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a b s t r a c t

Feature selection is considered to be an important preprocessing step in machine learning and pattern

recognition, and feature evaluation is the key issue for constructing a feature selection algorithm. In this

work, we propose a new concept of neighborhood margin and neighborhood soft margin to measure the

minimal distance between different classes. We use the criterion of neighborhood soft margin to

selection. We conduct this technique on eight classification learning tasks and some cancer recognition

tasks. Compared with the raw data and other feature selection algorithms, the proposed technique is

effective in most of the cases.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Feature selection plays an important role in a number of
machine learning and pattern recognition tasks [1–3]. A lot of
candidate features are usually provided to a learning algorithm
for producing a complete characterization of the classification
task. However, it is often the case that majority of the candidate
features are irrelevant or redundant to the learning task, which
will deteriorate the performance of the employed learning
algorithm and lead to the problem of overfitting. The learning
accuracy and training speed may be significantly deteriorated by
these superfluous features [4]. So it is of fundamental importance
to select the relevant and necessary features in the preprocessing
step.

Some techniques for feature selection have been developed in
the last decade [5–7]. The key issue in constructing feature
selection algorithms is to evaluate the quality of candidate
features [8,9]. An optimal criterion should naturally relate the
Bayes error rate of classification. However, computing Bayes error
rates requires detailed knowledge of the probability distribution
of the task, whereas in practice these probabilities are unknown.
Quite commonly, we focus on the design of performance
measures to determine the relevance between features and
decision. Distance, correlation, mutual information, consistency
and dependency are usually considered as feasible alternatives.
Mutual information is widely discussed in characterizing
ll rights reserved.
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relevance between categorical attributes and classification [10].
Wang introduced an axiomatic framework for feature selection
based on mutual information [1]. A dependency-based feature
selection algorithm was proposed, where dependency is defined
as the ratio of so-called positive region in the rough set theory
over the whole set of samples [11]. Positive region is the subset of
samples consistently classified into one of the decision classes if
their feature values are the same. However, the rate of positive
region is not an effective estimate of classification accuracy.
According to the Bayes rule, the samples with the same feature
values will be classified as belonging to the majority class.
Therefore, only the samples in the minority classes are mis-
classified in this case. Based on this observation, Dash and Liu
introduced the measure of consistency and employed it to
evaluate the quality of features where consistency is treated as
the ratio of the samples which can be recognized with the Bayes
rule [12].

From another viewpoint, classification margin was introduced
to evaluate features in recent years. Class margin is used to
characterize the confidence of classification in statistical learning
theory. It was observed that a classifier producing a great class
margin will get good generalization ability. In 1998, Bartlett and
Shawe-Taylor [23] showed that the fat shattering dimension fatF

of the linear function set F is less than minfR2=g2,nþ1g, where the
samples are g fat shattered and in a ball of n dimensions of radius
R about the origin. This conclusion shows the connection between
the margin of a classifier and its generalization ability.

A number of algorithms based on margin have been proposed
for evaluating features. In 2002, Crammer et al. gave two ways to
define the margin of a sample: sample margin and hypothesis
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margin [13]. In 2004, Gilad-Bachrachy et al. introduced hypoth-
esis margin to evaluate features and developed two algorithms,
called Simba and G-flip [20]. In 2006, Sun and Li [14] showed that
the famous feature evaluating algorithm Relief and its variant
ReliefF [15] could also be considered as a margin based feature
estimator. And then an iterative version of Relief (I-Relief) was
introduced. In 2009, Li and Lu introduced a distance learning
scheme based on loss-margin of nearest neighbor classification
for ranking features [16]. In 2002, Guyon et al. introduced a well
known gene selection algorithm based on support vector
machines (SVM) [22]. In fact this algorithm can also be considered
as a margin based algorithm, where the quality of a feature is
measured with the weight of the feature in the SVM classifier and
the weight reflects the contribution of the corresponding feature
to the classification margin.

In SVM, the margin is defined as the minimal distance between
samples and classification hyperplane. This margin is sensitive to
noisy samples. Provided a noisy learning task, the theory about
soft margin shows that there should be a tradeoff between margin
and training error rate, where the training error rate reflects
empirical risk, while margin is the measure of confidence of
classification. Empirical risk would rise if we enlarge the
classification margin. To minimize the expected risk, tradeoff
between empirical risk and margin is required. In this viewpoint,
we require to compute the training error and classification margin
in measuring the quality of classification. As we know, the
existing techniques, such as Simba and ReliefF, just reflect
the average margin of samples, and do not directly take the
classification error into account.

In 2008, Hu, Yu et al. [9] introduced a neighborhood rough set
model to measure the classification power of numerical attri-
butes, where dependency approximately reflects the training
accuracy with a given neighborhood size. One naturally expects
the derived features can get an optimal subset of features which
produce high classification accuracy and a large classification
margin. However, it is usually the case that we do not know how
to set the size of neighborhood. Given a size of neighborhood d,
although we may get a subset of features such that the
classification task in the selected subspace is consistent. That is
to say, the d neighborhood of each sample has the same decision
as this sample. We can say that the neighborhood margin of the
samples is at least d. We call the classification task is d
neighborhood classifiable. It is notable that a task may be
neighborhood classifiable with the size greater than d if it is d
neighborhood classifiable. Furthermore, neighborhood separabil-
ity is also sensitive to noisy samples. Here, we will develop a
technique to overcome these problems.

In this work, we introduce the idea hidden in soft-margin
support vector machines into neighborhood rough sets and
propose a neighborhood soft-margin based feature evaluating
and selecting technique. This criterion integrates the classification
loss (characterized with neighborhood boundary) and neighbor-
hood margin (characterized with the size of neighborhood) to
reflect the classification quality in feature subspaces.

The rest of the paper is organized as follows. The basic
knowledge about neighborhood rough sets is given in Section 2.
The concepts of neighborhood margin and neighborhood soft
margin are introduced in Sections 3 and 4. Experimental analysis
is presented in Section 5. Finally, the conclusion comes in
Section 6.
2. Preliminaries on neighborhood rough sets

Here we give some basic definitions and notations used in the
following sections.
Definition 1. Given a set S of samples described with features F,
D is a distance function on S and d is a positive constant. Then the
neighborhood of sample x is defined as dðxÞ ¼ fxijDðx,xiÞrdg.

The neighborhood of x is a subset of samples which are close to
x. We expect the neighborhood of x should be grouped into the
same decision class as they take the similar feature values.

The relation N of neighborhood divides the samples into a
collection of subsets fdðxiÞg

n
i ¼ 1 of samples, where N ðx,yÞ ¼ 1 if

yAdðxÞ; otherwise, N ðx,yÞ ¼ 0. We call ðS,N Þ a neighborhood
approximation space.

Definition 2. Given ðS,N Þ and an arbitrary subset XDS of
samples, the lower approximation and upper approximation of
X in ðS,N Þ are defined as

N X ¼ fxAUjdðxÞDXg, N X ¼ fxAUjdðxÞ \ Xa|g

Definition 3. Given ðS,N Þ, S is partitioned into m decision classes
d1,d2,y,dm with the decision attribute Y. Then the lower and
upper approximations of classification in ðS,N Þ are defined as

N Y ¼ [
m

i ¼ 1
N di; N Y ¼ [

m

i ¼ 1
N di,

correspondingly, the approximation boundary of classification is
defined as

BNN Y ¼N Y�N Y

It is easy to show that N Y ¼S. So BNN Y ¼S�N Y .
The decision boundary is the subset of samples which have

some samples with different classes in their neighborhoods. So,
these samples are easy to be misclassified. In some literatures ,
classification boundary is considered as one of the main sources of
classification complexity [6,8,9].

Definition 4. Given ðS,N Þ and the decision attribute Y, the
neighborhood dependency of Y on the set of features F is
computed with

gN ðYÞ ¼ j
N Yj

jSj
,

where jAj is the cardinality of A.

We say decision Y completely depends on features F if g¼ 1. We
say the classification task is d neighborhood consistent or d
neighborhood separable if gN ðYÞ ¼ 1; otherwise, we say decision Y

depends on features F with level g.
gN ðYÞ approximately reflects the classification accuracy. It was

used to evaluate quality of features [9,24]. However, this measure
cannot reflect the margin with respect to the corresponding
gN ðYÞ. Given two subsets of features, if their values of g are the
same, but the sizes of neighborhood used in computing g are
different. it means that the feature subset producing greater
dependency is better than the other one. We prefer to the subset
which g is computed with the greater d. This difference cannot be
reflected with neighborhood dependency.
3. Neighborhood margin

The above section gives the basic definition of neighborhood
dependency. We also point out its disadvantage that it cannot
reflect the size of margin. Now we introduce some new
definitions.
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Definition 5. Given two sets A¼{a1,a2,y,am} and B¼{b1,b2,y,bn},
the distance between A and B is computed as

DðA,BÞ ¼min
a A A
b A B

Dða,bÞ ð1Þ

Definition 6. Given a classification task, the samples are divided
into m classes D¼d1,d2,y,dm. We say that the neighborhood
margin of the task is d if

min
di ,dj AD

Dðdi,djÞ ¼ d ð2Þ

It is easy to see that in essence neighborhood margin is the least
inter-class distance according the above definition.

Now we discuss the connection of neighborhood margin with
the margin defined in support vector machines.

Assume that we are given a set of sample points of the form
S¼ fðxi,yiÞjxiARN ,yiAf�1,þ1ggni ¼ 1, where yi is either d1 or d2,
denoted by +1 and �1. Each sample is described with a
N-dimensional vector. a maximal margin hyperplane gotten with
SVM learning algorithms is written as

yiðw
0xi�bÞZ1, i¼ 1,2, . . . ,n: ð3Þ

By using geometry, we know the distance between samples
and the hyperplane is 2=JwJ, so we can maximize margin by
minimizing JwJ. This can be transformed to a quadratic
programming optimization problem.

As to a linearly separable task, a large margin classifier can be
illustrated as Fig. 1. The real margin is 2=JwJ in this case.

Definition 7. If the distance between the hyperplane and a
sample is less than d, we say that the two classes of samples is d
linearly inseparable; otherwise, the task is d linearly separable
[18].

Obviously, as to Fig. 1, the task is d linearly inseparable if
d41=JwJ.

The classification margin is shown to be effective for evaluat-
ing features. However,in filter based feature selection, we do not
know the classifying hyperplane. Thus we cannot compute the
margins of samples in this case.

Now, we consider samples close to the classification hyper-
plane. It is easy to see that these samples are close to samples
with different labels.

Given a set of samples S for classification learning, assume S is
divided into two classes {d1,d2} based on the decision attribute. If
the samples are d neighborhood separable, we have that
Dðd1,d2Þ4d, where 8xiAd1,8xjAd2,Dðd1,d2Þ ¼minDðxi,xjÞ. In this
case, we say the neighborhood margin of the classification task is
no less than d.

Neighborhood margin can be directly computed from samples.
So we can use it to evaluate features.
Fig. 1. Linear support vector machine.
It is easy to get from Fig. 2 that the task is 2e neighborhood
separable if it is e linearly separable with respect to linear SVM
because the least distance l between two samples with different
classes is not less than 2e.
4. Neighborhood soft margin

One expects the classification task is separable at a large size of
neighborhood. In this case, the margin between samples in
different classes is large enough for discriminating them. So we
can construct a new criterion for evaluating the quality of feature
spaces based on neighborhood. However, just as pointed out
above that we are usually confronted with tasks which are of little
margins due to noisy samples, instead of complexity of tasks.

Fig. 3 shows a task with only one noisy sample, where samples
in class 1 are denoted by � and samples in class 2 are marked with
&. We see that x1 is the closest one to the second class if we do
not consider x2. In this case the task is d1 neighborhood separable.
However, if there are some samples like x2, the margins between
these classes of samples are significantly reduced. The task is d2

neighborhood separable if x2 is considered. As d2 is far less than
d1, then the quality of the feature subspace gets much worse than
the case that x2 is not considered. The analysis shows that
neighborhood margin based feature evaluation is sensitive to
noisy samples.

In order to deal with this problem, Cortes and Vapnik
suggested a modified maximum margin idea that allows for
mislabeled examples in 1995 [17]. If there exists no hyperplane
that can split two class of examples, a soft margin method will
choose a hyperplane that splits the examples as cleanly as
possible, while still maximizing the distance to the nearest
cleanly split examples. The method introduces slack variables xi,
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which measures the degree of misclassification of the datum xi.

yiðw
0 � xi�bÞZ1�xi, i¼ 1,2, . . . ,n ð4Þ

The objective function is then increased by a function which
penalizes non-zero xi, and the optimization becomes a trade off
between a large margin, and a small error penalty. If the penalty
function is linear, the optimization problem can be rewritten as

1

2
JwJ2

þC
X

i

xi, subject to yiðw � xi�bÞZ1�xi, i¼ 1,2, . . . ,n ð5Þ

where C is a constant for cost of the constrain violation. This
constraint along with the objective of minimizing JwJ can be
solved using Lagrange multipliers.

In order to reduce the influence of noisy samples on
neighborhood margin, we introduce the idea of soft-margin
support vector machines by trading off between the size of
neighborhood and the size of boundary set.

Given a set of samples S for classification learning, and two
positive constants d1 and d2. B1 and B2 are the boundary sets
computed with d1 and d2, respectively. We have the following
conclusion: B1DB2 if d1od2.

This property shows that the size of boundary set mono-
tonically increases with the size of neighborhood. As we know,
the boundary set is easy to be misclassified as they are close to
samples from other classes.

On one hand, we expect there is a large neighborhood such
that the task is separable. On the other hand, we also desire that
the boundary set with respect to the large neighborhood is as
small as possible. Based on this idea, we can design a new
criterion by combining the sizes of neighborhood and the
boundary set.

Following the optimization objective function in soft-margin
support vector machine, we give a new measure for evaluating
features:

NSM¼min
d

1

2d2
þljBNNY j ð6Þ

where d is the size of neighborhood, jBNN Y j is the size of the
boundary set with respect to d, and l is a nonnegative real
number to reflect the weight of margin and size of the boundary
set. We call this criterion neighborhood soft-margin.

In fact, the size of boundary samples is also sensitive to noisy
samples. As shown in Fig. 4, if deleting x2, the samples around x2

belong to the positive region. However, if we consider x2, these
samples should be divided into the boundary set. As we know, not
all these boundary samples are misclassified. According to the
class distribution, only samples x2 are misclassified. We should
just compute those misclassified samples in boundary regions.
This problem can be overcome with the following definitions.
g(x) = wTx + b = 0

�i/||w||

Fig. 4. Soft margin support vector machine.
Definition 8. Given a set of training samples, dðxiÞ is the
neighborhood of sample xi, PðdðxiÞjojÞ, j¼1,2,y,m, is the class
probability of class oj, then NDðxiÞ ¼ol if PðoljdðxiÞÞ ¼

maxjPðojjdðxiÞÞ, where PðojjdðxiÞÞ ¼ nj=N , N is the number of
samples in the neighborhood, nj is the number of samples in this
neighborhood and they belong to decision oj.

We introduce 0–1 loss function for misclassified samples

lðDðxiÞjNDðxiÞÞ ¼
0 DðxiÞ ¼NDðxiÞ

1 DðxiÞaNDðxiÞ,

(

where D (xi) is the real class of xi.

Definition 9. Neighborhood decision error number (NDEN) is
defined as

NDEN¼
Xn

i ¼ 1

lðDðxiÞjNDðxiÞÞ:

In practice, we replace the size of boundary set with NDEN.
Given a set of samples and parameter d, we can compute the
NDEN. Then we get the quality of features. As to a certain subset
of features, we can try a series of values for parameter d, compute
the neighborhood soft margins and get the maximal value of
neighborhood soft-margin as the final output. Assume d¼ 0:01,
l¼ 1, and NDEN¼0, then NSM¼5000. However, in some cases, we
change d¼ 0:1, we get NDEN¼20, then NSM¼250. Thus, we
should take 0.1 as the soft margin of the classification task
although there are 20 samples in the margin. In the experiments,
we try d from 0.01 to 0:25�

ffiffiffiffi
N
p

with step 0.01, where N is the
number of features.

It is notable that good subsets of features obtain small
neighborhood soft margin according to the above definition. We
construct a greedy algorithm to select features based on the
proposed measure. We first compute the neighborhood soft
margin of each feature and select the feature f1 with the largest
margin. Then we find a feature f2 to get the largest margin in the
subspace of f1 and f2, and so on until all the candidate features are
selected. We get a rank of features by this procedure. Then we can
check the effectiveness of the first m features, where m is specified
by the users or the cross validation technique.
5. Experimental analysis

The proposed technique uses the soft-margin computed with
neighborhood to evaluate features. In order to show the
disadvantage of neighborhood dependency and neighborhood
margin, we conduct some numerical experiments on data set
wine. Data wine is a well known linearly separable task. There are
178 samples characterized with 13 numerical features in this data
set. The samples are divided into three classes. We normalized
each feature into the unit interval [0,1]. First we use a randomized
feature selection algorithm based on neighborhood rough sets to
get 20 subsets of features, as shown in Table 1. In the experiment,
we set the size of neighborhood 0.15. That is to say, if the minimal
margin between different classes is great than 0.15, the
neighborhood dependency is 1 and the task is 0.15
neighborhood separable. In Table 1, the second column shows
the selected features with the order that the features are selected
in the subsets and the third column gives the variation of
neighborhood dependency with the increase of features. Given
any of these feature subsets, we can see that the classification task
is neighborhood separable. The neighborhood dependency
gets its maximal value 1. However, we find that the
classification performances of these feature subsets are
different. The last column presents the classification accuracies
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Table 1
feature subsets, neighborhood dependency, margin, neighborhood soft margin (NSM) and classification accuracies (wine).

ID Features Dependency Margin NSM KNN

1 1, 11, 13, 2, 12, 4, 7 0.039, 0.303, 0.685, 0.893, 0.978, 0.989, 1 0.212 23.4603 0.9770.03

2 13, 11, 12, 9, 4, 1 0.112, 0.354, 0.685, 0.905, 0.989, 1 0.199 38.083 0.9570.06

3 1, 11, 13, 2, 5, 7 0.039, 0.303, 0.685, 0.893, 0.972, 1 0.233 29.370 0.9970.02

4 13, 11, 12, 9, 3, 1 0.112, 0.354, 0.685, 0.905, 0.978, 1 0.197 42.083 0.9570.07

5 1, 12, 10, 4, 2, 7 0.039, 0.365, 0.708, 0.905, 0.989, 1 0.188 43.521 0.9270.07

6 10, 12, 2, 13, 3, 5, 4 0.034, 0.264, 0.584, 0.888, 0.966, 0.989, 1 0.180 38.446 0.9470.06

7 13, 10, 12, 7, 4, 1 0.112, 0.449, 0.736, 0.899, 0.966, 1 0.166 35.253 0.9570.04

8 1, 12, 10, 5, 6, 4 0.039, 0.365, 0.708, 0.910, 0.977, 1 0.175 45.823 0.9370.05

9 13, 12, 2, 4, 5, 8 0.112, 0.326, 0.691, 0.905, 0.978, 1 0.177 57.482 0.9070.06

10 13, 10, 9, 6, 2, 8 0.112, 0.449, 0.685, 0.899, 0.966, 1 0.159 55.253 0.9470.05

11 13, 11, 7, 10, 5, 4 0.112, 0.354, 0.736, 0.887, 0.989, 1 0.163 33.370 0.9670.05

12 3, 13, 12, 10, 11, 9 0.028, 0.202, 0.573, 0.882, 0.966, 1 0.177 33.942 0.9470.05

13 13, 11, 7, 5, 10, 3 0.112, 0.354, 0.736, 0.933, 0.989, 1 0.150 29.823 0.9670.05

14 13, 1, 10, 7, 8, 3 0.112, 0.281, 0.663, 0.893, 0.976, 1 0.164 35.253 0.9770.04

15 13, 10, 7, 5, 2, 1 0.112, 0.449, 0.753, 0.910, 0.983, 1 0.217 29.370 0.9770.04

16 3, 1, 12, 11, 10, 6 0.028, 0.129, 0.646, 0.910, 0.983, 1 0.169 45.370 0.9370.07

17 3, 1, 7, 4, 8, 2 0.028, 0.129, 0.646, 0.882, 0.989, 1 0.155 51.253 0.9370.06

18 3, 11, 13, 1, 8, 6 0.0281, 0.107, 0.534, 0.860, 0.983, 1 0.156 45.370 0.9470.06

19 13, 10, 12, 8, 1, 7 0.1124, 0.449, 0.736, 0.910, 0.978, 1 0.155 37.823 0.9770.04

20 1, 11, 7, 4, 3, 5 0.039, 0.303, 0.736, 0.905, 0.989, 1 0.167 33.370 0.9570.06
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Fig. 5. Distribution of neighborhood margin of samples in different feature subspace (subset 3: 1, 11, 13, 2, 5, 7).
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of KNN (k¼5) in these subspaces. We can see that there are great
differences in classification accuracies between these feature
subsets.

What is the difference between these feature subsets? We
compute the neighborhood margins of the classification task in
different feature subspaces, as shown in the fourth column in
Table 1 where the neighborhood margin is computed as the
minimal distance between classes. The fourth column shows that
the real neighborhood margins are usually greater than 0.15 and
some feature subsets can yield much greater margin than 0.15. It
is easy to see that the feature subsets yielding large margin
usually produce good classification performances, such as subsets
1, 3 and 15. However, some subsets of features deriving small
margins also produce competent classification performances,
such as feature subsets 13, 14 and 19.

Why the feature subset with small neighborhood margin can
also generate good performances? We show the distribution of
interclass of samples in Figs. 5, 6 and 7, where we compute the
distances of samples to all samples coming from different classes.

Comparing Figs. 5, 6 and 7, we can find the minimal interclass
distance in feature subset 3 is far greater than those in feature
subset 5 and 13. Moreover, we can also see that although the
minimal interclass distance in feature subset 13 is smaller than
that in feature subset 5, the samples with interclass distance [0.2,
0.3] in feature subset 13 are much less those in feature subset 5.
As the samples with interclass distance [0.2, 0.3] are also easy to
be misclassified, the classification accuracies in feature subset 13
are higher than in feature subset 5. This fact shows that the
measure of crisp margin cannot reflect the real ability of features.
Soft margin should be introduced. The fifth column of Table 1
shows the neighborhood soft margins in the corresponding
subsets of features. We compute the correlation coefficient
between NSM and KNN accuracy and get the value �0.80; while
the coefficient between neighborhood margin and KNN accuracy
is 0.36. The results show that NSM is much better neighborhood
margin in evaluating features.

In Table 1, we observe that features 4 and 8 usually appear at
the end of feature subsets, whereas features 10 and 13 are picked
up in the beginning. So we estimate the class probability
distribution in these features and show them in Fig. 8. We can
see that class 2 is overlapped with classes 1 and 3 if we consider
feature 4 or feature 8. But class 2 and class 3 are well separated
with respect to feature 10; class 2 and class 1 are well separated
with respect to feature 13. So regarding features 10 and 13, the
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Fig. 6. Distribution of neighborhood margin of samples in different feature subspace (subset 13: 13, 11, 7, 5, 10, 3).
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Fig. 7. Distribution of neighborhood margin of samples in different feature subspace (subset5: 1, 12, 10, 4, 2, 7).

Fig. 8. Distribution of class probability in different feature subspaces (wine).
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Table 2
Data description.

Data Sample Feature Class

German 1000 20 2

Heart 270 13 2

Hepatitis 155 19 2

Horse 368 22 2

Iono 351 34 2

Segmentation 2310 18 7

WDBC 569 30 2

Wine 178 13 3
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three classes of samples are well discriminated. They are useful
for classifying different kinds of wines as shown in Fig. 9.
Correspondingly, the average margins between classes are
greater than other feature pair.
There is a parameter l to be set in computing neighborhood
soft margin. We try l¼ 0,1,4,8,16,32,64 and compute the
classification performance of the selected features with different
l. The results are given in Figs. 10 and 11, where data wine is still
used in the experiment.

l¼ 0 means that we just consider neighborhood margin and
ignore boundary samples, while l¼ 64 shows that the number of
boundary samples is very important. We should reduce the
boundary samples in feature selection.

From Figs. 10 and 11, we get that the performance is the best if
l¼ 4. We also try other benchmark tasks and find l¼ 4 is a proper
value for parameter l. So we set l¼ 4 in the following
experiments.

Eight data were collected from UCI repository of machine
learning databases for testing the proposed technique [19], as
outlined in Table 2. The numbers of samples vary from 178 to
2310, and the numbers of features are between 13 and 34.

We evaluate the candidate features with neighborhood soft
margin and get a rank for each classification task. Then we
compute the classification accuracy of the first m features with
KNN and RBF-SVM classifiers based on 10-fold cross validation,
where m¼1,2,3y. Then we get a sequence of classification
accuracies for each task, as shown in Fig. 12.

In the same time, we also conduct feature selection on these
data sets with correlation (CFS) [10], consistency (C) [12] and
neighborhood rough sets (NRS) based algorithms [9].

The optimal numbers of features selected with these algo-
rithms are given in Table 3. As a whole, we see that NSM selects
the relatively less features. For some data sets, such as German,
heart, iono and WDBC, just several features are selected. While
correlation and neighborhood rough sets based algorithms get the
most features.

Then we compare the classification accuracies of these feature
subsets in Tables 4 and 5, where ‘‘raw’’ denotes the classification
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Fig. 12. Variation of classification accuracies with number of features: (a) German; (b) heart; (c) hepatitis; (d) horse; (e) iono; (f) segmentation; (g) WDBC; (h) wine.
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accuracy of the raw data sets, NSM is the classification accuracy of
features selected with neighborhood soft margin, and CFS, C and
NRS are accuracies derived with features selected with
correlation, consistency and neighborhood rough sets based
algorithms, respectively.
In Tables 4 and 5, markers m, k and – means the classification
accuracy increase, decrease and keep with respect to the raw data.
Compared with KNN accuracies derived from the raw data and NSM,
we see that six of the eight tasks are improved and one task keep
invariant although more than two thirds of features are removed, as
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Fig. 13. Variation of classification accuracy with the number of selected features: (a) DLBCL; (b) Leukemial 1; (c) Lung 1.
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shown in Table 3. As to RBF-SVM, five tasks are improved and two
tasks are worsened a little. These results show that the proposed
technique is effective for feature selection in most of the cases.

Comparing the proposed algorithm with other techniques of
feature selection, we also see that NSM is competent. Especially
for KNN classifiers, NSM is almost the best one on all the
classification tasks except data set horse. As to RBF-SVM, NSM
also get good results in majority of samples.
Moreover, we compare the proposed algorithm with some
existing large-margin based feature selection techniques includ-
ing ReliefF [15], SVM [22] and Simba [20] in Tables 6 and 7.

Based on these experiments, we see that the neighborhood soft
margin based feature selection algorithm is competent with the
classical techniques.

Robustness is one of the advantages of the proposed algorithm.
We randomly change the labels of 10% samples in the raw data
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Table 3
Number of features selected with different algorithms.

Data Raw NSM-KNN NSM-SVM CFS C NRS

German 20 5 3 5 11 11

Heart 13 4 3 7 10 9

Hepatitis 19 16 14 7 8 7

Horse 22 4 4 8 4 8

Iono 34 4 9 14 7 9

Segmentation 18 11 11 7 5 10

WDBC 30 3 9 11 8 12

Wine 13 6 6 11 5 6

Total 169 53 59 70 58 74

Table 4
KNN accuracy of features selected with different algorithms (k¼3).

Data Raw NSM CFS C NRS

German 0.69 0:73m 0.70 0.72 0.71

Heart 0.82 0:84m 0.83 0.84 0.83

Hepatitis 0.87 0:90m 0.88 0.90 0.90

Horse 0.90 0:95m 0.92 0.88 0.90

Iono 0.84 0:92m 0.86 0.88 0.88

Segmentation 0.96 0:95k 0.95 0.95 0.95

WDBC 0.97 0:97� 0.97 0.97 0.95

Wine 0.95 0:98m 0.97 0.96 0.97

Table 5
RBF-SVM accuracy of features selected with different algorithms.

Data Raw NSM CFS C NRS

German 0.74 0:75m 0.72 0.72 0.74

Heart 0.83 0:86m 0.82 0.83 0.83

Hepatitis 0.87 0:89m 0.90 0.86 0.91

Horse 0.90 0:93m 0.92 0.83 0.91

Iono 0.95 0:95�� 0.97 0.93 0.95

Segmentation 0.90 0:96m 0.93 0.90 0.89

WDBC 0.98 0:97k 0.98 0.97 0.97

Wine 0.99 0:99�� 0.99 0.98 0.99

Table 6
Comparison of large-margin based algorithms (KNN accuracy/feature number).

Data ReliefF SVM Simba NSM

German 0.73/7 0.73/5 0.72/15 0.72/5

Heart 0.83/12 0.81/5 0.83/10 0.84/4

Hepatitis 0.89/8 0.87/12 0.87/13 0.89/16

Horse 0.93/3 0.92/3 0.90/8 0.95/4

Iono 0.91/6 0.96/16 0.92/6 0.92/4

Segmentation 0.96/13 0.93/13 0.96/13 0.96/7

WDBC 0.97/30 0.98/23 0.97/26 0.97/3

Wine 0.98/10 0.99/13 0.98/7 0.98/6

Table 7
Comparison of large-margin based algorithms (SVM accuracy/feature number).

Data ReliefF SVM Simba NSM

German 0.75/16 0.76/4 0.74/8 0.75/3

Heart 0.83/6 0.86/4 0.83/11 0.86/3

Hepatitis 0.88/14 0.92/5 0.88/12 0.89/14

Horse 0.93/3 0.93/7 0.91/5 0.95/4

Iono 0.96/17 0.95/11 0.95/21 0.95/9

Segmentation 0.91/11 0.93/8 0.95/7 0.96/11

WDBC 0.98/22 0.98/11 0.98/16 0.97/9

Wine 0.99/13 0.99/9 0.99/13 0.99/6

Table 8
Performance comparison of NSM on the raw data and noisy data (accuracy/feature

number).

Data SVM SVM-noise KNN KNN-noise

German 0.75/3 0.75/3 0.72/5 0.72/2

Heart 0.86/3 0.86/3 0.84/4 0.84/4

Hepatitis 0.89/14 0.88/7 0.89/16 0.87/7

Horse 0.93/4 0.89/3 0.95/4 0.92/4

Iono 0.95/9 0.96/13 0.92/4 0.92/5

Segmentation 0.96/11 0.95/9 0.96/7 0.96/7

WDBC 0.97/9 0.96/9 0.97/3 0.95/9

Wine 0.99/6 0.98/4 0.98/6 0.98/4

Q. Hu et al. / Neurocomputing 73 (2010) 2114–2124 2123
sets. It means we add 10% class noise in the data sets. Then we
conduct the algorithms on them again.

Comparing the results in Table 8, although 10% class noise is
added in the raw data, we do not observe significant reduction of
classification performance. These results show NSM can work on
noisy tasks.

In order to test the proposed technique on data with thousands
of features, we gathered three cancer classification tasks including
DLBCL, Leukemial 1 and Lung1 [21]. DLBCL is a data set recording
88 measurements of diffuse large B-cell lymphoma. This dataset
contains 4026 array elements. Leukemia (ALL V.S. AML), shortly
Leukemial 1, is a collection of 72 expression measurements. It
contains a training set composed of 27 samples of acute
lymphoblastic leukemia (ALL) and 11 samples of acute myelo-
blastic leukemia (AML), and an independent test set composed of
20 ALL and 14 AML samples, where each sample is described with
7129 probes from 6817 human genes. Lung Cancer (Dana-Farber
Cancer Institute, Harvard Medical School), A total of 203 snap-
frozen lung tumors and normal lung were analyzed. The 203
specimens include 139 samples of lung adenocarcinomas
(labelled as ADEN), 21 samples of squamous cell lung carcinomas
(labelled as SQUA), 20 samples of pulmonary carcinoids (labelled
as COID), 6 samples of small-cell lung carcinomas (labelled as
SCLC) and 17 normal lung samples (labelled as NORMAL). Each
sample is described by 12 600 genes.

We conduct the neighborhood soft margin based feature
selection algorithm on these classification tasks and observe
the variation of classification accuracy with the number of
features selected with this algorithm. The curves are presented
in Figs. 11, 13, where we compute classification accuracies with
KNN (K¼5), linear support vector machine (LSVM), RBF support
vector machine (RBF-SVM) and CART based on the 10-fold cross
validation technique.
6. Conclusions

Feature selection is considered to be an important preproces-
sing step in machine learning and pattern recognition. Feature
evaluation is a key issue when constructing an algorithm for
feature selection. In this work, we propose a new concept of
neighborhood margin and neighborhood soft margin, which
reflects the minimal distance between different classes.

We use the criterion of neighborhood soft margin to evaluate
the quality of candidate features and construct a forward greedy
algorithm for feature selection. The connection between neigh-
borhood margin and margin defined in SVM is discussed. It is
shown that a task is 2e neighborhood separable if it is e linearly
separable with respect to linear SVM. We conduct this technique
on some classification learning tasks. When compared to some
feature selection algorithms, the proposed technique is shown to
be effective in most of the cases.
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Neighborhood soft margin can be looked as a local approxima-
tion strategy for feature evaluation. The connection between
neighborhood soft margin, sample margin and hypothesis margin
is not discussed in this paper. We will show a systematic analysis
on these concepts and give risk estimation on neighborhood soft
margin in the future.
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