that it can generate an explicit map.
This map is linear and can be easily computed, like PCA and LDA.
The objective function of LPP is to minimize the local scatter of the
projected data.

Yang et al. [36] developed an unsupervised discriminant projec-
tion (UDP) technique for dimensionality reduction. UDP character-
izes the local scatter as well as the nonlocal scatter, seeking for a
projection that simultaneously maximizes the nonlocal scatter and
minimizing the local scatter. Both LPP and UDP do not use the
class label information and they are unsupervised methods in na-
ture. Yan et al. proposed the marginal Fisher analysis (MFA) [37,38]
and Chen et al. proposed the local discriminant embedding (LDE)
[39] for feature extraction and recognition. The two methods are
very similar in formulation. Both of them combine locality and class
label information to represent the intraclass compactness and in-
terclass separability. MFA and LDE take advantage of the partial
structural information of classes and neighborhoods of samples;
however, it is difficult to decide the number of nearest neighbors of
each sample and the number of shortest pairs from different classes
in MFA and LDE. In addition, the region covariance matrix (RCM)
lies on the connected Riemannian manifold, instead of the subspace.
RCM has many merits and is a natural feature for pattern recogni-
tion tasks. Pang et al. kernelized the RCM, formalized the similarity
metric using four block matrices and obtained good results on face
recognition [40].

In this paper, we propose a Laplacian bidirectional maximum
margin criterion (LBMMC) for feature extraction and recognition.
We formulate the Laplacian between-class scatter matrix and Lapla-
cian within-class scatter matrix on local patches of the data by the
weighted summation of distances based on image matrices. The
weighted summation of distances has been successfully used in
manifold learning [35,36] and can capture the underlying clustering
of samples. The objective function of our proposed method is the
trace difference criterion which can be directly solved by general-
ized eigenvalue decomposition. There is no convergence problem in
our proposed method. Wang et al. [41] pointed out that the fam-
ily objective functions for dimensionality reduction with trace ratio
criterion can be generally transformed into the corresponding ra-
tio trace criterion for obtaining a closed-form but approximate so-
lution. They proved the convergence of the projection and gave the
global optimality of the trace ratio value. They further extended the
method into tensor space [42], but it needs much more computation
and may be locally optimal in the tensor space.

Recently, Fu et al. have done some very good work in subspace
learning [43–45]. In [43,44], they proposed a new criterion based
on the concept of k-nearest-neighbor simplex (kNNS), which is con-
structed by the k-nearest-neighbors, to determine the class label of
a new datum. For feature extraction, they developed a novel sub-
space learning algorithm, called discriminant simplex analysis (DSA),
in which the within-class compactness and between-class separa-
bility are both measured by kNNS distance. In another work [45],
Fu et al. proposed a new discriminant subspace learning algorithm,
called correlation tensor analysis (CTA), incorporating both graph-
embedded correlation mapping and discriminant analysis in a Fisher
type of learning manner. The correlation metric can estimate the
intrinsic angles and distance for the locally isometric embedding,
which can deal with the case when Euclidean metric fails. CTA learns
multiple interrelated subspaces to obtain a low-dimensional data
representation reflecting both class label information and intrinsic
geometric structure of the data distribution.
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DSA is very similar to the feature extraction and classification
method in [46], which is based on minimal local reconstruction er-
ror. In DSA, the within-class compactness and between-class sep-
arability are measured by kNNS distance. In CTA, the within-class
compactness and between-class separability are measured by corre-
lation distance. In our proposed method, the within-class compact-
ness and between-class separability are measured by the weighted
sum of distance of any two data points. All the three methods can
process the case when the Euclidean distance does not work well. In
DSA, the image matrix is first transformed into image vector which
ignored the image structural information. In CTA, the image struc-
tural information is preserved by treating original image as tensors.
In the proposed method, we directly perform the algorithm on the
image matrix to preserve the image structure information. So CTA
and our proposed method preserve the image structural information
while DSA ignores such information.

In DSA, the objective function is transformed into the correspond-
ing ratio trace criterion for solution. Wang et al. [41] pointed out that
the solution by transforming trace ratio into ratio trace is closed-
form but sub-optimal. Furthermore, Wang extended the work into
tensor subspace learning [42] and proved the convergence. However,
the solution proposed by Wang et al. may be locally optimal but not
globally optimal and it needs much computational cost. In CTA, the
objective function is in a trace ratio form. It may be transformed into
a ratio trace form and it is iteratively solved as usually performed
in tensor analysis. So the solution in CTA may not be globally opti-
mal and it needs much computation. In our proposed method, the
objective function is a trace difference criterion and can be directly
solved by generalized eigenvalue decomposition. The optimization
of the objective function is simple and does not have the conver-
gence problem and local optimum problem.

The organization of this paper is as follows. In Section 2, we
review briefly the MMC and BDPCA. In Section 3, we propose the idea
and describe the new method in detail. In Section 4, experiments
with face images data are presented to demonstrate the effectiveness
of the new method. Conclusions are made in Section 5.

2. Related works

2.1. Outline of MMC

Suppose there are c known pattern classes �1,�2, . . . ,�c, the
between-class scatter matrix and within-class scatter matrix can be
denoted as

Sb = 1
N

c∑
i=1

li(mi − m0)(mi − m0)
T (1)

Sw = 1
N

c∑
i=1

li∑
j=1

(xji − mi)(x
j
i − mi)

T (2)

where N is the total number of training samples, and li is the number
of training samples in class i. In class i, the j-th training sample
is denoted by xji, the mean vector of training samples in class i is
denoted by mi and the mean vector of all training samples is m0.

From the classical Fisher criterion function, we know that when
the ratio of the between-class scatter to the within-class scatter is
maximized, the samples can be separated easily. In this paper, the
MMC based discriminant rule is defined as follows [17], which is
based on the difference of between-class scatter matrix and within-
class scatter matrix:

Js(w) = tr(WT (Sb − Sw)W) (3)

By the property of the extreme value of generalized Rayleigh quotient
[49], the optimal projection axe is the eigenvector corresponding to

the maximal eigenvalue of Eq. (3). In fact, the optimal projection
axes w1,w2, . . . ,wc can be selected as the orthonormal eigenvectors
corresponding to the first k largest eigenvalues �1,�2, . . . ,�k, i.e. (Sb−
Sw)wj = �jwj, where �1��2� · · · ��k.

Comparing MMC with the classical Fisher discriminant criterion,
we find that the former avoids calculating the inverse within-class
scatter, i.e. (Sw)

−1Sb is substituted by Sb −Sw. This can not only make
the computation more efficient but also avoid the singular problem
of the within-class scatter.

2.2. Bidirectional PCA

BDPCA is a straightforward image projection technique where a
kcol × krow feature matrix Y of an m × n image X(kcol>m, krow>n)
can be obtained by

Y = WT
col

× X × Wrow (4)

where Wcol is the column projector and Wrow is the row projector.
Let {X1,X2, . . . ,XN} be a training set of N images. By representing

the i-th image matrix Xi as an m-set of 1 × n row vectors, the row
total scatter matrix Srowt is defined by

Srowt = 1
Nm

N∑
i=1

(Xi − X)T (Xi − X) (5)

where X is the mean matrix of all training images. We choose the
row eigenvectors corresponding to the first krow largest eigenvalues
of Srowt to construct the row projector Wrow

Wrow = [wrow
1 ,wrow

2 , . . . ,wrow
krow

] (6)

By treating an image matrix Xi as an n-set of m × 1 column vectors,
the column total scatter matrix Scolt is defined by

Scolt = 1
Nn

N∑
i=1

(Xi − X)(Xi − X)T (7)

We then choose the column eigenvectors corresponding to the first
kcol largest eigenvalues of Scolt to construct the column projector Wcol

Wcol = [wcol
1 ,wcol

2 , . . . ,wcol
kcol

] (8)

Note that BDPCA is a generalization of 2DPCA, and 2DPCA can be
regarded as a special case of BDPCA with Wcol = Im, where Im is an
m × m identity matrix [24].

3. Laplacian bidirectional maximum margin criterion

3.1. Fundamentals

The proposed LBMMC based feature extraction is a straightfor-
ward image projection method. In LBMMC, a kcol × krow feature ma-
trix Y of an m × n image X (kcol>m, krow>n) can be obtained by

Y = WT
col × X × Wrow (9)

whereWcol is the column projecting matrix andWrow is the row pro-
jecting matrix. LBMMC based feature extraction has at least three
advantages over MMC based feature extraction. First, as a straight-
forward image projection criterion, LBMMC based feature extraction
does not require mapping an image X to an image vector x. Sec-
ond, LBMMC based feature extraction generally considers the struc-
tural information of images that is ignored in MMC based feature
extraction. Third, LBMMC uses sample similarity weight to capture
the embedding sample manifold structure. Next we discuss how to
calculate Wcol and Wrow.
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For non-Gaussian or manifold-value data, we usually deal with it
from local patches because non-Gaussian data can be viewed locally
Gaussian and a curved manifold can be viewed locally Euclidean
[47,48]. As discussed in Section 1, the weighted summation of dis-
tances can capture the underlying clustering of samples and has
been successfully used in manifold learning. In this section, further-
more, we use the weighted summation of distance to enhance the
robustness of MMC. We formulate the image total Laplacian scat-
ter matrix, image between-class Laplacian scatter matrix and image
within-class Laplacian scatter matrix similarity weighting in both
row and column directions; and then we propose the LBMMC for
feature extraction and recognition.

Let us consider a set of N sample images X = [X1, . . . ,XN] taken
from a (m×n) dimensional image space. The similarity between two
samples is defined as

Sij = exp(−‖xi − xj‖2/t) (10)

where xi is the vector of image matrix Xi. Obviously, for any xi, xj and
parameter t, 0�Sij�1 always holds. Further, the similarity function
is a strictly monotonically decreasing function with respect to the
distance between two samples Xi and Xj.

The similarity matrix between any two samples in the same class
can be defined as follows:

Hij =
{
Sij if xi and xj belong to the same class

0 else
(11)

In the row direction, the image total scatter matrix Srowt , the image
within-class scatter matrix Sroww and the image between-class scatter
matrix Srowb can be formulated as follows:

Srowt = 1
N

N∑
i=1

(Xi − X)T (Xi − X) ∝
N∑
i=1

N∑
j=1

(Xi − Xj)
T (Xi − Xj) (12)

Sroww = 1
N

c∑
i=1

li∑
j=1

(Xj
i − Mi)

T (Xj
i − Mi)

∝
c∑

k=1

lk∑
i=1

lk∑
j=1

(Xi
k − Xj

k)
T (Xi

k − Xj
k) (13)

Srowb = Srowt − Sroww (14)

Using the sample similarity weight, the image total Laplacian scatter
matrix can be formulated as follows:

LSrowt =
N∑
i=1

N∑
j=1

Sij(Xi − Xj)
T (Xi − Xj)

∝
∑
i,j

(SijX
T
i Xi − SijX

T
i Xj) = XT (L ⊗ Im)X (15)

where D is a diagonal matrix with Dii being column (or row) sum of
S, Dii = ∑

j Sij, and L = D − S is the Laplacian matrix. The weight Sij
incurs a heavy penalty when samples Xi and Xj are far apart.

In the row direction, the image within-class Laplacian scatter
matrix LSroww

LSroww =
c∑

k=1

lk∑
i=1

lk∑
j=1

Hij(X
i
k − Xj

k)
T (Xi

k − Xj
k)

=
N∑
i=1

N∑
j=1

Hij(X
i
k − Xj

k)
T (Xi

k − Xj
k)

∝
∑
i,j

(HijX
T
i Xi − HijX

T
i Xj) = XT (Lw ⊗ Im)X (16)

where Dw is a diagonal matrix with Dwii being the column (or row)
sum of H, Dwii =

∑
j Hij and Lw =Dw −H is the Laplacian matrix. The

weight Hij incurs a heavy penalty when samples Xi and Xj are far
apart.

So in the row direction, the image between-class Laplacian scatter
matrix LSrowb is

LSrowb = LSrowt − LSroww (17)

In the row direction, the image Laplacian MMC can be defined as
follows:

Jrow(w) = tr(WT
row(LS

row
b − LSroww )Wrow) (18)

We then choose the column eigenvectors corresponding to the first
krow largest eigenvalues of LSrowb − LSroww to construct the column
projector Wrow

Wrow = [wrow
1 ,wrow

2 , . . . ,wrow
krow

] (19)

In the column direction, the image total scatter matrix Scolt , the image
within-class scatter matrix Scolw and the image between-class scatter
matrix Scolb can be formulated as follows:

Scolt = 1
N

N∑
i=1

(Xi − X)(Xi − X)T ∝
N∑
i=1

N∑
j=1

(Xi − Xj)(Xi − Xj)
T (20)

Scolw = 1
N

c∑
i=1

li∑
j=1

(Xj
i−Mi)(X

j
i−Mi)

T ∝
c∑

k=1

lk∑
i=1

lk∑
j=1

(Xi
k−Xj

k)(X
i
k − Xj

k)
T (21)

Scolb = Scolt − Scolw (22)

Using the sample similarity weight, the image total Laplacian scatter
matrix LScolt , the image within-class Laplacian scatter matrix LScolw and
the image between-class scatter matrix LScolb in the column direction
can be formulated as follows:

LScolt =
N∑
i=1

N∑
j=1

Sij(Xi − Xj)(Xi − Xj)
T

∝
∑
i,j

(SijXiX
T
i − SijXiX

T
j ) = X(L ⊗ In)XT (23)

LScolw =
c∑

k=1

lk∑
i=1

lk∑
j=1

Hij(X
i
k − Xj

k)(X
i
k − Xj

k)
T

=
N∑
i=1

N∑
j=1

Hij(X
i
k − Xj

k)(X
i
k − Xj

k)
T

∝
∑
i,j

(HijXiX
T
i − HijXiX

T
j ) = X(Lw ⊗ In)XT (24)

LScolb = LScolt − LScolw (25)

In the column direction, the image Laplacian MMC can be defined
as follows:

Jcol(w) = tr(WT
col(LS

col
b − LScolw )Wcol) (26)

The optimal projection axes wcol
1 ,wcol

2 , . . . ,wcol
k can be selected

as the orthonormal eigenvectors corresponding to the first k
largest eigenvalues �1,�2, . . . ,�k, i.e., (LS

col
b − LScolw )wj = �jwj, where

�1��2� · · · ��k. Note that any operation in column direction can
be equivalently implemented by an operation in row direction by
virtue of the transform operation of matrix.

So far, we have the projection matrix Wcol and Wrow for LBMMC.
Note that if we set Wcol = Im, LBMMC will be exactly the Laplacian
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2DMMC. Thus the Laplacian 2DMMC is a special case of the proposed
LBMMC.

3.2. Feature extraction algorithm based on LBMMC

The proposed LBMMC based feature extraction algorithm can be
summarized as follows:

Step 1: Construct the similarity matrix S and H using Eqs. (10)
and (11).

Step 2: Calculate the row direction projection matrix Wrow using
Eqs. (15)–(17).

Calculate the column direction projection matrix Wcol using
Eqs. (24)–(26).

Step 3: Extract the sample feature using Eq. (9) and classify.

3.3. Connections with LLD, DLPP, ANMM and TSA

It is not hard to see that LBMMC is BDMMC if t approaches the
positive infinity in the similarity functions (9). The feature extraction
based on LBMMC has connections with Zhao et al.'s LLD [50], Wang
et al.'s ANMM [51] and Yu et al.'s DLPP [52]. ANMM takes advantage
of the partial structural information of classes and neighborhoods
of samples at the same time while LBMMC based feature extraction
purely explores the information of classes for discrimination. It is
always difficult to decide the number of nearest neighbors of each
sample and the number of shortest pairs from different classes in
ANMM. LLD and DLPP ignore the structural information of images
and need to transform image matrix into vector; LLD and DLPP have
the singularity problem of the within-class scatter matrix; LLD and
DLPP have higher computational complexity than the proposed LB-
MMC because they must calculate the inverse within-class scatter
matrix.

One may think that LBMMC is very similar to TSA [27]. Actu-
ally they are very different. In TSA, a nearest neighbor graph is used
to model the local geometrical structure. In the proposed method,
we use the weighted distance sum of any two data points to pre-
serve the local geometrical structure. In TSA, the image structural
information is preserved by using the tensor space. In our proposed
method, we directly work on image matrix to preserving the image
structural information. The objective function in TSA is trace ratio
criterion and it is iteratively solved. In LBMMC, our objective func-
tion is trace difference criterion and can be solved by generalized
eigenvalue decomposition. There is no convergence problem in our
proposed method. TSA needs to calculate an inverse matrix, while
the proposed method does not need to calculate the inverse matrix.
Thus LBMMC needs less computational cost than TSA. TSA is the ex-
tended version of LPP in tensor space, while LBMMC is the extended
version of MMC in non-Euclidean space. TSA is formulated in the ten-
sor space, while LBMMC is formulated in the image matrix. In TSA,
there are no explicit rules to choose the projection vectors, while in
LBMMC we can simply choose the projection vectors according to
the corresponding eigenvalues.

4. Experimental results

The features of 2DPCA, BDPCA and LBMMC are matrices. The dis-
tance of two feature matrices can be calculated using either a vector-
based or matrix-based method [24]. In a vector-based method, a
feature matrix is first mapped to a vector and then a vector-based
distance measure is used. In a matrix-based method, the distance
between two feature matrices can be directly computed. In the ex-
periments, we use the vector-based method to calculate the distance
of tow feature matrices. The experiments are implemented on an
AMD Athlon(tm) 64 Processor 3000+ Lenovo Computer with 512M
RAM and the programming environment is MATLAB (Version 7.01).

Fig. 1. Images of one person in FERET.
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Fig. 2. The recognition rates of 2DPCA, 2DLDA, 2DMMC versus the dimensions.

4.1. Experiments on FERET database

The FERET face image database is a result of the FERET program,
which was sponsored by the Department of Defense of US through
the DARPA Program [53,54]. It has become a standard database for
testing and evaluating state-of-the-art face recognition algorithms.

The proposed algorithm is tested on a subset of the FERET
database. This subset includes 1400 images of 200 individuals (each
individual has seven images). The subset involves variations in fa-
cial expression, illumination and pose. In our experiment, the facial
portion of each original image was automatically cropped based on
the location of eyes and the cropped image was resized to 40 × 40
pixels. Some example images of one person are shown in Fig. 1. In
the experiment, we use the first four images per class for training
and the remaining images for testing.

4.1.1. Selection of the projection axis
First, 2DPCA, 2DLDA and 2DMMC method are used for feature

extraction. The number of selected eigenvectors (projection vectors)
varies from 1 to 20. Here, denote by k the number of projection vec-
tors, then the dimension of corresponding projected feature vector
is 40 × k. Finally, a nearest neighbor classifier with cosine distance
is employed to classify in the projected feature space. The recog-
nition rates versus k are shown in Fig. 2. From Fig. 2, we can see
that 2DMMC achieves the top recognition rate when k equals to 3
and 2DPCA has better performance in most cases than 2DLDA and
2DMMC.

Next, LBMMC is used for feature extraction. Let k = 3, 4, 5, 6, 7, 8,
and denote bym the number of projection vectors in the second step
of feature extraction (in the column direction). We vary m from 2
to 40 (2:2:40). A nearest neighbor classifier with cosine distance is
employed for classification too.We can see that the proposedmethod
achieves the top recognition rate when k=6, m=28. The recognition
rates of the proposed method versus dimension are shown in Fig. 3.
In the proposed method, the parameter t of the similarity is set as
t = 100. Fig. 4 shows the recognition rate of the proposed method
versus the parameter t. It can been seen that the it has a stable
performance with various values of parameter t.
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4.1.2. Comparison of the performance
In this test, PCA [5], LDA [5], 2DPCA [17], 2DLDA [18], BDPCA [24],

TSA [27] and the proposed method are used for feature extraction.
Note that LDA involves a PCA phase. In this phase, we keep nearly
98% image energy and select the number of principal components as
m = 250. In the TSA algorithm, the number of iterations is taken as
10. After feature extraction, a nearest neighbor classifier with cosine
distance is employed for classification. The maximal recognition rate
of each method and the corresponding dimension and the running
time of each phase are listed in Table 1.

From Table 1, we can see that the proposed method has the
top recognition rate. LBMMC can be used for image feature ex-
traction by reducing the dimensionality in both column and row
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Table 1
Recognition rate on the FERET database.

PCA LDA MMC 2DPCA 2DLDA 2DMMC BDPCA TSA LBMMC

Recognition rate 0.4967 0.6550 0.5017 0.7767 0.7200 0.7300 0.7783 0.6533 0.7967

Table 2
Average recognition rates and standard deviations on the FERET database.

PCA LDA MMC 2DPCA 2DLDA 2DMMC BDPCA TSA LBMMC

Recognition mean 0.5770 0.4563 0.6910 0.7570 0.6503 0.7470 0.6395 0.5663 0.7647
Recognition std 0.0938 0.904 0.1262 0.0580 0.1207 0.0744 0.1068 0.1115 0.0550

directions, and it considers the structural information embedded in
the original images. Moreover, the proposed method considers the
distribution information of the original images using the sample sim-
ilarity weight, which has been widely used in manifold learning.

In the second experiment, 10-fold cross-validation tests are per-
formed to reevaluate the performance of PCA, 2DPCA, LDA, 2DLDA,
MMC, 2DMMC, BDPCA, TSA, and the proposed method LBMMC. In
each test, four images per class are randomly chosen for training,
while the remaining eight images are used for testing. All possible
dimensions of the final low-dimensional representation are evalu-
ated, and the best results are reported in Table 2. Table 2 presents the
maximal average recognition rates across 10 runs for each method
under the nearest neighbor classifier with cosine distance metrics.
The corresponding standard deviations (std) are also presented in
Table 2.

From Table 2, it can be seen that proposed method outperforms
the other methods. It is worthwhile to note that there are many
variants of the FERET database. It may not be enough to capture
the within-class and between-class distribution information to use
only four images of each class for training. Thus the LDA (Fisherface)
method may work worse than PCA (Eigenfaces). This is consistent
with the observation in [55] that Eigenface can outperform Fisherface
when the training set is small.

4.2. Experiments on Yale database

The Yale face database contain 165 images of 15 individuals (each
person providing 11 different images) under various facial expres-
sions and lighting conditions. In our experiments, each image was
manually cropped and resized to 100× 80. Fig. 5 shows sample im-
ages of one person.

In the first experiment, we use the first three images per class
for training and the remaining images for testing. PCA, LDA, 2DPCA,
2DLDA, BDPCA, TSA and the proposed LBMMC are used for feature
extraction. In PCA and the PCA stage of LDA, we kept nearly 98%
image energy and selected the number of principal components as
m=34. In the TSA algorithm, the number of iterations is taken to be
10. In the proposed method, the parameter t of the similarity is set
as t = 100. Finally, a nearest neighbor classifier with cosine distance
is employed. The final recognition rates are given in Table 3. As can
be seen, the proposed method has the best recognition rate.

In the second experiment, 10-fold cross-validation tests are per-
formed to evaluate the performance of PCA, 2DPCA, LDA, 2DLDA,
MMC, 2DMMC, BDPCA, TSA, and the proposed method LBMMC. In
each test, three images per class are randomly chosen for training,
while the remaining eight images are used for testing. All possible
dimensions of the final low-dimensional representation are evalu-
ated, and the best results are reported in Table 4, which lists the
maximal average recognition rates across 10 runs of each method
under the nearest neighbor classifier with cosine distance metrics
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Fig. 5. Eleven images of one person in Yale.

Table 3
Recognition rate on the Yale database.

PCA LDA MMC 2DPCA 2DLDA 2DMMC BDPCA TSA LBMMC

Recognition rate 0.8417 0.8417 0.8917 0.8833 0.8750 0.8750 0.8917 0.8833 0.9250

Table 4
Average recognition rates and standard deviations on the Yale database.

PCA LDA MMC 2DPCA 2DLDA 2DMMC BDPCA TSA LBMMC

Recognition mean 0.8375 0.8667 0.8533 0.9017 0.9167 0.9150 0.8917 0.8447 0.9317
Recognition std 0.0343 0.0494 0.0418 0.0196 0.0192 0.0283 0.0269 0.0366 0.0204

and their corresponding standard deviations (std). From Table 4, it
can be seen that proposed method outperforms other methods.

4.3. Evaluation of the experiments results

Is the proposed method statistically better than other methods
in terms of its recognition rate? To answer this question, let us eval-
uate the experimental results in Table 3 using McNemar's [56–58]
significance test. McNemar's test is essentially a null hypothesis sta-
tistical test based on a Bernoulli mode. If the resulting p-value is
below the desired significance level (for example, 0.05), the null hy-
pothesis is rejected and the performance difference between two
algorithms is considered to be statistically significant. In the FERET
and Yale databases, our proposed method outperforms TSA in the
10-fold cross-validation tests (p= 0.000079343 and 0.00013066, re-
spectively). By this test, we find that the proposed method statisti-
cally significantly outperforms TSA.

5. Conclusions

We proposed a new discriminant subspace learning method,
namely LBMMC, which extends MMC into non-Euclidean space.
LBMMC conducts the graph embedding to keep the data rela-
tionships measured by weighted distance sum of any two data
points, and it is directly performed on the image matrix to pre-
serve the image matrix structural information. Therefore, LBMMC
learns multiple interrelated subspaces to obtain a low-dimensional
data representation reflecting class label information, image struc-
tural information and image intrinsic manifold structure. LBMMC
avoids the calculation of inverse matrix. It was found that Laplacian
2DMMC is a special case of LBMMC. The experimental results on
FERET and Yale face databases are very encouraging.
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