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Abstract Marginal information is of great importance for classification. This paper 

presents a new nonparametric linear discriminant analysis method named Push-Pull 

marginal discriminant analysis (PPMDA), which takes full advantage of marginal 

information. For two-class cases, the idea of this method is to determine projected 

directions such that the marginal samples of one class are pushed away from the between-

class marginal samples as far as possible and simultaneously pulled to the within-class 

samples as close as possible. This idea can be extended for multi-class cases and give rise 

to the PPMDA algorithm for feature extraction of multi-class problems. The proposed 

method is evaluated using the CENPARMI handwritten numeral database, the Extended 

Yale face database B and the ORL database. Experimental results show the effectiveness 
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of the proposed method and its advantage after performance over the state-of-the-art 

feature extraction methods. 

 

Keywords Feature extraction, linear discriminant analysis, nonparametric methods, 

Classification 
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1. Introduction 

Discriminant analysis is a popular tool for feature extraction and classification. 

Parametric discriminant analysis methods such as (Fisher, 1936; Belhumeur et al., 1997; 

Chen et al., 2005;  Etemad and Chellappa, 1996; Etemad and Chellappa, 1997; Swets and 

Weng, 1996; Loog et al., 2004; Liu et al., 1992; Chen et al., 2000; Yu and Yang, 2001) 

rely on the assumption that the samples are normally distributed. However, if the 

distribution is non-normal, features extracted by such parametric version cannot be 

expected to accurately preserve any complex structure that might be needed for 

classification (Fukunaga et al. 1983).  

To overcome the limitation of parametric methods, Fukunaga et al. (1983) presented a 

nonparametric discriminant analysis (NDA) method. The term nonparametric is not 

meant that this method completely lack parameters but it doesn’t rely on any assumption 

of prior probability distribution. This method gives a nonparametric of definition 

between-class scatter matrix. However, it can only deal with two-class problems. 

Recently, Li et al. (2005) extended the definition of the nonparametric between-class 

scatter matrix to the multi-class cases and developed a method called nonparametric 

subspace analysis (NSA). It should be mentioned that the within-class scatter matrix in 

NSA is still of parametric version. Li et al. (2009) further improved NSA by introducing 

a nonparametric version of the within-class scatter matrix and then developed a method 

called nonparametric feature analysis (NFA). Qiu and Wu (2005) proposed a 

nonparametric margin maximum criterion (NMMC) which suggests an alternative 

extension of NDA by introducing a different nonparametric version of the within-class 

scatter matrix.  
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The NMMC method, relying on the within-class farthest neighbor in the construction of 

the within-class scatter matrix, may encounter the following problem: minimizing the 

distance between a point and its within-class farthest point does not make sense for 

classification if the farthest point is not on the margin at all. This paper presents a push-

pull marginal discriminant analysis (PPMDA) to address the foregoing problem of 

NMMC. In the PPMDA method, for each sample point, we choose its corresponding 

within-class sample point to be the sample that is close to the margin and potentially the 

chosen sample contributes to the increase of the margin, rather than choose the within-

class farthest sample which is sometimes meaningless for enlarging the margin. The 

proposed method can be unified under the graph framework (S. Yan, D. Xu et al.) 

The remainder of this paper is organized as follows: Section 2 gives a review of LDA 

and existing nonparametric methods. Section 3 describes our push-pull marginal 

discriminant analysis. Experimental evaluation of the proposed method using the 

CENPARMI handwritten numeral database, the Extended Yale face database B and the 

ORL database are presented in Section 4. Finally, we give the conclusion in Section 5. 

2. Related work 

The problem can be simply stated as follows. Suppose there are L classes{ }1 2, ,..., LC C C . 

The number of samples in class iC is iN  ( 1, , )i L= �  and let 
1

L

i
i

N N
=

=� . The purpose of 

discriminant analysis is to extract features which best separate the L classes by finding an 

optimal projection. These features are used for later classification.   

2.1 Linear Discriminant Analysis 
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FLDA (Fisher 1936) is a classical linear discriminant analysis which is popular and 

powerful for face recognition (Duda and Hart, 1973). The parametric form of the scatter 

matrix of FLDA is based on the Gaussian distribution assumption. The between-class 

scatter matrix is defined as  

( )( )
1

L
TFLDA

B i i i
i

S N m m m m
=

= − −� .                           (1) 

And the within-class scatter matrix is defined as  

( ) ( )
1 1

iNL
TFLDA

W il i il i
i l

S x m x m
= =

= − −�� ,                           (2) 

where im  is the mean vector of iC , m  is global mean vector. ilx  is l-th pattern sample of 

iC . If WS  is nonsingular, the optimal projection optW  is chosen as the matrix with column 

vectors 1,..., dϕ ϕ  to maximize the ratio of the determinant of the between-class scatter 

matrix to that of within-class scatter matrix, i.e. , 

( )
T FLDA

B
T FLDA

W

S
J

S
ϕ ϕϕ
ϕ ϕ

= .                                   (3) 

In order to obtain a set of uncorrelated discriminant features, 1,..., dϕ ϕ  should be subject 

to the conjugate-orthogonal constraints (Jin et al. 2001). Specifically, optW  is formed by d 

generalized eigenvectors of FLDA FLDA
B WS X S Xλ=  corresponding to its d largest 

eigenvalues.  

There are three disadvantages of FLDA. First, FLDA is optimal in Bayes sense if all 

classes share the Gaussian distribution with the same covariance matrix and different 

means. Otherwise, its performance cannot be guaranteed. Second, the number of its 

features has an upper limit of L-1 since the rank of the between-class scatter matrix is at 
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most L-1. Third, the features extracted by such scatter matrices fail to preserve marginal 

structures which are proven to be important for classification (Fukunaga et al. 1983). 

2.2. Nonparametric Discriminant Analysis 

Nonparametric discriminant analysis (Fukunaga et al. 1983) is presented to overcome the 

first two disadvantages of FLDA by introducing a nonparametric version of the between-

class scatter matrix by k-nearest neighbor (kNN) techniques. In the nonparametric 

discriminant analysis, the between-class scatter matrix is defined as 

( )( )( ) ( )( )( )
1 1

, , , ,
ji NN

T TNDA
B il jl il jl jl il jl il

l l

S w i j l x m x m w j i l x m x m
= =

= − − + − −� �  ,           (4) 

where ilx  denotes the l-th pattern sample of iC  and jlm  is the local mean of ilx in jC . We 

call jlm  the jC -local mean of ilx . jlm  is defined as  

1

1 k
p

jl jl
p

m y
k =

= � ,                                   (5) 

where p
jly  is the p-th nearest neighbor of the pattern sample ilx  from jC , ( ), ,w i j l  is 

weighting function defined as  

( )
( ) ( ){ }

( ) ( )
min , , ,

, ,
, ,

il il il jl

il il il jl

d x m d x m
w i j l

d x m d x m

α α

α α=
+

’                          (6) 

where α  is a parameter ranging from zero to infinity. Samples which are far away from 

the margin tend to have larger magnitudes. These large magnitudes exert a considerable 

influence on between-class scatter matrix and may distort the marginal information. The 

weighting function is used to emphasize the sample near the margin (The weighting 

functions of NSA, NFA and NMMC are similar, as we will see below). But the 

nonparametric discriminant analysis is only suitable for two-class problems. Li et al. 
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(2005) extended the nonparametric discriminant analysis for dealing with multi-class 

problems. In their nonparametric subspace analysis (NSA), the nonparametric between-

class scatter matrix is defined as follows: 

( )( )( )
1 1 1

, ,
iNL L TNSA

B il jl il jl
i j l

j i

S w i j l x m x m
= = =

≠

= − −��� .                       (7) 

We can regard NSA as a semi-parametric method, since the within-class scatter matrix of 

NSA is of parametric version, which is the same as FLDA. Thus, this method still 

encounters the singularity of WS  when the training sample size is small. To avoid this 

singularity, nonparametric feature analysis (NFA) and nonparametric margin maximum 

criterion (NMMC) were presented. In these two methods, two nonparametric versions of 

the within-class scatter matrix are given respectively.  

2.3 Nonparametric Feature Analysis 

Li et al. (2009) developed an enhanced nonparametric method called Nonparametric 

Feature Analysis (NFA) by introducing a nonparametric version of within-class scatter 

matrix which is generally full of rank. This method, therefore, can overcome the 

singularity of within-class scatter matrix. In NFA, the nonparametric between-class 

scatter and within-class scatter matrices are respectively defined as follows 

( ) ( )( )
2

1 1 1 1

, , ,
iNkL L TNFA p p

B il jl il jl
i j p l

j i

S w i j p l x y x y
= = = =

≠

= − −���� ,                      (8) 

( )( )
1

1 1 1

iNkL TNFA p p
W il il il il

i p l

S x y x y
= = =

= − −��� .                            (9) 
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Differing from NSA, the within-class scatter matrix of NFA is of nonparametric version. 

Moreover, NFA constructs the nonparametric between-class scatter and within-class 

scatter matrices directly using the K nearest neighbors, rather than their local mean.  

2.4 Nonparametric Margin Maximum Criterion 

Qiu et al. proposed a nonparametric margin maximum criterion (NMMC) method (Qiu 

and Wu, 2005). The basic idea of NMMC is to find the within-class farthest neighbor and 

the between-class nearest neighbor of each sample point, and then based on them to 

construct the between-class and within-class scatter matrices. Like NFA, NMMC is a 

complete nonparametric discriminant analysis method in that the between-class and 

within-class scatter matrices are both constructed in a nonparametric manner.  

It looks for the between-class nearest neighbor of a sample ix C∈  denoted as y  

{ }' '| ,i iy y C y x x x x C= ∉ − ≤ − ∀ ∉ ,                       (10) 

and the within-class furthest neighbor of x  as 

{ }' '| ,i iz z C z x x x x C= ∈ − ≥ − ∀ ∈ .                       (11)           

The nonparametric between-class scatter matrix in NMMC is defined as  

 ( ) ( )
1

( )
N

TNMMC
B i i i i

i

S w i x y x y
=

= − −� .                          (12) 

The nonparametric within-class scatter matrix in NMMC is defined as 

 ( )( )
1

( )
N

TNMMC
W i i i i

i

S w i x z x z
=

= − −� .                          (13) 

The nonparametric margin maximum criterion is  

( )( )arg max T NMMC NMMC
opt B WW

W tr W S S W= − .                       (14) 
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Obviously, this criterion can work even when WS  is singular. By this criterion, we can get 

an optimal projection matrix optW . 

3. Push-Pull Marginal Discriminant Analysis 

3.1 PPMDA for two-class cases 

The NMMC method, relying on the within-class farthest neighbor in the construction of 

the within-class scatter matrix, may encounter the following problem: minimizing the 

distance between a point and its within-class farthest neighbor does not make sense for 

classification in some cases. As shown in Figure 1, reducing the distance between a 

sample x  and its within-class furthest neighbor z  has no effect on the classification of 

the two-class samples. 

'x  
y  

x  

z  

 

 

Figure 1 Illumination of neighbors in two-class cases. For the sample x  in 1C , its 

between-class nearest neighbor is y  in 2C , its within-class furthest neighbor is z  in 1C , 

the between-class nearest neighbor of y  is 'x  in 1C .  

In this paper, we propose a nonparametric method called Push-Pull marginal discriminant 

analysis (PPMDA). Look at Figure 1. For the sample x  in 1C , we find its between-class 

nearest neighbor y  in 2C . Then with respect to y , we find its between-class nearest 
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neighbor 'x  in 1C . We can see that 'x  and y  are marginal samples. Intuitively, for 

increasing the class margin, we push 'x  away from y  and simultaneously pull 'x  close to 

x .  

When the two classes are overlapped, using only the nearest neighbor might fail to 

characterize a proper margin. To overcome this problem, we can use k nearest neighbors 

(kNNs) for marginal characterization. Specifically, as illustrated in Figure 2, for 

sample 1x C∈ , we find its 2C -kNNs instead of nearest neighbor. We denote the local 

mean of 2C -kNNs as 2m . For 2m , we then find its 1C -kNNs. The local mean of 1C -

kNNs is denoted as 1m . If a proper k is chosen, we can guarantee that 1m  and 2m  are not 

in the overlapped field. Thus we can increase the margin by pushing 1m  away from 2m  

and simultaneously pulling 1m  to x . 

 

2m  x  
1m  

 

Figure 2 Illustration of two overlapped classes. For the sample 1x C∈ , its 2C -kNNs are 

within the right circle. The local mean of 2C -kNNs is 2m , the 1C -kNNs of 2m are within 

the left circle. The local mean of 1C -kNNs is 1m .  
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Formally, given two classes iC  and jC ( )i j≠ , we begin with the samples in iC . For 

sample il ix C∈ , we find its jC -kNNs, then we can get its jC -local mean jlm  which is 

computed by Eq. (5). Then we can get the iC -local mean '
ilm  of jlm  in the same way. We 

define one-side between-class scatter as 
2'

1

iN

il jl
l

m m
=

−�  and one-side within-class scatter 

as 
2'

1

iN

il il
l

m x
=

−� . In an average sense, pushing '
ilm  away from jlm  as far as possible and 

pulling '
ilm  to ilx  as close as possible is equivalent to maximizing the ratio of one-side 

between-class scatter to one-side within-class scatter.  

Now let’s consider the problem in the transformed space. After the linear transform  

 � Tx W x= , where ( )1,..., dW ϕ ϕ=                             (15) 

For simplicity, let’s first consider a one-dimensional linear transform � Tx xϕ= . After this 

transform, ilx , jlm  and '
ilm  in observed space are mapped into � T

il ilx xϕ= , � T
jl jlm mϕ=  

and �
' 'T
il ilm mϕ= . 

Let’s define one-side between-class scatter in transformed space as follows  

� �( )2'

1

iN

il jl

l

m m
=

−� = ( )( )' '

1

iN
TT T T T

il jl il jl
l

m m m mϕ ϕ ϕ ϕ
=

− −�  

= ( )( )' '

1

iN
TT

il jl il jl
l

m m m mϕ ϕ
=

� �
− −� �

� �
�  

     = T ij
BSϕ ϕ ,                                        (16) 

where  
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( )( )' '

1

iN
Tij

B il jl il jl
l

S m m m m
=

= − −�                              (17) 

is one-side between-class scatter matrix. 

Similarly, we can define one-side within-class scatter in transformed space as follows 

� �( )2'

1

iN

il il

l

m x
=

−� = ( )( )' '

1

iN
TT T T T

il il il il
l

m x m xϕ ϕ ϕ ϕ
=

− −�  

= ( )( )' '

1

iN
TT

il il il il
l

m x m xϕ ϕ
=

� �
− −� �

� �
�                  

= T ij
WSϕ ϕ ,                                        (18) 

where  

( )( )' '

1

iN
Tij

W il il il il
l

S m x m x
=

= − −�                             (19) 

is one-side within-class scatter matrix. 

To maximize the ratio of one-side between-class scatter to one-side within-class scatter, 

we can choose the following criterion 

( )
T ij

B
T ij

W

S
J

S
ϕ ϕϕ
ϕ ϕ

= .                                  (20) 

The optimal solution of Eq. (20) is actually the generalized eigenvector ϕ  of 

ij ij
B WS X S Xλ=  corresponding to the largest eigenvalue.  

Symmetrically, let’s take the problem from the other side and begin with the samples in 

jC . Similarly, we can define the other-side between-class scatter and the other-side 

within-class scatter. Just like the one-side case, we can get the other-side between-class 
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and within-class scatter matrices ji
BS  and ji

WS . So the other-side between-class and within-

class scatter in the transformed space are T ji
BSϕ ϕ  and T ji

WSϕ ϕ , respectively. 

Our purpose is to maximize the ratio of (both-side) between-class scatter to within-class 

scatter. We can choose the following criterion 

( ) ( )
( )

T ij ji
B B

T ji ji
W W

S S
J

S S

ϕ ϕ
ϕ

ϕ ϕ
+

=
+

 .                                (21) 

3.2 Extension to multi-class cases 

For each pair of iC  and jC ( )i j≠ , we can compute the one-side between-class and 

within-class scatter. In the transformed space, the one-side between-class and within-

class scatter are T ij
BSϕ ϕ  and T ij

WSϕ ϕ , respectively. Our purpose is to maximize the ratio 

of (all-side) between-class scatter to (all-side) within-class scatter. We can choose the 

following criterion  

( )
T PPMDA

B
T PPMDA

W

S
J

S
ϕ ϕϕ
ϕ ϕ

= ,                                  (22) 

where 

( )( )' '

1 11

iN
T

il jl il j

L L
PPMDA
B

i j
j

l
l

i

S m m m m
= =

≠
=

− −= ��� ,                       (23) 

( ) ( )' '

1 11

iN
T

il il il i

L L
PPMDA

W
i j

j

l
l

i

S m x m x
= =

≠
=

− −= ��� .                        (24) 

Like FLDA, for multi-class problems, only one projection axis ϕ  is not enough for 

discrimination. So we generally need to find a set of projection axis. Similar to the way 

adopted by FLDA to get multiple projection axes, we can calculate the generalized 
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eigenvectors 1,..., dϕ ϕ  of PPMDA PPMDA
B WS X S Xλ=  corresponding to the d largest 

eigenvalues and use them as projection axis to produce a transform matrix 

( )1,..., dW ϕ ϕ= , where d is the number of chosen projection axes. The linear 

transformation � Tx W x=  forms a feature extractor which reduces the dimension of 

original feature vectors to d.  

3.3 PPMDA Algorithm 

In summary of the description above, the Push-Pull marginal discriminant analysis 

(PPMDA) algorithm is given below: 

Step 1. For each sample il ix C∈ ( 1, 2,..., il N= , iN  is the number of samples in class 

iC , 1,2,...,i L= ), find its k nearest neighbors in jC  and compute the local mean vector 

jlm  ( 1, 2..., ,j L j i= ≠ ) by Eq.(5). For each jlm , find its k nearest neighbors in iC  and 

compute the local mean vector '
ilm .  

Step 2. Based on the obtained local mean vectors, construct the between-class and within-

class scatter matrices PPMDA
BS and PPMDA

WS  using Eqs. (23) and (24). Compute the 

generalized eigenvector 1,..., dϕ ϕ  of PPMDA PPMDA
B WS X S Xλ=  corresponding to the largest d 

eigenvalues. Let ( )1,..., dW ϕ ϕ= . 

Step 3. For a given sample x , its feature vector �x  is obtained by � Tx W x= . 

It should be noted that WS  may be singular in small sample size cases. We borrow the 

idea in PCA+LDA (Belhumeur et al. 1997) and discriminant eigenfeatures (Swets et al. 

1996) and use PCA to reduce the dimension of input space firstly so that WS  is 

nonsingular in the PCA-transformed space. Then we perform PPMDA in the PCA-
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transformed space. Further, we can regularize the within-class scatter matrix to avoid 

overfitting 

PPMDA PPMDA
W WS S Iα← + ,                              (25) 

where I is the identity matrix and 0.001 ( )Wtrace Sα = × . 

Finally, we would like to analyze the computational complexity of PPMDA. In the 

construction of the between-class and within-class scatter matrices PPMDA
BS and PPMDA

WS , 

for each training sample, we need to find its k nearest neighbors within each class. 

Therefore, compared to the FLDA method, an additional computational cost of PPMDA 

is required for the nearest neighbor search. The naive (linear) search of the k neighbors of 

one point within iC  has a running time of O(kNiD), where Ni is the number of samples in 

iC  and D is of dimension of the pattern vectors. So the computational complexity for 

nearest neighbor search in PPMDA is O(kN2D), where is N is total number of training 

samples, �
=

=
c

i
iNN

1
. The naive search algorithm only suits for small sample size cases. 

For large sample size cases, more advanced nearest neighbor search algorithms with 

lower computational complexity can be used instead (Vaidya, 1989; Arya, 1998).  

 

3.5 FLDA: A Special Case of PPMDA 

Assume the number of training samples per class is same i.e., ),,1(,/ LiLNNi �== . We 

choose k as the number of training samples per class. In this case, we can prove that 

PPMDA is equivalent to FLDA.  
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For the sample il ix C∈ , its jC -local mean jlm  is exactly the mean vector jm  of jC . 

Similarly, the iC -local mean '
ilm  of jlm  is exactly the mean vector im  of iC . The global 

mean vector is 

1

1

1

L

i i L
i

i
ii

N m
m m

N L L
=

=

= =
�

� .                              (26) 

When iNk = ),,1(,/ LiLN �== , the Eq. (23) can be derived as follows 

( )( )' '

1 11

iN
T

il jl il j

L L
PPMDA
B

i j
j

l
l

i

S m m m m
= =

≠
=

− −= ���  

= ( )( )
1 1

L L T

i i j i j
i j

j i

N m m m m
= =

≠

− −��  

                 = ( )( )
1 1

L L T

i i j i j
i j

N m m m m
= =

− −��  (note that i jm m− =0 when i j= ) 

 = ( )( )
1 1

L L T

i i j i j
i j

N m m m m m m m m
= =

− + − − + −��  

       =
( )( ) ( )( )

( ) ( ) ( )( )1 1

TT
L L i i i j

i TT
i j

j i j j

m m m m m m m m
N

m m m m m m m m= =

� �− − + − −
� �
� �+ − − + − −� �� �

��  

        = ( ) ( ) ( )( )
1 1

L L TT
i i i i j j

i j

L N m m m m L N m m m m
= =

− − + − −� �  

= ( ) ( )
1

2
L

T
i i i

i

L N m m m m
=

− −� .                                 (27) 

When iNk = ),,1(,/ LiLN �== ,  Eq. (24) can be derived as follows 

( ) ( )' '

1 11

iN
T

il il il i

L L
PPMDA

W
i j

j

l
l

i

S m x m x
= =

≠
=

− −= ���  
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= ( ) ( )
1 1

( 1)
iNL

T
il i il i

i l

L x m x m
= =

− − −�� .                            (28) 

We then have 

( )
T PPMDA

B
T PPMDA

W

S
J

S
ϕ ϕϕ
ϕ ϕ

=  

=
( ) ( )

( )( )
1

1 1

2

( 1)
i

L
TT

i i i
i

NL
TT

il i il i
i l

L N m m m m

L x m x m

ϕ ϕ

ϕ ϕ

=

= =

� �− −� �
� �
� �

− − −� �
� �

�

��
 

                       ⇔
( )( )

( )( )
1

1 1

i

L
TT

i i i
i

NL
TT

il i il i
i l

N m m m m

x m x m

ϕ ϕ

ϕ ϕ

=

= =

� �− −� �
� �
� �

− −� �
� �

�

��
 

⇔
T FLDA

B
T FLDA

W

S
S

ϕ ϕ
ϕ ϕ

 .                                             (29) 

Therefore, the PPMDA method is equivalent to FLDA when each class has the same 

number of training samples and the nearest neighbor parameter k is chosen as the number 

of training samples per class. 

3.6 Advantages of PPMDA over others 

In contrast to previously mentioned nonparametric methods, PPMDA pays more 

attention to the marginal samples which are significant for classification. The 

construction of the between-class scatter matrix of PPMDA fully depends on marginal 

samples, while the construction of the within-class scatter matrix is also related to 

marginal samples. The nature of the scatter matrices of PPMDA inherently leads to 

features which can preserve marginal structures for classification.  
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On the other hand, our PPMDA method doesn’t need the complicated weighting 

function. The other methods, such as NSA, NFA and NMMC all need a complicated 

weighting function. Note that in the weighting function, a parameter is needed to be 

evaluated. The choice of the parameter must affect the performance of these methods. 

The proposed PPMDA method, however, does not need the weighting function. So, the 

proposed method is simpler to be implemented.  

4. Experiments 

In this section, the push-pull marginal discriminant analysis (PPMDA) method is 

evaluated using the CENPARMI handwritten numeral database, the ORL database, and 

the Extended Yale face database B and compared with PCA (Turk et al. 1991), FLDA, 

Nonparametric Margin Maximum Criterion(NMMC), Principal Nonparametric Subspace 

Analysis (PNSA), Principal Nonparametric Feature Analysis (PNFA). A nearest neighbor 

(NN) classifier is employed for classification. The justification for using the NN classifier 

can be traced to Bressan et al. (2003)’s work, where the connection between 

nonparametric discriminant analysis (NDA) and the nearest neighbor (NN) classifier is 

revealed. NDA is to maximize the distance between classes meanwhile minimize the 

distance among the members of a single class. Given a sample x, the rule of NN classifier 

is ratio of the between-class distance and within-class distance of x, if the ratio is more 

than one, x will be correctly classified. Therefore the NN classifier is suitable for NDA. 

Following the same spirit, the NN classifier is also suitable for the proposed PPMDA 

method, since PPMDA makes full use of the nearest neighbor rule in its model 

construction.  
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Two criteria are involved to evaluate the performance of different feature extraction 

methods: one is the recognition rate and the other is the verification rate. For the former, 

we report the recognition rate versus the variation of feature dimensions. For the later, we 

use the Receiver Operating Characteristic (ROC) curves which plots the face verification 

rate (FVR) versus the false accept rate (FAR), to show the verification performance of 

different methods.  

Note that NSA based on the principal space of the within-class scatter matrix is called 

Principal NSA (PNSA) (Li et al. 2005). NFA based on the principal space of the within-

class scatter matrix is called Principal NFA (PNFA) (Li et al. 2009).  

 

 

4.1 Experiment using the CENPARMI handwritten numeral database 

The experiment was done on Concordia University CENPARMI handwritten numeral 

database. The database contains 6000 samples of 10 numeral classes (each class has 600 

samples). In our experiment, we choose the first 200 samples of each class for training, 

the remaining 400 samples for testing. Thus, the total number of training samples is 2000 

while the total number of testing samples is 4000.  

PCA, FLDA, NMMC, PNSA, PNFA, and the proposed PPMDA are used respectively, 

for feature extraction based on the original 121-dimensional Legendre moment features 

(Liao et al. 1996). Note for PNSA, PNFA, PPMDA, K=6. Figure 3(a) shows the 

recognition rate when the dimension varies from 1 to 9, and Figure 3(b) shows the 

recognition rate when the dimension varies from 10 to 30 (The number of features of 
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FLDA has an upper limit of L-1 since the rank of the between-class scatter matrix is at 

most L-1, so the maximal dimension is extremely lower than the other methods. Here L-1 

is 9, so we cannot see FLDA in (b)). The ROC curve of each method is shown in Figure 

4. The maximal recognition rate of each method and the corresponding dimension are 

listed in Table 1.  
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(a)                                         (b) 

Figure 3 The recognition rates of PCA, FLDA, NMMC, PNSA, PNFA and PPMDA 

versus the variation of dimensions on the CENPARMI handwritten numeral database; (a) 

low dimensions; (b) high dimensions 
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Table 1 The maximal recognition rates (%) of PCA, FLDA, NMMC, PNSA, PNFA and 

PPMDA and the corresponding dimensions on the CENPARMI handwritten numeral 

database 

Method PCA FLDA NMMC PNSA PNFA PPMDA 
Maximal Recognition Rate 91.5 87.8 87.6 88.9 93.2 94.4 

Dimension 28 8 30 26 19 27 
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Figure 4 ROC curves of each method on the CENPARMI handwritten numeral database  

Figure 3(a) shows that PPMDA almost outperforms PCA, NMMC, PNSA and PNFA in 

lower dimensions. When the dimension varies from 1 to 7, FLDA is almost best, just 

slightly more effective than PPMDA. But when the dimension varies from 8 and 9, 

PPMDA is best. Figure 3(b) shows that PPMDA outperforms the other four methods 

especially when dimension varies from 24 to 30. Table 1 shows the best recognition rate 



  

 22 

of our PPMDA method is 94.4% when the dimension is 27. Figure 4 shows PPMDA 

achieves better verification performance than the other five methods. In particular, when 

FAR is 0.047, PPMDA achieves a verification rate of 100% which is over 10% higher 

than the other methods.  

4.2 Experiment using the Extended Yale database B 

The Yale face database B (Georghiades et al. 2001) contains 5760 single light source 

images of 10 subjects each seen under 576 viewing conditions (9 poses*64 illumination 

conditions). It was updated to the extended Yale face database B (Lee et al. 2005) 

contains 38 human subjects under 9 poses and 64 illumination conditions. All the image 

data for test used in the experiments are manually aligned, cropped, and then re-sized to 

168*192 images (Lee et al. 2005). All test images are under pose 00 (The pose number is 

00-08). Some sample images of one person are shown in Figure 5. In our experiment, we 

resize each image to 42*48 pixels and further pre-process it using histogram equalization. 

In our test, we use the first 16 images per subject for training, the remaining 48 images 

for testing. PCA, FLDA, NMMC, PNSA, PNFA, and the proposed PPMDA are used for 

feature extraction. Note for PNSA, PNFA, PPMDA, K=2. The recognition rate over the 

variation of dimensions is plotted in Figure 6. The ROC curve of each method is plotted 

in Figure 7. The maximal recognition rate of each method and the corresponding 

dimension are listed in Table 2. 
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Figure 5 Samples of a person under pose 00 and different illuminations, which are 

cropped images in the extended Yale face database B 
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Figure 6 The recognition rates of PCA, FLDA, NMMC, PNSA, PNFA and PPMDA 

versus the variation of dimensions on the extended Yale face database B 
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Figure 7 ROC curves of each method on the extended Yale face database B 

Table 2 The maximal recognition rates (%) of PCA, FLDA, NMMC, PNSA, PNFA and 

PPMDA and the corresponding dimensions on the extended Yale face database B 

Method PCA FLDA NMMC PNSA PNFA PPMDA 
Maximal Recognition Rate 64.9 85.4 90.7 87.2 89.5 94.1 

Dimension 115 37 52 100 112 106 
 

Figure 6 shows that when the dimension varies from 20 to 40, NMMC achieves very 

good results. But when the dimension is over 60, PPMDA obviously outperforms other 

five methods. Table 2 shows the best results of each method. Our PPMDA method 

achieves the recognition rate of 94.1%, when the dimension is 106. Figure 7 shows that 

PPMDA achieves the best verification performance among all of the six methods. 

Particularly, when FAR is 0.05, the FVR of PPMDA is 98.19% which is about 10% 

higher than the other methods. 
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4.3 Experiment using the ORL database 

The ORL database (http://www.cam-orl.co.uk) contains images from 40 individuals, each 

providing 10 different images. For some subjects, the images were taken at different 

times. The facial expressions (open or closed eyes, smiling or non-smiling) and facial 

details (glasses or no glasses) also vary. The images were taken with a tolerance for some 

tilting and rotation of the face of up to 20 degrees. Moreover, there is also some variation 

in the scale of up to about 10%. All images are grayscale and normalized to a resolution 

of 92 112×  pixels. 

In our experiments, we split the whole database into two parts evenly. One part is used 

for training and the other part is for testing. In order to make full use of the available data 

and to evaluate the generalization power of algorithms more accurately, we adopt a cross-

validation strategy and run the system 50 times. In each time, five face images from each 

person are randomly selected as training samples. The rest is for testing. PCA, FLDA, 

NMMC, PNSA, PNFA and the proposed PPMDA are used for feature extraction. Note 

that for PNSA, PNFA, PPMDA, we choose K=1. Finally, a nearest neighbor classifier is 

employed for classification with cosine distance. The average recognition rate across 50 

tests of each method over the variation of dimensions is plotted in Figure 8. The ROC 

curve of each method is plotted in Figure 9. The maximal recognition rate of each method 

and the corresponding dimension are listed in Table 3. Figure 8 and Table 3 reveal that 

when the number of samples per class is small, PPMDA consistently outperforms the 

other five methods irrespective of variation in dimensions. Figure 9 demonstrates again 

the advantage of PPMDA in terms of the verification rate. 
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Figure 8 The average recognition rates of PCA, FLDA, NMMC, PNSA,  

PNFA and PPMDA on ORL database 
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Figure 9 ROC curves of each method on ORL face database 

Table 3 The maximal recognition rates (%) of PCA, FLDA, NMMC PNSA, PNFA and 

PPMDA and the corresponding dimensions on the ORL database 

Method PCA FLDA NMMC PNSA PNFA PPMDA 
Maximal Recognition Rate 94.21 96.95 96.89 91.74 95.86 97.54 

Dimension 40 37 40 40 38 24 

5. Conclusions 

We present a new nonparametric discriminant analysis method called Push-Pull marginal 

discriminant analysis (PPMDA) in this paper. This method takes full advantage of 

marginal information to construct the within-class and between-class scatter matrices, 

and then uses a class margin related criterion to determine an optimal transform matrix 

such that the marginal samples of one class are pushed away from the between-class 

marginal samples as far as possible and simultaneously pulled to the within-class samples 

as close as possible. The proposed method is applied to character and face recognition 

and is evaluated using the CENPARMI handwritten numeral database, the Extended Yale 

face database B and the ORL database. Experimental results show the effectiveness of the 

proposed method and its performance advantage over others. This effectiveness also 

verifies the importance of marginal samples for classification. 
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