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Abstract

This paper exploits both the inter- and intra-scale interdependencies that exist in wavelet coe3cients to improve image
restoration from noise-corrupted data. Using an over-complete wavelet expansion, we group the wavelet coe3cients with the
same spatial orientation at several scales. We then apply the linear minimum mean squared-error estimation to smooth noise.
This scheme exploits the inter-scale correlation information of wavelet coe3cients. To exploit the intra-scale dependencies,
we calculate the co-variance matrix of each vector locally using a centered square-shaped window. Experiments show that the
proposed hybrid scheme signi7cantly outperforms methods exploiting only the intra- or inter-scale dependencies. The perfor-
mance of noise removal also depends on wavelet 7lters. In our experiments a biorthogonal wavelet, which best characterizes
the image inter-scale dependencies, achieves the best results.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Wavelet transform (WT) [1–4] can decorrelate images
into nearly independent coe3cients and is a powerful tool
in adaptive signal processing such as coding and noise re-
moval. In the wavelet domain, image energy is compacted
into a small number of signi7cant coe3cients that repre-
sent instantaneous features. The small valued coe3cients
tend to be localized due to image-independent additive
noise, which will increase the image power in general.
Wavelet thresholding has proved to be an e@ective de-
noising technique [5–11]. In such methods, a threshold is
preset to eliminate noise and insigni7cant structures. Those
coe3cients less than the threshold will be set to 0 while
coe3cients above the threshold will be preserved (hard
thresholding) or reduced (soft thresholding). After thresh-
olding, the energy of the noisy image may decrease.
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Generally, the wavelet coe3cients within each subband can
be modeled as independent identically distributed (i.i.d)
random variables with generalized Gaussian distribution
(GGD) [1,5,6,12]. With the GGD modeling, Chang et al.
[5] proposed the BayesShrink that employs a subband
adaptive soft threshold. Chang’s approach signi7cantly out-
performs Donoho’s classicalWavelet Shrinkage [7], which
is a global nonparametric estimation method.

Although WT well decorrelates images, there still exist
strong dependencies between wavelet coe3cients. Exploita-
tion of such dependency information with proper statistical
models could further improve the performance of coding
and denoising algorithms. As noted by Liu and Moulin [13],
the statistical wavelet models can be classi7ed into intra-
scale models, inter-scale models and composite dependency
models.

A number of intra-scale models have been proposed in
Refs. [6,14,15]. Chang et al. [6] de7ned each wavelet coef-
7cient as a mixture of GGD variables with unknown slowly
spatially varying parameters. The estimation of these
parameters is conditioned on a function of its neighboring
coe3cients. The morphological coder [15] also exploits the
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spatial clustering of wavelet coe3cients. MKhLcak et al. [14]
estimated the two-order local statistics of each coe3cient
with a centered square-shaped window and developed a
linear minimum mean squared-error estimation (LMMSE)
like method.

The wavelet dependency information is distributed not
only in the intra-scale manner but also in the inter-scale
manner. If a coe3cient at a coarser scale has small magni-
tude, its descendant coe3cients at 7ner scales are also likely
to be small. Shapiro exploited this property to develop the
well-known embedded zerotree wavelet coder [16]. Con-
versely, if a wavelet coe3cient produced by a true signal
is of large magnitude at 7ner scale, its parents at coarser
scales will also be large. However for those coe3cients pro-
duced by noise, the magnitude will decay rapidly along the
scales. With this observation, Xu et al. [17] multiplied the
adjacent wavelet scales to sharpen the important structures
while reducing noise. They then distinguished edge points
from noise in the multiscale products. The inter-scale depen-
dencies in the wavelet domain have also been represented
by autoregressive models and hidden Markov models in lit-
erature [18–21].

Wavelet intra- and inter-scale dependency information
can be combined to improve noisy coe3cients estimation
results. In Ref. [22], Portilla et al. modeled each coe3cient
as the product of a Gaussian random vector and a hid-
den multiplier variable that included adjacent scales in the
conditioning local neighborhood. Liu and Moulin [23] also
employed a composite denoising model. Furthermore they
analyzed the dependency that existed in wavelet coe3cients
with a measurement called mutual information [13]. Vari-
ous wavelet models were also compared with respect to the
capability of capturing the dependency information.

In this paper, we will present an adaptive inter- and
intra-scale hybrid noise removal scheme with an over-
complete wavelet expansion (OWE). This expansion has
been observed to perform much better in denoising than a
(bi)orthogonal wavelet transform (OWT) that is a lack of
translation invariant [6,9,24]. No downsampling occurs in
OWE. Thus at each scale the image samples are the same.
We combined the wavelet coe3cients at the same position
across adjacent scales as a vector, and then applied the
LMMSE to the vector variable. This incorporates naturally
the inter-scale dependencies of wavelet coe3cients to the
estimation. To exploit the intra-scale dependency, we es-
timated the second order statistics of the vector variable
locally by a centered square-shaped window within each
subband. An LMMSE algorithm with a two-scale com-
posite dependency model is 7nally proposed and validated
with benchmark images. The performance of the scheme
also depends on the selection of the wavelet 7lters.

The paper is organized as follows. Section 2 introduces
the OWT and OWE. In Section 3, a hybrid wavelet inter-
and intra-scale model is proposed and an e3cient denoising
algorithm is developed. The e@ectiveness of several wavelet
7lters for the algorithm is also discussed. Experiments on
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Fig. 1. The decomposition and reconstruction structures of (bi)
OWT. The downward and upward arrows indicate downsampling
and upsampling.

benchmark images by intra-scale, inter-scale and the pro-
posed hybrid schemes are shown in Section 4. The conclu-
sion is given in Section 5.

2. Wavelet transform and overcomplete expansion

A WT represents a signal f as a linear combination of
elementary atoms or building blocks. More details about the
theory of wavelets and their application in signal processing
can be found in Daubechies [3], Mallat [1,2] and Vetterli
[4]. Denoted by  m;n the dyadic dilation and translation of a
mother wavelet  can be described as

 m;n(t) = 2−m=2 (2−mt − n) (2.1)

with m; n∈ Z . Then f can be written as

f =
∑

cm;n(f) m;n: (2.2)

For orthogonal wavelets,

cm;n(f) = 〈f;  m;n〉=
∫

f(t) m;n(t) dt; (2.3)

where 〈·; ·〉 is the inner product in L2(R). For bi-orthogonal
wavelets,

cm;n(f) = 〈f;  ̃ m;n〉; (2.4)

where  ̃ m;n is the dual wavelet of  m;n [3].
The (bi) OWT structure is shown in Fig. 1. The down-

ward and upward arrows indicate downsampling and
upsampling. H and G are the low- and high-pass analytic
7lters while F and K are the corresponding synthetic 7lters.
When the wavelet bases are orthogonal, F and K are the
conjugated 7lters of H and G. Besides the Haar wavelet,
there is no other compactly supported orthogonal wavelet
that is (anti-)symmetrical. This is a very important property
in signal processing. Compactly supported bi-orthogonal
wavelets discard the orthogonality to preserve the symmetric
property.

OWT is translation variant due to the downsampling in
decomposition. This will cause some visual artifacts (such
as Gibbs phenomena) in threshold-based denoising [24]. It
has been observed that the overcomplete wavelet expansion
(OWE, undecimated WT or translation invariant transform)
achieves better results in noise removal [6,9,24]. The de-
noised image by OWE is an average of several circularly
shifted denoised versions of the same image by OWT. The
noise is smoothed more and the artifacts are weakened.
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Fig. 2. The illustration of overcomplete wavelet expansion (OWE).
Filter Hj is obtained by placing (2j−1 − 1) zeros between the
coe3cients of H0.

The denoising scheme presented in this paper is based on
OWE whose structure is shown in Fig. 2. No downsampling
or upsampling occurs but the analytic and synthetic 7lters
are changed in each decomposition or reconstruction stage.
Hj is obtained by placing (2j−1 − 1) zeros between the
coe3cients of H0. Similarly for Gj , Fj and Kj . The zero
padding of wavelet 7lters, instead of downsampling wavelet
coe3cients, is used to decrease the frequency bandwidth.

The 2-D OWT and OWE can be extended from 1-D by
separable 7ltering. Wavelet coe3cients in the detail bands
can be obtained in three directions: horizontal, vertical and
diagonal. Fig. 3 shows the one-stage decomposition struc-
tures of 2-D OWT and OWE. Filter F ′ is the transition of
F . At each scale the wavelet coe3cients of OWE have the
same number of samples as the input image.

3. Hybrid intra- and inter-scale model and denoising
algorithm

3.1. The LMMSE of wavelet coe8cients

Suppose the original image f is corrupted with additive
Gaussian white noise �

g= f + �; (3.1)

where �∈N (0; �2). By implementing OWE to the noisy im-
age, we can denote the wavelet coe3cient at scale j as

Zj = Xj + Vj; (3.2)
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Fig. 3. One stage decomposition of the 2-D (a) OWT; (b) OWE. F ′ is the transition of F . WH
j , WV

j and WD
j are the wavelet coe3cients

at horizontal, vertical and diagonal directions.

where Xj is the OWE of f and Vj is the OWE of � for the
linearity of the WT.

Many threshold-based methods have been proposed to
recover the image from noisy observation. The Wavelet
Shrinkage �t(z)= sgn(z)max(|z|− t; 0) was originally pro-
posed by Donoho [7] with a soft threshold t = �

√
2 logN

based on orthonormal wavelet bases. N is the sample
length of input signal. Although Donoho demonstrated it is
asymptotically optimal in the minimax sense, it is known
that the universal threshold would over-smooth signals.
Donoho improved his work by the SureShrink scheme in
Ref. [8], which adaptively computes the threshold by mini-
mizing Stein’s unbiased risk estimate. Bayesian estimation
based soft threshold was also proposed in some publications
[5,10].

It is generally accepted that the wavelet coe3cients
conform to the generalized GGD within each subband
[1,5,6,12]. With the GGD modeling, Chang et al. [5]
presented a subband-dependent soft threshold t = �2=�Xj

(assuming the wavelet base is orthonormal), where �Xj

is the standard deviation of wavelet coe3cients Xj . The
so-called BayesShink scheme outperformed many other
popular thresholds.

In this paper, we apply the LMMSE, instead of soft thresh-
olding, to wavelet coe3cients. Suppose the variances of Vj

and Xj are �2
j and �2

Xj , respectively, the LMMSE of variable
xj is

x̂j = czj (3.3)

with

c =
�2
Xj

�2
Xj
+ �2

j
: (3.4)

Noise Vj is Gaussian distributed and independent of Xj .
If Xj is also of Gaussian distribution, it is well known
that LMMSE will evolve as the optimal minimum mean
square-error estimation (MMSE) [25]. Unfortunately Xj

subjects to GGD, which degenerates to the Gaussian distri-
bution only in a very special case [1,5].

The standard deviation of noise Vj is computed as

�j = ‖ j‖�; (3.5)
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where  j is the dilation of 2-D mother wavelet  :  j(x; y)=
2−j (2−jx; 2−jy), and ‖ • ‖ is the normal operator: ‖ ‖=√∫∫

 (x; y) dx dy.
If the noiseless image Xj is unknown, �Xj can be estimated

as follows:

�̂2
Xj = �2

Zj − �2
j (3.6)

with

�2
Zj =

1
MN

M∑
m=1

N∑
n=1

Z2
j (m; n): (3.7)

This is the variance of noisy image Zj whose size is M ×N .
LMMSE is similar to the soft thresholding strategy to

some extent. Unlike shrinking noisy wavelet coe3cient z
with a threshold t: x̂=sgn(z)max(|z|− t; 0), LMMSE modi-
7es the coe3cient with a factor c: x̂=cz. It could be observed
from Eq. (3.4) that c is less than 1, and then the magnitude
of estimated wavelet coe3cient x̂ will be less than that of z.
This would lead to a power reduction of the restored image,
similar to the threshold-based schemes.

3.2. The intra-scale dependencies exploited model

The LMMSE scheme presented in Section 3.1 is subband
adaptive, but the spatial dependencies within each subband
are not exploited. It is usually true that a wavelet coe3-
cient is better correlated with its local neighborhood. Esti-
mating the data locally is widely used technique in image
compression and denoising algorithms. In Ref. [6], Chang
et al. proposed a spatially adaptive wavelet thresholding
scheme based on context modeling. Each wavelet coe3cient
is modeled as a mixture of GGD variables with unknown
slowly spatially varying parameters. The estimation of these
parameters is conditioned on a function of its neighboring
coe3cients.

MKhLcak et al. [14] developed a spatially adaptive scheme
with LMMSE strategy. For each wavelet coe3cient, the
variance �2

Xj is estimated locally with a centered square win-
dow �j rather than the whole subband. All the points within
�j are assumed to have the same variance �2

�j , which is
calculated as

�̂2
�j =max


0;

1
N�j

∑
(m;n)∈�j

Z2
j (m; n)− �2

j


 ; (3.8)

where N�j is number of points in window �j . The modi7-
cation factor c of the data in window �j is then computed
as

c =
�̂2
�j

�̂2
�j

+ �2
j
: (3.9)

MKhLcak et al. [14] also imposed an exponential prior dis-
tribution f�(�2) = �e−��2 on the variance �2

�j . Thus an ap-
proximate maximum a posteriori (MAP) estimator of �2

�j

is

�̂2
�j =max


0;

N�j

4�


−1 +

√√√√1 +
8�
N 2

�j

∑
(m;n)∈�j

Z2
j (m; n)


− �2

j


 : (3.10)

The estimation described in Eq. (3.10) was achieved us-
ing a more satisfying denoising performance than that of
Eq. (3.8). When the size of window �j increases, the two
estimations are identical asymptotically. MKhLcak’s scheme
exploits the wavelet intra-scale dependencies and its noise
removal performance was superior to that of Chang [6].

3.3. The inter-scale dependencies exploited model

Wavelet coe3cient dependencies exist not only within
but also across subbands. The adjacent wavelet scales are
strongly correlated in general. Observing that small magni-
tude coe3cients at coarser scales are more likely to yield
insigni7cant descendants at a 7ner scale, Shapiro developed
the well-known embedded zerotree wavelet coder [16]. In
contrast, large magnitude wavelet coe3cients produced by
true signal at 7ner scales are more likely to have signi7cant
parents at coarser scales. However, the coe3cients caused
by noise would decay rapidly along scales. With this obser-
vation, Xu et al. [17] multiplied the adjacent wavelet scales
to sharpen edge structures while weakening noise. Sadler et
al. [26] analyzed the multiscale wavelet products and ap-
plied them to step detection and estimation.

Another popular wavelet inter-scale dependency rep-
resentation is through autoregressive models or hidden
Markov models. By structuring the image wavelet coe3-
cients as a quadtree along scales, Banham [21] imposed an
autoregressive model that evolves from coarse scales to 7ne
scales on the quadtree nodes. He then applied a multiscale
Kalman smoothing 7lter after some pre7ltering. The hidden
Markov models (HMMs), especially the hidden Markov
tree model (HMT) proposed by Crouse [18], characterize
well the joint statistics of wavelet coe3cients across scales.
Each coe3cient is assigned a hidden state, conditioned on
which the coe3cients are i.i.d Gaussian. HMT was fur-
ther improved by Fan [19] with a new four-state model
called HMT-2. Romberg [20] also simpli7ed the HMT
by exploiting the inherent self-similarity of real-world
images.

In this section we present a new inter-scale dependen-
cies exploited model based on the LMMSE algorithm. In
the next section the model will be extended to inter-scale
and intra-scale combined form. By implementing OWE on
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the noisy image, we group the points with the same spatial
position at J scales as a vector:
*
Z(m; n) = col{Z1(m; n); : : : ; ZJ (m; n)}; (3.11)

where col denotes column vector. Also
*
Z =

*
X +

*
V (3.12)

with
*
X(m; n) = col{X1(m; n); : : : ; XJ (m; n)} and

*
V(m; n) = col{V1(m; n); : : : ; VJ (m; n)}; (3.13)

where
*
v is the Gaussian vector noise and independent of

*
x

The LMMSE of
*
x can be computed as

*̂x = P(P + R)−1*z ; (3.14)

where P and R are the autocovariance matrices of
*
x and

*
v ,

respectively,

P = E[
*
x

*
x
T
] = E




x21 · · · x1xJ

...
. . .

...

xJ x1 · · · x2J


 and

R= E[
*
v
*
v
T
] = E




v21 · · · v1vJ

...
. . .

...

vJ v1 · · · v2J


 : (3.15)

The diagonal element of R, E[v2j ], is equal to �2
j , which

can be computed by Eq. (3.5). Noise variables vi and vj ,
where i 
= j, are the projections of v on the wavelet bases
 i and  j . They are correlated due to the similarity between
 i and  j . The correlation coe3cient is

'i; j =

∫∫
 i(x; y) j(x; y) dx dy√∫∫

 2
i (x; y) dx dy

√∫∫
 2
j (x; y) dx dy

; (3.16)

where vi and vj are jointly Gaussian and their density is

p(vi; vj)

=
1

2)�i�j

√
1− '2

i; j

e1=2(1−'2i; j)[v
2
i =�

2
i −2'i; jvivj =�i�j+v2j =�

2
j ]: (3.17)

Thus the expectation E[vivj] is

Ri; j = E[vivj] =
∫ ∫

vivjp(vi; vj) dvi dvj = 'i; j�i�j: (3.18)

Each of the components of matrix P can be computed by

Pi; j = E[xixj] = E[zizj]− Ri; j ; (3.19)

where E[zizj] is estimated as

E[zizj] ≈ 1
MN

M∑
m=1

N∑
n=1

Zi(m; n) · Zj(m; n): (3.20)

3.4. The intra- and inter-scale dependencies combined
scheme

The inter-scale model proposed in Section 3.3 can be
improved to merge intra-scale dependencies. This can be
accomplished by estimating the covariance matrix P locally
with a proper window.

A centered square window � is set for image
*
Z . All the

vector data in � is assumed to have the same statistics. The
elements of local autocovariance matrix P� are estimated by

P̂�
i; j ≈ max


0;

1
N�

∑
(m;n)∈�

Zi(m; n)Zj(m; n)− Ri; j


 ; (3.21)

where N� is the number of vector data in window �. Then
the image coe3cients within local window � are estimated
by
*̂x = P̂�(P̂� + R)−1*z : (3.22)

The above LMMSE (3.22) incorporates the wavelet inter-
and intra-scale dependency information together to smooth
the noisy image coe3cients.

3.5. The LMMSE and thresholding hybrid algorithm

Suppose the input image is decomposed into J wavelet

scales, and it is found that setting
*
Z as a J -D vector by Eq.

(3.11) will not yield satisfying results. This could be ex-
plained in two ways. Firstly, scale j is strongly correlated
with scale j+1 but its correlation with scale j+2; j+3; : : : ; J
decreases rapidly. These coarser scales will not conveymuch
useful information to improve the estimation of scale j. Sec-
ondly, a signi7cant structure has larger spatial supports at
coarser scales than 7ner scales. One point at a coarse scale
may appear as an edge, but at 7ner scales the points with the
same spatial orientation may be noise predominated. Thus
7ne scales may impose negative e@ects on coarse scales.

With these considerations, we will not employ 7ne scale
measurements to update coarse scale image estimations. We
recover Xj only from the measurements at adjacent scales j

and j + 1. De7ne the vector image
*
Z j as

*
Z j(m; n) = col{Zj(m; n); Zj+1(m; n)}: (3.23)

So
*
Z j =

*
X j +

*
V j (3.24)

with
*
X j(m; n) = col{Xj(m; n); Xj+1(m; n)} and

*
V j(m; n) = col{Vj(m; n); Vj+1(m; n)}: (3.25)

Applying the hybrid intra- and inter-scale LMMSE scheme

in 3.4 to
*
Z j the estimated image

*̂x
j is obtained. We preserve

only the component X̂ j of it. Similarly, the estimation result
X̂ j+1 would be obtained by applying the LMMSE to data
*
Z j+1.
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In the threshold-based denoising schemes, wavelet coef-
7cients whose magnitude is below the preset threshold will
be set to 0. This insigni7cant data is predominantly noise
and should be discarded. To merge the merits of threshold-
ing into the LMMSE scheme, we apply LMMSE only to the
coe3cients above a threshold and shrink those coe3cients
below the threshold to 0. The scale adaptive threshold em-
ployed in this paper is

tj = c�j (3.26)

with c being a constant between 3 and 3.5. Most of the Gaus-
sian noise will fall into three times its standard deviation.
This threshold was proposed by Pan et al. [19] and produces
good results.

The LMMSE and thresholding hybrid algorithm is sum-
marized by pseudocode as follows.

First implement the overcomplete wavelet expansion
to get Zj; j = 1; 2; : : : ; J .
Loop for each scale j
{
Form the vector image

*
Z j and compute the noise

autocovariance matrix R.
Set threshold tj = c�j and the centered square window
�j with a proper size.
Loop for each image block shaped by �j

{
Estimate the autocovariance matrix P̂�j .
Loop for each coe8cient within the block
{
If |Zj(m; n)|¡tj
X̂ j(m; n) = 0

Else
*̂x
j(m; n) = P̂�j (P̂�j + R)−1Ẑ j(m; n)

End

The @rst element of
*̂x
j(m; n); X̂ j(m; n), is preserved.

} End of loop
} End of loop

} End of loop
Reconstruct the estimated image by X̂ j ; j = 1; 2; : : : ; J .

3.6. Wavelet bases selection

In Ref. [13], Liu and Moulin measured the wavelet coef-
7cient dependencies by mutual information, which relates
fundamentally to data compression, estimation and classi7-
cation performance. They found that themutual information
depends on not only the used statistical models but also the
employed wavelet 7lters. The denoising performance of the
proposed scheme is also wavelet dependent. In this paper, we
focus on the widely used compactly supported orthogonal
and biorthogonal wavelets constructed by Daubechies [3].

We denote Daubechies’ orthogonal wavelet as Dau(N ),
where N = 1; 2; : : : ;∞ is the vanishing moment of the
wavelet whose 7lter length is 2N . The biorthogonal wavelet

is denoted by CDF(N; N ′), where N is the vanishing mo-
ment of the analytic wavelet 7lter and N ′ is that of the
synthetic wavelet 7lter. Orthogonal wavelets Dau(N ), with
the exception of the Haar wavelet, lack (anti-)symmetry.
This is an important property in signal and image pro-
cessing. Biorthogonal wavelets CDF(N; N ′) discard the
orthogonality to preserve the (anti-)symmetric property.

The proposed inter-scale model exploits the high corre-
lation of adjacent wavelet scales. The denoising e3ciency
relies on how much positive information the coarser scale
can convey to its adjacent 7ner scale. If a signi7cant edge
point occurs at a 7ner scale then it is expected that a cor-
responding edge point will appear with the same sign at
coarser scale. Otherwise, a coarser scale may be detrimental
to a 7ner scale estimation.

De7ne variable yj as the product of two adjacent scale
wavelet coe3cients

yj = xjxj+1: (3.27)

Di@erent wavelet 7lters result in di@erent distributions of yj .
The histograms of y1 for image Lena obtained from four
wavelets: Dau (2), Dau (4), CDF (1; 3) and CDF (2; 4)
are illustrated in Fig. 4. (The histograms of yj , j¿ 1, are
similar to those of y1 in shape.)

The expectation is that the histograms of yj are asym-
metrical and have heavy tails in the positive X -axis, im-
plying high correlation of adjacent scales. From Fig. 4 we
can see that the histograms of y1 become more symmetri-
cal when the vanishing moments (as well as the length) of
the wavelet 7lters increase. For example, the histograms for
Dau (4) are more symmetrical than those for Dau (2). The
same to CDF (1; 3) and CDF (2; 4). It is observed that the
histograms’ shape for biorthogonal wavelet CDF (1; 3) is
better than other wavelets. The positive tails are rather con-
siderable. CDF (1; 3) has only 1 vanishing moment for an-
alytic 7lter while having 3 vanishing moments for synthetic
7lter to smooth noise. It is likely to be the most suitable
wavelet for our algorithm.

4. Experiments

We call the proposed algorithm in Section 3.6, M3. It is
compared with MKhLcak’s [14] intra-scale dependencies ex-
ploited scheme (M1) and the inter-scale dependencies ex-
ploited scheme (M2) presented in Section 3.3. It should
be noted that we also hybridize scheme M2 with a sim-
ilar thresholding strategy as in scheme M3. The wavelets
Dau (2), Dau (4), CDF (1; 3) and CDF (2; 4) are employed
in the experiments.

Several benchmark images have been used to test the three
schemes and the conclusions are identical. The experimental
results on images Lena and Peppers are reported here. The
centered square window used in M1 and M3 is of 9×9 size.
Three levels of Gaussian white noise with � = 20; 25; 30
are added to Lena and Peppers, respectively. The denoising
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Fig. 4. Histograms of the products of the 7rst two scale wavelet coe3cients for di@erent wavelets. (a) Dau (2); (b) Dau (4); (c) CDF (1; 3);
(d) CDF (2; 4).

results by the three methods and four wavelets are listed in
Tables 1 and 2.

It is observed that algorithm M3 always performs bet-
ter than M1 and M2 for a 7xed wavelet base. Furthermore,

scheme M3 by wavelet CDF (1; 3) yields the best denoising
performance. This is highlighted in Tables 1 and 2. While
being a good bridge to exploit wavelet inter-scale dependen-
cies, CDF (1; 3) is not so good at characterizing the wavelet
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Table 1
SNR (dB) results for the three methods for image Lena in di@erent noise levels

Lena Dau (2) Dau (4) CDF (1,3) CDF (2,4)

� = 20 M1 25.74 25.69 25.40 25.66
M2 25.76 25.70 25.83 25.35
M3 25.95 25.82 26.09 25.67

� = 25 M1 24.56 24.45 24.26 24.44
M2 24.53 24.46 24.69 24.29
M3 24.98 24.84 25.11 24.69

� = 30 M1 23.53 23.39 23.28 23.37
M2 23.55 23.46 23.71 23.27
M3 24.09 23.94 24.21 23.81

Table 2
SNR (dB) results for the three methods with image Peppers for di@erent noise levels

Peppers Dau (2) Dau (4) CDF (1,3) CDF (2,4)

� = 20 M1 24.49 24.33 24.20 24.39
M2 24.70 24.51 24.75 24.27
M3 24.94 24.63 25.20 24.52

� = 25 M1 23.42 23.24 23.17 23.31
M2 23.74 23.55 23.82 23.29
M3 24.09 23.76 24.32 23.62

� = 30 M1 22.44 22.21 22.19 22.27
M2 22.75 22.54 22.89 22.31
M3 23.31 22.98 23.55 22.82

intra-scale dependencies and it is not an appropriate can-
didate for scheme M1. From Tables 1 and 2 we see that
scheme M1 by CDF (1; 3) always reports the poorest re-
sults. In contrast methods M2 and M3 take advantage of the
wavelet inter-scale dependencies. So wavelets CDF (1; 3)
and Dau (2), which have stronger correlation between ad-
jacent scales, are more suitable for the two schemes. In Fig.
5, the noisy Lena (�= 30) and the three denoised versions
by biorthogonal wavelet CDF (1; 3) are illustrated. Fig. 6
shows the noisy Peppers (�=30) and the denoised images
by CDF (1; 3).

5. Conclusion

In this paper, we presented a wavelet based noisy im-
age restoration approach that exploits both the intra- and
inter-scale dependencies. The overcomplete wavelet expan-
sion, which is more e3cient in denoising than the orthog-
onal wavelet expansion, is employed in the scheme. The
wavelet coe3cients with the same spatial orientation at ad-
jacent scales are combined as a 2-D vector. By applying the

LMMSE to the vector variable, the inter-scale correlation
information is utilized to update the estimation of one scale.
To exploit the wavelet intra-scale dependencies, we used
a centered square window to estimate the autocovariance
matrices of wavelet coe3cients locally. Finally, we com-
bined the composite dependencies exploited algorithm with
a thresholding strategy. The experimental results on bench-
mark images illustrate the proposed scheme outperforms
the methods that only exploit the intrascale or interscale
dependencies.

The performance of the proposed hybrid intrascale and
interscale denoising scheme also depends on the selection of
the wavelet 7lters. Four orthogonal and biorthogonal com-
pactly supported wavelets were considered in this paper. The
biorthogonal wavelet CDF (1; 3), which is good at exploit-
ing inter-scale dependencies, produces the best performance.
The inter-scale correlation decreases with the increasing of
the vanishing moment of the wavelet 7lter. The wavelet 7l-
ter CDF (1; 3) has the least vanishing moment for analytic
7lter (1-order) while having 3-order vanishing moments for
the synthetic 7lter to smooth noise. The proposed scheme
by CDF (1; 3) produced good results in our experiments.
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(a) (b)

(d)(c)

Fig. 5. Denoising results of Lena by wavelet CDF (1; 3). (a) Noisy Lena (� = 30). (b) Restored Lena by scheme M1 (SNR = 23:28 dB).
(c) Restored Lena by scheme M2 (SNR = 23:71 dB). (d) Restored Lena by scheme M3 (SNR = 24:21 dB).

(a) (b)

(c) (d)

Fig. 6. Denoising results of Peppers by wavelet CDF (1; 3). (a) Noisy Peppers (� = 30). (b) Restored Peppers by scheme M1
(SNR = 22:19 dB). (c) Restored Peppers by scheme M2 (SNR = 22:89 dB). (d) Restored Peppers by scheme M3 (SNR = 23:55 dB).
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