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Abstract: In linear representation based face recognition (FR), it is expected that a discriminative 

dictionary can be learned from the training samples so that the query sample can be better represented 

for classification. On the other hand, dimensionality reduction is also an important issue for FR. It can 

not only reduce significantly the storage space of face images, but also enhance the discrimination of face 

feature. Existing methods mostly perform dimensionality reduction and dictionary learning separately, 

which may not fully exploit the discriminative information in the training samples. In this paper, we 

propose to learn jointly the projection matrix for dimensionality reduction and the discriminative 

dictionary for face representation. The joint learning makes the learned projection and dictionary better 

fit with each other so that a more effective face classification can be obtained. The proposed algorithm is 

evaluated on benchmark face databases in comparison with existing linear representation based methods, 

and the results show that the joint learning improves the FR rate, particularly when the number of 

training samples per class is small. 
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1. Introduction 

Face recognition (FR) methods have been studied for over 30 years, and various techniques have been 

developed [1-8, 13] to handle different problems in face recognition, such as illumination, pose, occlusion 

and small sample size, etc. Face images usually have a high dimensionality, which makes the storage 

space high and increases the computational cost. In addition, the high dimensionality also decreases the 

discrimination of face images. Therefore, many dimensionality reduction techniques [2, 9, 10-12, 14] 

have been developed to reduce the dimension of face images and enhance the discriminative features. The 

representative dimensionality reduction methods include Principal Component Analysis (PCA) [9], 

Linear Discriminate Analysis (LDA) [10], Locality Preserving Projection (LPP) [2], etc. These so-called 

subspace analysis based FR methods are simple to apply; however, they are less effective to handle the 

expression and illumination changes. When the training samples are insufficient, the subspace learned by 

these methods will be much biased.  

In the subspace based FR methods, often the nearest neighbor (NN) classifier and SVM are used for 

the classification. Recently, a new face classification scheme, i.e., the sparse representation based 

classification (SRC) [6], was proposed. In SRC, a query face image is encoded over the original training 

set with sparsity constraint imposed on the encoding vector. The training set acts as a dictionary to 

represent the testing samples as a sparse linear combination of its atoms. The classification is then 

performed by checking which class leads to the smallest reconstruction residual of the query sample. The 

SRC classifier shows very competitive performance, but its performance will drop much when the 

training samples per class are insufficient. It is also claimed in [6] that dimensionality reduction is no 

longer critical in the SRC scheme and random projection can achieve similar results to PCA and LDA 

when the dimensionality is high enough. Nonetheless, if a lower dimensionality is required, PCA and 

LDA will have clear advantage over random projection. Some works [14, 15] has been done to investigate 

the dimensionality reduction for SRC. For example, Zhang et al. [14] proposed an unsupervised learning 

method for dimensionality reduction in SRC, and it leads to higher FR rates than PCA and random 
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projection. This validates that a well designed dimensionality reduction method can benefit the sparse 

classification scheme. 

In the meantime, there has been an increasing interest in learning a dictionary to represent the query 

image instead of using the original training samples. In FR, the original face images may contain some 

redundant information, noise or other trivial information that will obstruct the correct recognition. In [16], 

Yang et al. proposed a metaface learning (MFL) algorithm to represent the training samples by a series of 

“metafaces” learnt from each class. Based on the classical KSVD algorithm [17], in [18] a DKSVD 

algorithm was developed to code the query image and use the coding coefficients for classification. In 

[19], a supervised algorithm was proposed to learn a dictionary as well as a classifier for image 

classification tasks (e.g., digit recognition, texture classification). In [20], a class-dependent supervised 

simultaneous orthogonal matching pursuit scheme was developed to solve the dictionary learning problem 

while increasing the inter-class discrimination. Very recently, a Fisher discrimination dictionary learning 

algorithm [3] was developed for sparse representation based pattern classification, and it shows very 

competitive performance with other dictionary learning based pattern classification schemes.  

The dimensionality reduction (DR) and dictionary learning (DL) are mostly studied as two 

independent problems in FR. Usually, DR is performed first to the training samples and the 

dimensionality reduced data are used for DL. However, the pre-learned DR projection may not preserve 

the best features for DL. Intuitively, the DR and DL processes should be jointly conducted for a more 

effective FR. To this end, we propose a joint discriminative DR and DL (JDDRDL) scheme to exploit 

more effectively and robustly the discriminative information of training samples. The goal is that the face 

image features from different classes can be effectively separated by a dictionary in a subspace, which are 

to be determined. In the proposed JDDRDL, an energy functional is defined and an iterative optimization 

algorithm is given to alternatively optimize the dictionary and projection matrix. From some initialization, 

in each iteration, for a fixed projection P, the desired dictionary D can be updated; then with the updated 

dictionary D, the projection matrix P can be refined. After several iterations, the learned P and D together 

can lead to a more effective FR system.  
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One important advantage of the proposed JDDRDL scheme is that it is more robust to the small 

sample size problem than state-of-art linear representation based face classification methods [3, 6, 14, 16]. 

The discriminative DR methods such as LDA and the linear representation based methods such as SRC 

usually require that the number of training samples per class cannot be too small, and their performance 

can be much reduced if the training sample is insufficient. By exploiting more effectively the 

discriminative information of training sample via learning the projection and dictionary simultaneously, 

the proposed JDDRDL shows more robust FR capability when the training sample size per class is small, 

for example 2~5 samples per class. 

The rest of the paper is organized as follows. Section 2 briefly reviews the related work. Section 3 

presents in details the JDDRDL algorithm. Section 4 presents the experimental results; and Section 5 

concludes the paper. 

 

2.  Related Work 

2.1. PCA and LDA 

As the most representative unsupervised DR method, PCA extracts the eigenvector of the high dimension 

data, and projects the high dimension data into a linear subspace spanned by leading eigenvectors, 

seeking a subspace with the maximized variance. PCA is very simple and efficient in reducing the 

sensitivity to Gaussian noise and some trivial information; however, PCA aims to preserve the global 

energy of face images but not the discrimination of face images. In contrast, as the most representative 

supervised DR method, LDA seeks directions which are best for discrimination. LDA finds projections 

that can minimize the variation of samples in the same class while maximizing the variation between 

different classes. LDA is effective for classification; however, it is sensitive to the number of training 

samples per class. In addition, the reduced dimensionality cannot be greater than the number of classes, 

which limits LDA’s applications in practice.  
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2.2. SRC [6] and CRC (collaborative representation classification [26]) 

The SRC scheme proposed by Wright et al. [6] uses sparse representation for FR. Suppose Ak=[sk,1, sk,2, 

…, sk,n]∈ℜm×n is the training dataset of the kth class, where sk,j, j=1,2,…,n, is an m-dimensional vector 

stretched by the jth sample of class k. For a test sample y∈ℜm from class k, generally it can be well 

approximated as the linear combination of the samples from Ai, i.e., , ,1

n
k j k j k kj

α
=

≈ =∑y s A α  , where 

,1 ,2 ,[ , ,..., ]T
k k k k nα α α=α ∈ℜn is the coding vector. Suppose we have K classes, and let A=[ A1, A2,…, AK], 

then the linear representation of y can be written in terms of all training samples as y≈Aα, where 

α=[α1;…,αk;…; αK]=[0,…,0,αi,1,αi,2,…,αi,n,0,…,0]T. Clearly, the non-zero element in the coefficient 

vector could well encode the identity of the test image y. In SRC [6], the l1-minimization is used to solve 

the coding vector: { }2

2 1
ˆ arg min λ= − +y Aαα α α , where λ is a scalar constant. Then classification is 

made by ( ) { }identity arg mink ke=y , where 
2

ˆk k ke = −y A α . 

The SRC achieves interesting FR results; however, the use of l1-minimization makes it 

computationally expensive. SRC and its many variants [5, 14, 16] emphasize the role of l1-norm sparsity 

in the success of SRC. Very recently, Zhang et al. [26] pointed out that the success of SRC mainly comes 

from the collaborative representation of the query image by using all the training samples, but not the l1-

norm sparsity imposed on the coding vector. Based on this finding, Zhang et al. proposed the 

collaborative representation based classification (CRC), where the l2-norm is used to regularize the coding 

coefficients: { }2 2

2 2
ˆ arg min λ= − +y Aαα α α . It is shown that when the facial feature dimension is not 

much less than the number of training samples, CRC could achieve similar FR rates to SRC but the time 

complexity is enormously reduced. 
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2.3. DR and DL under the SRC framework 

It is claimed in [6] that SRC is insensitive to feature extraction when the dimensionality is high enough; 

however, a well learned DR matrix can lead to a more accurate and stable recognition result. In [14], an 

orthogonal DR matrix P was learnt under the framework of sparse representation, and it achieves better 

performance than Eigenfaces and Randomfaces in the SRC scheme. Specifically, the matrix P is learnt 

via the following objective function based on Leave-One-Out scheme: 

( ){ }22
,{ } 1 211

arg min   . . 
i

N T T
i i i iFi F

J s tλ λ
=

= − + + − =∑P β Pz PA A P PA PP Iβ β   

where N is the number of training samples, zi is the ith sample of the training set A and Ai is the set of 

training samples in A excluding zi. As can be seen from the above objective function, the projection 

matrix P preserves the energy of training set A while keeping the coding vector of each sample zi sparse. 

In SRC, the original training samples are used as the dictionary to represent the query sample. 

Intuitively, a more accurate and discriminative representation can be obtained if we could optimize a 

dictionary from the original training samples. In [16], Yang et al. proposed a “metaface” learning method, 

where a dictionary Dk = [d1, …, dp] of metafaces is learned from each class of training samples Ak under 

the sparse representation model via optimizing 2
, , 1

argmin   s.t. 1, 1,...,
k k

T
k k j jF

J j pλ= − + = =D D A D d dΛ Λ Λ Λ . 

The metaface dictionary Dk and the associated coefficient matrix Λ are optimized alternatively. The final 

metaface dictionary D is formed by concatenating all the K dictionaries Dk. 

Though the metaface learning method [16] improves the representation power of the dictionary, it 

does not truly aim to increase the discrimination power of D in the objective function. Yang et al. [3] 

recently proposed a DL method, namely the Fisher discrimination dictionary learning (FDDL), which 

embeds the Fisher criterion in the objective function design. The FDDL scheme has two remarkable 

features. First, the dictionary atoms are learnt to associate the class labels so that the reconstruction 

residual from each class can be used in classification; second, the Fisher criterion is also imposed on the 

coding coefficients so that they carry discriminative information for classification. Since both the 
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reconstruction residual and coding coefficients are discriminative, a new classification scheme is then 

proposed in FDDL to fuse the two types of information for a more robust pattern recognition task.  

 

3. Joint Learning Model for Dimensionality Reduction and Dictionary Learning 

3.1. The modeling 

In the related works introduced in Section 2, the DR and DL processes are handled separately. Usually, 

the DR projection matrix can be learnt first to reduce the dimensionality of training samples, and then DL 

is performed to learn a dictionary from the dimensionality reduced dataset. To more effectively use the 

discrimination information in the training set A, we propose to learn the DR matrix P and the dictionary D 

jointly so that a more accurate classification can be achieved.  

For the projection matrix P, we expect that it could preserve the energy of A while making the 

different classes Ai more separable in the subspace defined by P. To this end, we propose to learn an 

orthogonal projection matrix, which could maximize the total scatter of A and the between-class scatter of 

A simultaneously. For the dictionary D, we expect that it is able to faithfully represent the dimensionality 

reduced dataset PA, while making the samples from the same class close to each other in the space 

spanned by D. With the above considerations, in this paper we propose the following joint discriminative 

dimensionality reduction and dictionary learning (JDDRDL) model to optimize P and D: 

( )2 2 2
1 21

{ } , ,2 2{ }
1 2

arg min  s.t. 1,  , , 
k k

k k

K
k k k k k kF F Fk T T

k j k j

t bF F

J k j
λ λ

γ γ

=
⎧ ⎫− + + −⎪ ⎪= = ∀ =⎨ ⎬
⎪ ⎪− −⎩ ⎭

∑
P, D ,Λ

P, D ,Λ

PA D
d d PP I

PA PA

Λ Λ Λ Γ

 
  (1) 

where Dk is the sub-dictionary for class k and D=[D1, D2, …, DK] forms the whole dictionary; Λk 

represents the coding coefficient matrix of PAk over Dk; At is the centralized training set, i.e., At = A−M 

with each column of M being the mean vector m of all samples in A; Ab is the class-specific centralized 

dataset of A, i.e., Ab = [M1−M, …, MK−M] with each column of Mk being the mean vector mk of samples 
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in Ak; Γk is a matrix with each column of it being the mean of the columns in Λk; λ1, λ2, γ1, and γ2 are 

positive scalars. We require that each atom dk,j in dictionary Dk has unit norm.  

Let’s make a more detailed look of the JDDRDL model in Eq. (1). By requiring that P is orthogonal, 

minimizing the term 2
t F

− PA  (i.e., maximizing 2
t F

PA ) guarantees that the energy of At can be well 

preserved because we can reconstruct At by T
tP PA . On the other hand, minimizing the term 2

b F
− PA  

will enhance the discrimination between different classes after projection because it aims to maximize the 

distance between the class centers. Minimizing 2
t F

− PA  and 2
b F

− PA  simultaneously will also make the 

within class scatter of dataset A small. 

By coding PAk over Dk, we minimize the coding residual 2
k k k F
−PA D Λ

 
to ensure the representation 

power of dictionary Dk. Note that we use the Frobenius norm, instead of the sparse l1-norm, to regularize 

the coding coefficients by 2
k F

Λ . This is based on the recent findings [26] that the l1-norm sparsity does 

not play the key role in sparse representation based FR. However, using the Frobenius norm to regularize 

Λk significantly reduces the time complexity for optimization without sacrificing the performance. Finally, 

the minimization of 2
k k F
−Λ Γ  enforces the coding coefficients of the samples in class k to be close to 

their mean, reducing the variations of the coding vectors of each class. This term minimizes the within 

class scatter in the domain spanned by the dictionary Dk. 

Overall, in the JDDRDL model in Eq. (1), the targeted projection P and dictionary D will make the 

training samples have larger between class distances and smaller within class variations. Ideally, if P and 

D could be well optimized, more accurately classification of the query sample y can be obtained. Next, 

let’s discuss how to do the minimization of Eq. (1).  

   

3.2. The optimization 

The JDDRDL objective function in Eq. (1) is non-convex. Like other authors have done when trying to 

solve similar optimization problems, here we use a two-stage alternative direction approach to solving it. 
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We partition the whole optimization into two sub-problems: fix the projection matrix P and solve for the 

dictionary D and the coefficient Λ; and fix D and Λ to update P. These two sub-problems are solved 

alternatively and iteratively, and we stop at a good point to get the locally optimal solutions of P and D. 

Because the algorithm could only get a local optimal solution, different initializations of P and D may 

result in different final solutions of P and D. In our algorithm, we use PCA to initialize P, and use the 

original training samples to initialize D. Similar classification rates could be achieved if we initialize D 

randomly, though the resolved D will be different for different initializations. The whole optimization 

algorithm is presented in detail as follows.  

 

Step 1) Initializing P. We use PCA to initialize P. That is, the initial P is the PCA transformation matrix 

of the training data A.  

Step 2) Fix P, and solve D and Λ. In this case, the objective function in Eq. (1) reduces to  

( )2 2 2
{ } 1 2 , ,1

{ }
arg min  s.t. 1,  ,

k k
k k

K T
k k k k k k k j k jF F Fk

J k jλ λ
=

= − + + − = ∀∑D ,Λ
D ,Λ

PA D d dΛ Λ Λ Γ
 
      (2) 

Obviously, the above objective function can be partitioned as K individual problems, and we can 

optimize each pair {Dk, Λk} separately as  

( )2 2 2( )
( ) 1 2 , ,arg min  s.t. 1,  

k k
k k

k T
k k k k k k k j k jF F F

J jλ λ= − + + − = ∀D ,Λ
D ,Λ

PA D d dΛ Λ Λ Γ  

Dk and Λk are also solved alternatively and iteratively. To make the optimization easier, we 

initialize Γk as zero, and in the following iterations Γk can be calculated as the column mean matrix 

of the updated coefficient matrix Λk. Therefore, Γk can be viewed as a known constant matrix in 

optimizing Dk and Λk in each iteration.  

From some initialization of Dk (for example, random initialization), the coding coefficients Λk 

can be computed. In each iteration, once Dk is given, we can readily have an analytical solution of 

Λk as follows: 

( ) ( )1

1 2 2( )T T
k k k k k kλ λ λ

−
= + + +D D I D PAΛ Γ                                          (3) 
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When Λk is obtained, the dictionary Dk can then be updated. The procedures of updating Dk are the 

same as those in [16].  

After several iterations, all the Dk and Λk can be obtained, and we can consequently obtain the 

whole dictionary D and the associated coefficient matrix Λ. 

Step 3) Fix D and Λ, update P. Let X=DΛ, the objective function in Eq. (1) is reduced to: 

{ }2 2 2
1 2arg min  s.t. T

t bF F F
J γ γ= − − − =P

P
PA X PA PA PP I                             (4) 

The above sub-objective function JP is itself non-convex, and we can have a local minimum of it 

as follows. First, since PPT=I, we have 

2 ( ( ) )T
F

tr ϕ− =PA X P P P                                                          (5) 

where  ( ) ( )( )T T Tφ = − −P A P X A P X . Let St=AtAT 
t and Sb=AbAT 

b , we have 2 ( )T
t tF

tr=PA PS P  and 

2 ( )T
b bF

tr=PA PS P . JP can then be rewritten as 

( ) ( ) ( ){ }
( )( )

1 2

1 2

arg min ( )

arg min ( )  

T T T
t b

T
t b

J tr tr tr

tr

γ γ

γ γ

= − −

= − −

S S

S S

Ρ Ρ

Ρ

Ρϕ Ρ Ρ Ρ Ρ Ρ Ρ

Ρ ϕ Ρ Ρ
    s.t. PPT=I           (6) 

To solve the above minimization in the current iteration h, we use ϕ(P(h-1)) to approximate the 

ϕ(P) in Eq. (6), where P(h-1) is the projection matrix obtained in iteration h-1. By using the Eigen 

Value Decomposition (EVD) technique, we have 

[ ] ( )( 1) 1 2( )  h t bEVD γ γ−= − −U,Σ,U S Sϕ Ρ                                       (7) 

where Σ  is diagonal matrix formed by the eigenvalues of ( )( 1) 1 2( )  h t bϕ γ γ− − −S SΡ . Then we can 

take the updated P as the first l most important eigenvectors in U, i.e., let P(h)=U(1:l, :). However, 

in this way the update of P may be too big, and make the optimization of the whole system in Eq. 

(1) unstable. Therefore, we choose to update P gradually in each iteration and let  

P(h)=P(h-1)+c(U(1:l, :)−P(h-1))                                                 (8)  

where c is a small positive constant to control the change of P in iterations.  
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Step 4) Stopping criterion. If the maximum iteration number is reached, or the difference between the 

objective function { }k k
JP, D ,Λ  in adjacent iterations is smaller a preset value ε, then stop and output P 

and D. Otherwise go back to Step 2.  

 

3.3. Convergence of the JDDRDL model 

The proposed JDDRDL model in Eq. (1) is jointly non-convex to the unknown variables, and thus the 

proposed optimization algorithm in Section 3.2 can at most reach a local minimum of it. In Step 2, the 

sub-problem is convex to each of {Dk, Λk} when the other one is fixed, and our algorithm will lead to a local 

minimum of this sub-problem. However, in Step 3, Eq. (6) is an approximate formulation to the original 

sub-problem in Eq. (4), and thus the obtained solution is only an approximation to the local minimum of 

the sub-problem. Overall, the convergence of our algorithm cannot be guaranteed but by experience we 

can have a stable solution.  

 
 

 
(a) AR database 

 

 
(b) MPIE database 

 
Figure 1: The convergence curves of JDDLDR algorithm on the (a) AR and (b) MPIE databases. The 
parameter values are λ1= λ2 =0.005, γ1 =10 and γ2=1. 
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Let’s use the AR database [27] and MPIE database [28] as examples to illustrate the optimization 

process of JDDRDL. The dimensionality of the face images is reduced to 300. The curves of the objective 

function { }k k
JP, D ,Λ vs. the iteration number are plotted in Fig. 1(a) and Fig. 1(b), respectively, for the two 

databases. We can see that after several iterations (e.g., 6 iterations), the value of the objective function 

becomes stable, and it varies only in a small range. Usually, the iteration will stop within 15 times. Our 

experimental results also show that stopping the minimization with more or less iterations, the resulted 

projection P and dictionary D will lead to almost the same FR rates. This indicates that although the 

proposed JDDRDL algorithm cannot lead to an ideal convergence, it is not sensitive to the iteration 

number. In our experiments, we set the maximal iteration number as 15 and it works well. 

3.4. The classification scheme 

After we obtain the projection matrix P, the query sample y can be projected into the lower dimensional 

space by Py, and then the lower dimensional feature Py can be coded over the dictionary D. Here we 

adapted the collaborative representation model with l2-norm regularization [26] for coding because of its 

effectiveness and efficiency: 

{ }2 2

2 2
ˆ arg min λ= − +y Dαα Ρ α α                                                  (9) 

where λ is a positive scalar. Obviously, we have ( ) 1

0ˆ T Tλ
−

= +D D D yα Ι Ρ . The resulted coding vector can 

be written as α̂ =[ 1α̂ ; …; ˆkα ; …; ˆKα ], where ˆkα  is the sub-coding-vector associated with each sub-

dictionary Di.  

Once the coding vector α̂  is computed, the classification can be conducted based on the 

reconstruction residual of each class, as that in SRC [6] or CRC [26]. However, in the proposed JDDRDL 

algorithm, the mean of the coding vectors Λk of each class, denoted by uk, is also learned, and the distance 

between α̂  and uk is also useful for classification, as shown in [3]. Therefore, we adopted the classifier in 

[3] for the final classification.  Let  
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2

2
ˆk k ke = −y DΡ α + 2

2
ˆk kω μα −                                                      (10) 

where ω is the constant to balance the contribution of the two terms. The final classification is performed 

by ( ) { }identity arg mink ke=y . 

 

4. Experimental results 

In this section, we use several benchmark face recognition databases to verify the performance of our 

proposed JDDRDL scheme. The representative algorithms that employs dictionary learning and/or 

dimensionality reduction under the SRC framework, including SRC [6] with PCA and LDA, CRC [26] 

with PCA and LDA, metaface learning for SRC (MFL-SRC) [16], dimension reduction for SRC (DR-

SRC) [14] and the recently proposed FDDL [3], are used for comparison. The l1_ls [21] toolbox, which is 

a stable l1-minimization solver, is used to solve the l1-minimization problem (for other l1-minimization 

solvers, please see [22-25]) in the SRC related algorithms. On each database, we first test the robustness 

of these competing methods to the number of training samples, and then show their results with different 

dimensionalities of the features.  

 

4.1 Parameter selection 

There are four parameters, λ1, λ2, γ1 and γ2, in our JDDLDR model in Eq. (1). The four parameters have 

very clear physical meaning, which could guide the setting of these parameters. (λ1, λ2) are to update the 

dictionary Dk and coding coefficient Λk, while (γ1, γ2) are to update the projection matrix P for dimension 

reduction. Therefore in parameter selection, we could determine (λ1, λ2), and then determine (γ1, γ2). From 

Eq. (3), we can see that the setting of λ1and λ2 could simultaneously regularize the coding coefficient Λk 

and introduce discrimination via minimizing the within-class scatter of Λk. Since each atom (i.e., the 

column vector) of Dk has a unit l2-norm, we set λ1= λ2 =0.005 based on our experimental experience. 
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Parameters γ1 and γ 2 are related to the learning of dimensionality reduction projection matrix P. They 

should be set bigger compared with λ1and λ2, since trivial solutions (e.g., ( )Null≈P A , i.e., PA≈0) would 

be got if only the first three terms in Eq. (1) work. By experimental experience, we set γ1=10 and γ2=1 to 

mainly maximize the total scatter of the training samples, while introducing some discrimination between 

classes. In the testing stage, the scalar λ (refer to Eq. (9)) is set to 0.001 and ω (refer to Eq. (10)) is set to 

0.01 in all experiments by experience. 

 

4.2. FR results 

 a) AR database: The AR database [27] consists of over 4,000 frontal images from 126 individuals. For 

each individual, 26 pictures were taken in two separate sessions. In our experiments, a subset that 

contains 50 males and 50 females with 6 illumination and 8 expression variations in two sessions is used 

(please refer to Fig. 2 for some examples). 

 We randomly chose 2~7 samples per subject for training, while the other samples were used as query 

samples, all the samples were projected into a 550 dimensional subspace (Samples in LDA+SRC and 

LDA+CRC schemes were projected into a 99 dimensional subspace). The experiments were repeated 50 

times to calculate the average recognition rate and the corresponding standard deviation. The FR rates by 

competing methods are listed in Table 1. It can be seen that when the number of training samples per 

class is not very small, e.g., 7 samples per class, the recognition rates by all competing methods are quite 

similar and satisfying. With the decrease of the number of training samples, the recognition rates of all 

methods drop, especially for LDA+SRC and LDA+CRC. This is mainly because LDA is sensitive to the 

number of training samples. The proposed JDDRDL achieves the highest FR rates among all the 

competing methods. Particularly, it is less sensitive to the small sample size problem. When the number 

of training samples per class is relatively high such as 6 or 7 samples per class, JDDRDL has very close 

recognition rates to FDDL. However, when the number of training samples are relatively low such as 2~5 
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samples per class, the difference between the recognition rates of JDDLDR and other methods is getting 

higher. Overall, JDDRDL’s performance is very stable. 

 

   

Figure 2: Some samples from the AR database. 

 
Table 1: Recognition rates on the AR database with different number of training samples. 

No. of training 
 Samples 2 3 4 5 6 7 

JDDRDL 0.734±0.037 0.759±0.026 0.818±0.020 0.897±0.017 0.929±0.020 0.941±0.022 
DR-SRC 0.711±0.034 0.740±0.028 0.798±0.022 0.871±0.020 0.908±0.021 0.930±0.025 

MFL-SRC 0.714±0.031 0.736±0.023 0.790±0.018 0.872±0.024 0.909±0.027 0.932±0.019 
PCA+SRC 0.705±0.029 0.731±0.024 0.794±0.014 0.872±0.018 0.910±0.020 0.932±0.018
LDA+SRC 0.494±0.044 0.534±0.033 0.718±0.020 0.859±0.014 0.892±0.027 0.914±0.024 
PCA+CRC 0.708±0.030 0.737±0.028 0.788±0.019 0.874±0.021 0.910±0.018 0.930±0.020 
LDA+CRC 0.491±0.029 0.534±0.031 0.714±0.028 0.859±0.019 0.890±0.022 0.912±0.015 

FDDL 0.690±0.032 0.702±0.029 0.796±0.015 0.888±0.020 0.924±0.022 0.933±0.028 
 
 

Table 2: Recognition rates on the AR database under different feature dimensions. 

Dimension 99 350 400 450 500 550 
JDDLDR --- 0.805±0.018 0.813±0.023 0.823±0.021 0.822±0.027 0.818±0.020 
DR-SRC --- 0.787±0.022 0.791±0.020 0.801±0.024 0.804±0.031 0.798±0.022 

MFL-SRC --- 0.788±0.020 0.789±0.014 0.809±0.018 0.798±0.021 0.790±0.018 
PCA+SRC --- 0.782±0.027 0.783±0.014 0.804±0.017 0.800±0.025 0.794±0.014 
LDA+SRC 0.718±0.020 --- --- --- --- --- 
PCA+CRC --- 0.784±0.027 0.787±0.020 0.800±0.020 0.793±0.036 0.788±0.019 
LDA+CRC 0.714±0.028 --- --- --- --- --- 

FDDL --- 0.782±0.023 0.794±0.019 0.802±0.024 0.801±0.034 0.796±0.015 
 

We then evaluate the performance of JDDRDL on different dimensionalities. Four samples of each 

subject are randomly chosen for training, and all the remaining images are used as query images. The 

recognition rates with different feature dimensions by the competing methods are shown in Table 2. 

JDDLDR surpasses other competing schemes on average. It can be seen that when the dimensionality is 
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relatively low, e.g., 350, all the methods (except for LDA+SRC and LDA+CRC) have similar results. 

With the increase of feature dimension, e.g., above 450, the proposed JDDLDR shows visible 

improvement over the other methods.  

 
b) Multi PIE database: The CMU Multi-PIE database [28] contains image of 337 subjects captured in 

four sessions with simultaneous variations in pose, expression, and illumination. Among these 337 

subjects, all the 249 subjects in Session 1 are used (see Fig. 3 for example samples). We randomly 

selected 2 to 7 samples per subject as our training set while the other images were used as query set, and 

projected into a subspace of 550 dimensions (Samples in LDA+SRC and LDA+CRC schemes are 

projected into a subspace of 248 dimensions). Also, all experiments were repeated for 50 times to 

calculate the mean and standard deviation of the FR rates. Table 3 shows the results by different methods. 

We can draw similar conclusions to those on the AR database, i.e., the proposed JDDRDL achieves the 

best FR rates and its advantage over the other methods is more remarkable when the number of training 

samples is less sufficient.  

Table 4 lists the recognition rates of the competing methods with different dimensions of features. 

Four images were randomly chosen from each subject for training set, and the remaining samples were 

used as for testing, and such experiments were repeated 50 times as well. Similar to what we observed on 

the AR database, JDDRDL achieves more remarkable improvement over the other methods with the 

increase of dimensionality. It is also noticed that LDA+SRC and LDA+CRC have good performance on 

MPIE since MPIE is a large scale dataset with 249 classes, which allows LDA to use enough number of 

projections to classify the query samples. 

 

 

Figure 3: Some samples from the MPIE database. 
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Table 3: Recognition rates on the MPIE database with different number of training samples. 
No. of training 

 samples 2 3 4 5 6 7 

JDDRDL 0.756±0.044 0.837±0.029 0.900±0.018 0.906±0.020 0.910±0.011 0.912±0.008 
DR-SRC 0.744±0.047 0.824±0.033 0.876±0.024 0.888±0.022 0.902±0.025 0.904±0.010 

MFL-SRC 0.741±0.034 0.826±0.020 0.871±0.021 0.881±0.013 0.889±0.012 0.907±0.014 
PCA+SRC 0.743±0.039 0.822±0.040 0.880±0.029 0.891±0.028 0.894±0.009 0.905±0.016 
LDA+SRC 0.421±0.040 0.795±0.026 0.874±0.020 0.884±0.016 0.895±0.014 0.910±0.009 
PCA+CRC 0.745±0.037 0.820±0.033 0.875±0.015 0.893±0.030 0.898±0.013 0.907±0.013 
LDA+CRC 0.414±0.042 0.801±0.028 0.877±0.026 0.880±0.019 0.900±0.020 0.908±0.019 

FDDL 0.659±0.035 0.810±0.041 0.888±0.017 0.904±0.026 0.908±0.016 0.910±0.015 
 

Table 4: Recognition rates on the MPIE database under different feature dimensions. 

Dimension 248 350 400 450 500 550 
JDDLDR --- 0.866±0.016 0.872±0.011 0.878±0.014 0.886±0.016 0.900±0.018 
DR-SRC --- 0.858±0.015 0.867±0.017 0.864±0.010 0.875±0.020 0.876±0.024 

MFL-SRC --- 0.853±0.011 0.859±0.010 0.865±0.016 0.871±0.017 0.871±0.021 
PCA+SRC --- 0.870±0.014 0.874±0.021 0.867±0.021 0.878±0.018 0.880±0.029 
LDA+SRC 0.874±0.020 --- --- --- --- --- 
PCA+CRC --- 0.873±0.013 0.874±0.014 0.870±0.019 0.877±0.019 0.875±0.015 
LDA+CRC 0.877±0.026 --- --- --- --- --- 

FDDL --- 0.866±0.011 0.871±0.012 0.872±0.014 0.881±0.016 0.888±0.017 
 

c) Extended Yale B Database: The extended Yale B [29] database contains about 2,414 frontal face 

images of 38 individuals taken under varying illumination conditions. We randomly chose 2 to 7 images 

from each person as training set, and used the rest images as testing set. Similarly, all the samples were 

projected into a subspace of 550 dimensions (Samples in LDA+SRC and LDA+CRC schemes are 

projected into a subspace of 37 dimensions) and the experiments were repeated 50 times. The FR results 

are shown in Table 5. 

 

 

Figure 4: Some samples from the Extended Yale B database. 
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Table 5. Recognition rates on the Yale B database with different number of training samples. 

No. of training 
 samples 2 3 4 5 6 7 

JDDRDL 0.549±0.034 0.653±0.036 0.674±0.025 0.682±0.022 0.696±0.030 0.705±0.024
DR-SRC 0.530±0.038 0.636±0.031 0.656±0.030 0.671±0.025 0.689±0.023 0.698±0.021

MFL-SRC 0.534±0.029 0.631±0.025 0.657±0.026 0.668±0.023 0.690±0.023 0.692±0.018
PCA+SRC 0.535±0.031 0.641±0.034 0.652±0.024 0.670±0.029 0.687±0.024 0.690±0.031
LDA+SRC 0.462±0.032 0.532±0.031 0.603±0.028 0.665±0.030 0.681±0.019 0.681±0.022
PCA+CRC 0.532±0.028 0.644±0.024 0.650±0.022 0.671±0.025 0.685±0.024 0.692±0.025
LDA+CRC 0.460±0.039 0.535±0.033 0.609±0.031 0.662±0.028 0.679±0.020 0.682±0.014

FDDL 0.441±0.042 0.538±0.037 0.636±0.023 0.675±0.021 0.693±0.017 0.701±0.025
 

Table 6. Recognition rates on the Extended Yale B database under different feature dimensions. 

Dimension 37 350 400 450 500 550 
JDDLDR --- 0.658±0.017 0.660±0.015 0.665±0.021 0.666±0.031 0.674±0.025 
DR-SRC --- 0.644±0.019 0.647±0.017 0.648±0.022 0.651±0.028 0.656±0.030 

MFL-SRC --- 0.640±0.022 0.640±0.025 0.642±0.029 0.645±0.033 0.657±0.026 
PCA+SRC --- 0.640±0.026 0.641±0.019 0.644±0.018 0.650±0.026 0.652±0.024 
LDA+SRC 0.603±0.028 --- --- --- --- --- 
PCA+CRC --- 0.637±0.014 0.645±0.022 0.649±0.023 0.652±0.024 0.650±0.022 
LDA+CRC 0.609±0.031 --- --- --- --- --- 

FDDL --- 0.614±0.019 0.616±0.024 0.618±0.025 0.624±0.028 0.636±0.023 
 

We then randomly selected 4 images from each subject as the training set, and took the remaining 

samples as the testing set. The FR rates under different dimensions are shown in Table 6. Compared 

with the AR database, the extended Yale B database has less expression variations but larger 

illumination changes (please see Fig. 4 for examples). When the number of training samples is 

insufficient, the FR becomes very challenging due to the large variation in illumination. From Tables 5 

and 6, one can see that the proposed JDDLDR method achieves the highest recognition rates among the 

competing schemes. When there are only 3 training samples per subject, JDDLDR achieves about 10% 

higher recognition rate than FDDL, which is a state-of-the-art discriminative dictionary learning 

method. This is because FDDL performs dimensionality separately from the discriminative dictionary 

learning process so that it requires enough training samples to stably compute the statistics. By 

coupling the dimensionality reduction and dictionary learning processes, the proposed JDDLDR can 
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Table 7(b). Recognition rates on the FERET database under different feature dimensions. 
 

Dimension 199 350 400 450 500 550 
JDDRDL --- 0.895 0.900 0.900 0.895 0.895 
DR-SRC --- 0.880 0.880 0.875 0.875 0.875 

MFL-SRC --- 0.875 0.875 0.875 0.880 0880 
PCA+SRC --- 0.890 0.890 0.890 0.885 0.880 
LDA+SRC 0.730 --- --- --- --- --- 
PCA+CRC --- 0.890 0.895 0.890 0.890 0.885 
LDA+CRC 0.735 --- --- --- --- --- 

FDDL --- 0.790 0.795 0.795 0.800 0.800 
 

 
Table 7(c). Recognition rates on the FERET database under different feature dimensions. 

 
Dimension 199 350 400 450 500 550 
JDDRDL --- 0.915 0.930 0.940 0.920 0.920 
DR-SRC --- 0.895 0.905 0.920 0.910 0.910 

MFL-SRC --- 0.895 0.900 0.915 0.910 0.905 
PCA+SRC --- 0.895 0.900 0.910 0.910 0.905 
LDA+SRC 0.755 --- --- --- --- --- 
PCA+CRC --- 0.900 0.905 0.910 0.905 0.905 
LDA+CRC 0.750 --- --- --- --- --- 

FDDL --- 0.790 0.800 0.815 0.810 0.810 
 

Similar to the results in other databases, from Tables 7(a), 7(b) and 7(c) we see that the proposed 

JDDLDR achieves the highest recognition results in the three experiments, which demonstrates its 

capability to handle the small sample size problem. The LDA+SRC, LDA+CRC and FDDL methods do 

not work well on this dataset because their sensitivity to the number of training samples. Compared 

with DR-SRC, MFL-SRC, PCA+CRC and PCA+SRC, the JDDLDR can always achieve certain 

improvement in the three experiments.  

e) FRGC database: FRGC version 2.0 [31] is a large-scale face database established under 

uncontrolled indoor and outdoor settings. Some examples are shown in Fig. 6. We use a subset (316 

subjects having no less than 10 samples and 7318 images in total) of query face image database, which 

has large lighting, accessory (e.g., glasses), expression variations and image blur, etc. We randomly 
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Table 9. Recognition rates on the FRGC 2.0 database under different feature dimensions. 

Dimension 315 350 400 450 500 
JDDLDR --- 0.8533±0.0071 0.8558±0.0065 0.8616±0.0068 0.8589±0.0052 
DR-SRC --- 0.7964±0.0082 0.8005±0.0082 0.8018±0.0088 0.8028±0.0082 

MFL-SRC --- 0.8297±0.0102 0.8294±0.0066 0.8300±0.0074 0.8311±0.0075 
PCA+SRC --- 0.7979±0.006 0.8003±0.0058 0.8015±0.006 0.8024±0.0058 
LDA+SRC 0.8211±0.0244 --- --- --- --- 
PCA+CRC --- 0.8309±0.0044 0.8346±0.0066 0.8386±0.0046 0.8407±0.0052 
LDA+CRC 0.8362±0.0203 --- --- --- --- 

FDDL --- 0.8279±0.0084 0.8317±0.0085 0.8320±0.0076 0.8340±0.0074 
 

 

4.3. Statistical significance test 

In order to more convincingly show the effectiveness of the proposed method, we perform statistical 

significance test to verify whether the improvement of JDDLDR over other methods is significant. 

More specifically, we perform a t-test (please refer to page 155 of [32]) on the null hypothesis that the 

improvement of JDDLDR over some competing method X is insignificant (i.e., the difference of the 

recognition rates between JDDLDR and X come from distributions with mean less than zero) by using 

all the recognition rates in each experiment. 

We focus on two outputs of the statistical significance test: H and P. H=0 indicates that the null 

hypothesis can not be rejected at some significance level, and P is the probability of observing the 

result of H=0 (small values of P cast doubt on the validity of the null hypothesis). When setting the 

significance level as 1%, we get that H=1 (i.e., the proposed JDDLDR is significantly better than all the 

other methods) holds well in almost all comparisons except for the cases of FDDL (with P=5.36%), 

LDA+CRC (with P=9.99%) and LDA+SRC (with P=8.75%) in MPIE. The reason is that the 

performance of FDDL approaches to JDDLDR when the number of training sample is large, and the 

dimensionality of JDDLDR is not large enough (e.g., 350, 400 and 450) when comparing with 

LDA+CRC/SRC. However, when the number of training samples per subject is small (e.g., 2 or 3), the 
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advantage of JDDLR over FDDL is significant (e.g., about 10% improvement when the number of 

training samples per class is 2), and when the dimensionality is large enough, JDDLDR could also 

outperform LDA+CRC/SRC. With setting the significance level as 10%, we get H=1 in all cases, 

validating that JDDLDR significantly outperforms all the other methods in all cases. 

 

5. Conclusion 

In this paper we proposed a joint discriminative dimensionality reduction and dictionary learning 

(JDDLDR) scheme for face recognition. Unlike many methods which focus on dictionary learning (DL) 

and use PCA or LDA for dimensionality reduction (DR), JDDLDR considers the interaction between DR 

and DL procedures by coupling them into a unified framework for energy minimization. The DR matrix 

projects the data into a lower dimensional subspace where the total scatter and between-class scatter of 

the training data are maximized, while the learned dictionary associated with the DR matrix is ensured to 

have a strong representative ability. In classification, both the representation residual and the distance 

between the coding vector and the mean vector of each class were considered. The experimental results 

on representative face databases demonstrated that the proposed JDDRDL method surpasses many state-

of-the-arts face recognition methods. 
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