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This paper presents a novel subspace method called sequential row–column independent component

analysis (RC-ICA) for face recognition. Unlike the traditional ICA, in which the face image is transformed

into a vector before calculating the independent components (ICs), RC-ICA consists of two sequential

stages—an image row-ICA followed by a column-ICA. There is no image-to-vector transformation in

vectors. RC-ICA can reduce the face recognition error caused by the dilemma in traditional ICA, i.e. the

number of available training samples is greatly less than that of the dimension of training vector.

Another advantage of RC-ICA over traditional ICA is that the dimensionality of the recognition subspace

is much smaller, which means that the face image can have a more condensed representation. Extensive

experiments are performed on the well-known Yale-B, AR and FERET databases to validate the proposed

method and the experimental results show that the RC-ICA achieves higher recognition accuracy than

ICA and other existing subspace methods while using a subspace of smaller dimensionality.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Face recognition based on subspace analysis has been widely
studied in recent years [3,20,21]. Generally speaking, this class of
method seeks for a set of optimal bases under some criteria and
represents a face image as a linear combination of them. The task
of face recognition is implemented in the space spanned by those
bases, which is usually a subspace of the original face space. The
most widely used subspace analysis methods include principal
component analysis (PCA) [10], which tries to find an optimal
subspace in the sense of minimum mean square error (MSE),
linear discriminant analysis (LDA) [3], which tries to find a
subspace that maximizes the between-class distance and mini-
mizes the within-class distance, and independent component
analysis (ICA) [4,6], which tries to find a subspace spanned by a
set of independent bases. LDA is a supervised learning technique
while PCA and ICA are unsupervised learning techniques.

PCA is the first subspace analysis technology used for face
recognition. Kirby and Sirovich [10] first used PCA to represent
human faces and found that a face image could be reconstructed
approximately as a weighted sum of a small collection of basis
facial images plus a mean face image. Based on this research, Turk
and Pentland [18] developed the well-known eigenface method.
ll rights reserved.

hang).
Since then, PCA has been extensively investigated and has become
one of the most successful methods in face recognition [17,20].
Most of the PCA-based face recognition methods need to trans-
form the image matrix into a vector before calculating the
principle components (PCs). In [21], Yang et al. proposed a two-
dimensional PCA (2D-PCA) scheme by projecting the image
matrix, but not the transformed image vector, onto a set of basis
vectors. This method was further improved by Kong et al. [11]. The
drawback, however, of PCA is that it aims to find a set of
orthonormal bases maximizing the variance over all samples. In
other words, PCA only exploits the second-order statistics of the
dataset. The higher-order statistics, which can be very useful to
the face representation and recognition, are not exploited in PCA.

ICA [6], as an extension of PCA, was originally developed for
blind source separation and it has been widely used in signal
processing, medical image analysis and pattern recognition
[2,5,6,16,24]. The objective of ICA is to seek for a set of linear
bases, which are as independent as possible in the sense of high-
order statistics other than the second-order statistics as in PCA.
The independent components (ICs) obtained by projecting the
face images onto the subspace spanned by these bases can reflect
better intrinsic properties and local characteristics of the facial
dataset [2,13]. In a word, ICA can remove the high-order statistical
dependencies to produce a sparse and independent code for
subsequent pattern discrimination.

Bartlett et al. [2] first applied ICA to face recognition and found
that high-order statistical information is useful for representing
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and identifying faces. They proposed two different ICA architec-
tures for face recognition: architecture I represents the input
face images as a linear combination of statistically independent
basis images, while architecture II represents the input image by
using a set of statistically independent coefficients. Experimental
results showed that the recognition accuracy by using ICA is
higher than that by using PCA. Since then, ICA has gained
more interests in face modeling and recognition [13,14,23].
Moghaddam [15] and Yang et al. [22] compared the performance
of PCA with ICA under different similarity metrics in detail and
found that ICA is not always better than PCA. To solve this
problem, Liu [13] analyzed the performance of ICA and proposed
an enhanced ICA (EICA) method, which implements ICA in a
reduced PCA space to improve retrieval performance. Pong et al.
[23] studied the effect of the number of ICs on recognition
accuracy. He argued that not all ICs are useful for recognition and
proposed an algorithm to select ICs. Kim et al. [9] used ICA for face
recognition and found that ICA is robust to local distortion and
partial occlusion. In order to further improve the recognition
accuracy, Bach et al. [1] proposed a kernel ICA method. The kernel
methods need to map image vectors into an implicit feature
space before applying ICA. It is computationally more expensive
than ICA.

The above ICA-based methods directly take each pixel as a
feature and they need to transform the 2D face image matrix into
a 1D vector before computing ICs. The dimensionality of the
resulting vector is usually very big (e.g. 16,384 for 128�128
images) and this leads to a dilemma of ICA: the number of
available training samples is much less than that of the dimension
of the underlying vector. This dilemma makes it very difficult to
estimate accurately the statistics of the underlying face vector.
The estimation error of the face vector statistics will then
deteriorate the accuracy of face recognition.

Inspired by the 2D-PCA scheme [21], where the image matrix
but not the transformed image vector is projected onto a set
of basis vectors, in this paper we propose a novel subspace
feature extraction method called row–column ICA (RC-ICA). The
proposed RC-ICA includes two sequential steps: a row-ICA
followed by a column-ICA. In contrast to ICA, RC-ICA directly
uses the rows and columns of face images, rather than the
stretched image vectors, to evaluate the demixing matrix.
The computed demixing matrix is then employed to extract
the ICs directly from the 2D face images. RC-ICA has three
advantages over ICA. First, it greatly dilutes the dimensionality
dilemma of ICA because the dimension of the training vector in
RC-ICA is much smaller so that the statistics can be more
accurately estimated. Secondly, the face image can have a more
condensed representation by using RC-ICA. Thirdly, it is compu-
tationally more efficient. Our experimental results on the Yale-B,
AR and FERET databases show that RC-ICA achieves higher
recognition accuracy than ICA.

The rest of this paper is organized as follows. Section 2 briefly
reviews ICA. Section 3 describes the proposed RC-ICA in detail.
Section 4 presents extensive experiments to test the proposed
method and Section 5 concludes the paper.
s x u
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Fig. 1. The model of ICA.
2. Independent component analysis (ICA)

In PCA, the subspace is spanned by the leading eigenvectors of
the covariance matrix of the training dataset. PCA exploits only
the second-order statistics and it is optimal for datasets which are
of Gaussian distribution. In general, however, the distribution of
facial images is non-Gaussian. There exist many high-order
statistical dependencies among pixels of facial images. These
dependencies can be further removed by using ICA, which can be
viewed as an extension of PCA to deal with non-Gaussian datasets.
What makes ICA superior to PCA is that ICA seeks for a set of
linear bases which are statistically independent in an order higher
than two to better characterize the intrinsic space of non-
Gaussian sources. In this section, we briefly review the concepts
and computation procedure of ICA. For more details, please refer
to Hyvärinen et al. [6–8].

Denote by x
*
¼ ½x1; x2; . . . ; xn�

T a n-dimensional random vector.
Suppose x

*
can be represented as the linear combination of m

(mpn) elements s1, s2, y, sm, which are statistically independent
(or as independent as possible), then the noise-free model of ICA
can be described as

x
*
¼ Q s

*
(1)

where s
*
¼ s1; . . . ; sm½ �T is the vector of ICs, Q is an unknown n�m

mixing matrix.
In general, ICs si, i ¼ 1, 2, y, m, and the mixing matrix Q are

unknown. ICA aims to find a demixing matrix W such that

u
*
¼W x

*
¼WQ s

*
(2)

is a good estimation of s
*

, with possible permutation and
rescaling. Fig. 1 illustrates the procedure. If the ICs si have unit
variances, i.e. E{sisi} ¼ 1 for all i ¼ 1, 2,y,m, the ICs will be
uniquely determined except for their signs [6].

To implement ICA, researchers have developed many algo-
rithms based on two criteria: nonlinear decorrelation and
maximum non-Gaussianity [6–8]. Among them, the Fast-ICA [7],
which is based on maximum non-Gaussianity, has been dom-
inantly used. It is implemented in two steps. In the first step, the
mean value is subtracted from the training set and the second-
order statistical correlation is removed. This step is called
whitened. Denote the covariance matrix of x

*
by

Sx ¼ E½ðx
*
�E½x

*
�Þðx

*
�E½x

*
�Þ

T
� (3)

where E[�] is the expectation operator. Let V ¼ ½g
*

1 g
*

2 � � � g
*

n�

and L ¼ diagðl1; l2; . . . ; lmÞ, where g
*

i and li are the eigenvectors
and the corresponding eigenvalues of Sx, respectively, and
l1Xl2X?Xlm. Then the whitened data can be calculated as

y
*
¼ ðVL�1=2Þ

T x
*
¼ PT x

*
(4)

where P ¼ VL�1=2 is called the whitened matrix. y
*

is decorrelated
and has an unit variance.

In the second step, the whitened data y
*

is used to compute
the demixing matrix W via kurtosis such that the m components
of u

*
¼W y

*
are independent or almost independent. Denote

the column vector of W by w
*

. The kurtosis of the projection of y
*

onto w
*

is

kurtðw
*T

y
*
Þ ¼ E½ðw

*T
y
*
Þ
4
� � 3ðE½ðw

*T
y
*
Þ
2
�Þ

2 (5)

To make the components of u
*

as independent as possible, we
want to find a w

*
to maximize the kurtðw

*T
y
*
Þ under constraint

E½ðw
*T

y
*
Þ
2
� ¼ 1 (6)
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Fig. 2. Procedure of the proposed RC-ICA.
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To solve the above optimization problem, we introduce a
Lagrangian coefficient l to (5)

kurtðw
*T

y
*
Þ ¼ E½ðw

*T
y
*
Þ
4
� � 3ðE½ðw

*T
y
*
Þ
2
�Þ

2

þ lð1� E½ðw
*T

y
*
Þ
2
�Þ (7)

Differentiate Eq. (7) with respect to w
*

and let it be 0, we have

w
*
¼

2

l
ðH�1E½y

*
ðw
*T

y
*
Þ
3
� � 3 w

*
Þ (8)

where H ¼ E½y
*

y
*T
�. w
*

can be calculated iteratively as follows:

w
*�
ðtÞ ¼ H�1E½y

*
ðw
*
ðt � 1ÞT y

*
Þ
3
� � 3 w

*
ðt � 1Þ (9)

w
*
ðtÞ ¼

w
*�
ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w
*�
ðtÞTHw

*�
ðtÞ

q (10)

Using Eqs. (9) and (10), we can calculate all the column vectors
w
*

i, i ¼ 1,y, m, of W. Finally, the demixing matrix W is obtained as
W ¼ ½w

*
1 � � �w

*
m�.
3. Row–column ICA (RC-ICA) for face recognition

3.1. Idea of RC-ICA

As mentioned in introduction, the conventional ICA stretches
the face image matrix to a face vector and this matrix-to-vector
transformation makes the statistics estimation difficult and
inaccurate because the training sample size is relatively very
small compared with the high dimensionality of the training
vector. Actually, the same problem exists in the conventional PCA-
based face recognition. To dilute this small sample size problem,
Yang et al. [21] proposed a 2D-PCA scheme. They directly
projected the 2D face image onto a set of vectors using y

*
¼ A x

*
,

where A is the face image, x
*

is the projection vector and y
*

is the
projected vector. 2D-PCA computes a set of leading vectors x

*

i,
i ¼ 1, 2, y, m, of A to span the subspace where face recognition is
performed.

A second look on the implementation process of 2D-PCA can
reveal that 2D-PCA actually takes each row of the face image as a
training vector and then finds a common subspace which applies
to all row vectors. Since the dimension of each row vector is
significantly less than that of a face image vector, the small
training sample size problem is diluted. The experimental results
in [21] and the following papers [11,12] validate that 2D-PCA
achieves better face recognition performance than PCA, especially
when the training sample size is small.

The success of 2D-PCA inspires us to develop a new ICA-based
face recognition technique without image-to-vector transforma-
tion. We view the 2D face image as a super-class and each row of
it as a sub-class. Instead of finding a demixing matrix W for the
whole face image, we find a common demixing matrix Wr for all
the row sub-classes. The row-demixing matrix Wr will make the
elements within a row vector independent but there are still some
dependencies between the row sub-classes. In the second step,
the demixed row vectors are reorganized as column vectors and a
column-demixing matrix Wc is computed to further remove the
dependencies. Since the proposed scheme has two steps, i.e. a
row-ICA followed by a column-ICA, we call it row–column ICA
(RC-ICA).

Fig. 2 illustrates the procedure of the proposed RC-ICA. The
face image A is viewed as a set of row sub-classes and is
transformed by using the row-demixing matrix Wr. The dimen-
sionality of the transformed output is reduced in horizontal
direction to get matrix B. Dimensionality reduced matrix B is
viewed as a set of column sub-classes and is transformed by using
the column-demixing matrix Wc. The dimensionality of the
output is then reduced in vertical direction to get the final result
S, whose dimension is much lower than the original face image A.
The ICs in S will be used for face representation and recognition.

3.2. Implementation of RC-ICA

3.2.1. Row-ICA

Denote by AARm�n a face image and by T ¼ {Ai| i ¼ 1, 2,y, K}
the training set, which has K face image samples. We rewrite A as

A ¼ ½ a
*T

1 a
*T

2 � � � a
*T

m
�T, where a

*

j, j ¼ 1;2; :::;m, is the jth row of

A. Unlike in ICA, where the whole face A is directly trained by
stretching it to a m�n�1 vector, in the first step of RC-ICA, we

train the row vectors a
*

j. The training set can be rewritten as

T ¼ a
*i

j 2 R1�n
ji ¼ 1;2; . . . ;K; j ¼ 1;2; . . . ;m

� �
, where a

*i

j means it

is the jth row of the ith face sample. We define a common
covariance matrix GARn�n of vector a

*

j as

G ¼
1

m

Xm
j¼1

E a
*

j � a
*

j

� �T

a
*

j � a
*

j

� �" #

¼
1

m K

Xm

j¼1

XK

i¼1

a
*i

j � a
*

j

� �T

a
*i

j � a
*

j

� �
(11)

where a
*

j ¼ ð1=KÞ
PK

i¼1 a
*i

j. In another form, G can be written as

G ¼
1

m K

XK

i¼1

ðAi � AÞTðAi � AÞ (12)

where Ā ¼ a
*T

1 a
*T

2 � � � a
*T

m

� �T

.

Let l1Xl2X?Xln be the eigenvalues of G and n
*

1; n
*

2; . . . ; n
*

n

the corresponding eigenvectors. The whitened matrix P on face
image A is

P ¼ VL�1=2 (13)

where V ¼ v
*

1 v
*

2 � � � v
*

l

h i
and L ¼ diagðl1; l2; . . . ; llÞ. We

denote by z
*i

j the whitened vector of each training sample a
*i

j

z
*i

j ¼ a
*i

j � a
*

j

� �
P (14)

The demixing matrix WARn� l of the whitened data is computed

by taking z
*i

j as inputs. lpn is the number of ICs we set for a
*i

j. The

Fast-ICA algorithm introduced in Section 2 is employed to

compute W from z
*i

j. For expression convenience and to be

consistent with ICA, we let Wr ¼ P �W and call it the demixing

matrix of the original data a
*

j.

Projecting the original image A onto Wr, we get the row-ICA
output as

B ¼ b
*T

1 b
*T

2 � � � b
*T

m

� �T

¼ ðA� AÞ �Wr (15)
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where b
*

j ¼ a
*

j � a
*

j

� �
Wr is the ICs of the jth row of image A.

Compared with A, whose dimension is m�n, the row-ICA output
B preserves the most important ICs of A but with a smaller
dimension m� l. (The feature section and dimensionality reduc-
tion for matrix Wr will be discussed in Section 3.2.3.) However,
this dimension is still relatively large to represent a face image
because of the dependencies between the rows of B. Next we use a
subsequent column-ICA to further reduce the dependencies
existed in B so that a more condensed representation of A can
be obtained.

3.2.2. Column-ICA

After row-ICA in the previous section, the m�n face image A is

transformed into a m� l image B. For each row of B, i.e. b
*

j, j ¼ 1, 2,

y, m, its l elements are independent. However, for the elements
in different rows, the row-ICA does not remove their dependen-

cies. Suppose b
*

j1
ðq1Þ and b

*

j2
ðq2Þ are two elements in different

rows, where j1 6¼j2, they are not independent in general. We
explain this conclusion as follows.

If b
*

j1
ðq1Þ and b

*

j2
ðq2Þ are independent, we have

E b
*

j1
ðq1Þ � b

*

j2
ðq2Þ

� �
¼ E b

*

j1
ðq1Þ

� �
E b

*

j2
ðq2Þ

� �
(16)

Because E b
*

j1
ðq1Þ

� �
¼ E a

*

j1
� a

*

j1

� �� �
�w
*

q1
¼ 0 and E b

*

j2
ðq2Þ

� �
¼

E a
*

j2
� a

*

j2

� �� �
�w
*

q2
¼ 0, where w

*
q1

and w
*

q2
are the q1th and

q2th columns in Wr, we have E b
*

j1
ðq1Þ � b

*

j2
ðq2Þ

� �
¼ 0. Then it can be

seen that

E b
*

j1
ðq1Þ � b

*

j2
ðq2Þ

� �
¼ w

*T

q1
� E a

*

j1
� a

*

j1

� �T

a
*

j2
� a

*

j2

� �" #

�w
*

q2
¼ 0 (17)

In general, w
*

q1
and w

*
q2

are not zero vectors and the rows a
*

j1

and a
*

j2
in the original image A are correlated, i.e.

E a
*

j1
� a

*

j1

� �T

a
*

j2
� a

*

j2

� �" #
a0. Only in very rarely cases, (17)

will hold. Therefore, (16) will not hold in general, which means

that the elements b
*

j1
ðq1Þ and b

*

j2
ðq2Þ are not independent.

The above conclusion implies that the feature matrix B still
contains redundancies between different rows. B can be further
compressed to get a more condensed representation of the face
image. We rewrite B as

B ¼ b
*T

1 b
*T

2 � � � b
*T

m

� �T

¼ c
*

1 c
*

2 � � � c
*

l

h i
(18)

where c
*

q, q ¼ 1, 2, y, l, is a m�1 column vector containing the
qth elements of b

*

1; b
*

2; :::; b
*

m. Similar to Section 3.2.1, where we
found a left multiplication matrix Wr to demix row vectors
a
*

1; a
*

2; :::; a
*

m, here we can find a right multiplication matrix Wc to
demix column vectors c

*
1; c
*

2; :::; c
*

l:

S ¼Wc � B (19)

Wc is called the column-ICA demixing matrix. By setting
WcARp�m, where pom is the number of ICs we want to preserve,
we can further reduce the dimension of B from to m� l to p� l.

3.2.3. Subspace selection for feature extraction

With ICA, the discriminability of each column of Wr, or each
row of Wc, is not known in prior [2,19]. In order to improve the
classification accuracy and further reduce the dimensionality of
features, we select the subspaces of Wr and Wc based on the
discriminability of their columns and rows. Here we take Wc for
example and the similar procedures are applied to Wr. The
discriminability of each row of Wc is defined as follows [2]:

r ¼
sb

sw
(20)

where sb ¼
P

j s̄j � s̄
	 
T

s̄j � s̄
	 


and sw ¼
P

j

P
s2cj

s� s̄j

	 
T
s� s̄j

	 

represent the between-class and the within-class scatter, respec-
tively, of the projected vectors s of the training images. s̄ denotes
the global mean of the projected vectors and s̄j denotes the mean
for the jth class. Based on the magnitude of r, a sub-matrix of Wc,
denoted by UARk�m, can be determined, where k(kpm) is the
number of selected columns.

Similarly, a sub-matrix of Wr, denoted by VARn� l (lpn), can be
determined in the stage of row-ICA. Given an arbitrary original
face image matrix A, by using RC-ICA with demixing matrices U

and V, we can extract the ICs of A as

S ¼ UðA� AÞV (21)

S is much condensed than A while preserving the most important
ICs of A. The classification and recognition will then be based on
the RC-ICA representation S.

In [19], Vicente et al. analyzed the equivalence of some
common linear feature extraction techniques for appearance-
based object recognition. From the above development, we can
see that if we denote by G ¼ PcðA� ĀÞPr the PCA-based whitening
output of the original data, then the RC-ICA transformation can be
denoted as S ¼ TcGTr, where Tc and Tr denote the demixing
operation by ICA. Since Tc and Tr are orthogonal matrices, if we
preserve all the components in S, by using a linear classifier the
classification result with S will be equivalent to that with G [19].
However, with the feature selection processing (refer to Eqs. (20)
and (21)) in the RC-ICA transformation domain, only the selected
highly discriminative features in S are used for classification so
that better recognition results can be expected even using a linear
classifier.

3.3. Classification

After projecting each training images Ai (i ¼ 1, 2,y, K) onto the
subspace determined by demixing matrices Wr and Wc, we obtain
the independent feature matrices Si for image Ai. Given an input
face image I to be recognized, we can compute its independent
feature matrix S� by using Eq. (21). The nearest neighbor classifier
is used for classification. The Euclidian distance between S and S�

is defined by

d Sn; Si

	 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

j¼1

Xq

k¼1

Sn
ðj; kÞ � Siðj; kÞ

	 
2

vuut (22)

If d Sn; St

	 

¼ min

i
d Sn; Si

	 

, then the input image I is judged

belonging to the class of face image At. It should be noted other
distance metrics other than Euclidian distance can also be used,
such as cosine, L1 and Mahalanobis distances.
4. Experimental results

The proposed RC-ICA algorithm is tested using three well-
known face databases: Yale-B, FERET and AR. The Yale-B database
is used to evaluate the performance of the proposed method
under the variations of illumination. The FERET database is
employed to test the performance when there are variations over
time and facial expressions. The AR database is used to examine
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the proposed method when there are facial variations over time,
different facial expressions, illumination and occlusion, etc.

The popular methods such as ICA, EICA [13], PCA (eigenface)
[18], 2D-PCA [21], BDPCA [12] and the whitened BDPCA
(W-BDPCA) are used for comparison. In the following experi-
ments, the dimensionality of each low-dimensional subspace
varies from 1 to 100 in ICA and PCA, from 1 to 15 in 2D-PCA,
BDPCA, W-BDPCA, row-ICA and RC-ICA.
4.1. Experiments on variations of illumination using Yale-B database

We select the Yale-B database (http://cvc.yale.edu/projects/
yalefacesB.html) to test the performance of RC-ICA on variations
of illumination. Yale-B database contains 5760 single light source
images of 10 individuals, each providing 576 viewing conditions
(9 different poses and 64 different lighting conditions from
negative azimuth to positive azimuth). The objective of this
section is to evaluate the performance of the proposed RC-ICA
with other well-known unsupervised subspace methods under
the variations of illumination. We select 64 frontal images under
different lighting conditions for each person in our experiments.
Thus, there are 640 images for 10 subjects with each image being
manually cropped and resized to 171�128. Fig. 3 shows some
images of one subject.
Fig. 3. Some images of one su

Fig. 4. Recognition accuracies of (a) ICA;
We first compare the proposed row-ICA and RC-ICA with
traditional ICA and EICA. The nearest neighbor classifier with
Euclidian distance is used for classification. In the first experi-
ment, we select the images of 35 negative azimuths for training
and use the remaining images of 29 positive azimuths for testing.
Thus the total number of training images is 350 and the number of
testing images is 290. Fig. 4 plots the correct recognition rate
(CRR) curves of ICA, EICA, row-ICA and RC-ICA versus the number
of used features. In the second experiment the training and testing
datasets are exchanged. The CRR curves of four methods are also
plotted in Fig. 4. Table 1 lists the top CRR values, the correspond-
ing dimensions of feature vector, and the sizes of demixing
matrices for these methods in the two experiments.

Fig. 4 shows that the proposed row-ICA and RC-ICA methods
achieve better performance than the standard ICA and EICA
methods. From Table 1, we know the top recognition rates of row-
ICA, RC-ICA, ICA and EICA are 90.69% (92.57%), 91.38% (92.57%),
82.41% (84.57%) and 86.90% (85.14%), respectively. (The values in
parentheses denote the results of the second experiment.)
Compared with ICA, RC-ICA improves approximately 8% in
top recognition accuracy with less dimensionality of IC features.
Row-ICA also achieves better recognition accuracy than ICA but it
needs more features. RC-ICA has similar recognition accuracy to
row-ICA but the required feature dimensionality is significantly
reduced. What’s more, the full demixing matrices in ICA and EICA
bject in Yale-B database.

(b) EICA; (c) row-ICA and (d) RC-ICA.

http://cvc.yale.edu/projects/yalefacesB.html
http://cvc.yale.edu/projects/yalefacesB.html
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Table 1
The top recognition accuracies, the corresponding dimensions of feature vectors

and the size of full demixing matrices for ICA, EICA, row-ICA, and RC-ICA

Algorithm Top recognition

accuracy (%)

Dimension of

features

Size of full demixing

matrix

ICA 82.41 (84.57) 90 (100) 21,888�21,888

EICA 86.90 (85.14) 35 (34) 21,888�21,888

Row-ICA 90.69 (92.57) 513 (1368) 128�128

RC-ICA 91.38 (92.57) 22 (35) 128�128 and 171�171

The values in parentheses are the result for the second experiment.

Table 2
Comparison of RC-ICA with other methods on Yale-B database

Algorithms Top recognition accuracy (%) Dimension of features

PCA 79.31 (80.29) 42 (45)

2DPCA 82.76 (86.88) 2223 (2394)

BDPCA 82.76 (88.57) 105 (190)

W-BDPCA 87.59 (91.14) 49 (78)

RC-ICA 91.38 (92.57) 22 (35)

The values in parentheses are the result for the second experiment.
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Fig. 5. Recognition accuracies of ICA, EICA, PCA, 2D-PCA, BDPCA, W-BDPCA, row-

ICA and RC-ICA.

Table 3
Comparison of RC-ICA with other methods using fafb database

Method PCA 2DPCA BDPCA W-BDPCA ICA EICA RC-ICA

Recognition (%) 89.00 89.00 90.50 89.50 83.00 85.00 91.50

Dimension 31 400 60 48 50 35 44
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are of size 21,888�21,888 (171�128 ¼ 21,888), while the full
demixing matrix is of size 128�128 for the row-ICA, and the full
demixing matrices are of sizes 128�128 and 171�171 for RC-ICA
(the former is for row direction and the later is for column
direction). The proposed methods are fast for feature extraction
than ICA and EICA.

We then compare the performance of RC-ICA with PCA,
2D-PCA, BDPCA and W-BDPCA. Similarly, two experiments by
exchanging the training and testing datasets are performed. The
top recognition accuracy results using different methods and the
corresponding dimension of features are listed in Table 2. RC-ICA
is the best one among them.

4.2. Experiments on partial FERET database

This partial FERET face database comprises 400 gray-level
frontal view face images from 200 persons. Each person has two
images (fa and fb) which are obtained at different times and with
different facial expressions. All the images are cropped manually
to the size of 40� 40. In the experiment, the fa images are used as
gallery for training while the fb images as probes for testing. PCA,
2D-PCA, BDPCA, W-BDPCA, ICA, EICA and the proposed row-ICA
and RC-ICA methods are used for feature extraction, and then a
nearest neighbor classifier is employed for classification. Fig. 5
plots the CCR curves of these methods. Table 3 lists the top CRR
values, as well as the corresponding dimensions of feature vector
used in these methods. It can be seen from Fig. 5 and Table 3 that
RC-ICA achieves the highest recognition accuracy with a relatively
small set of features.

4.3. Experiments on AR database

We use the AR database to evaluate the performance of
RC-ICA under other cases including variation of illumination
and facial expression. AR database contains over 4000 color
face images from 126 people (70 men and 56 women), including
frontal views of faces with different facial expression, lighting
conditions and occlusions. The pictures of most persons
were taken in two sessions, separated by two weeks. Each
session contains 13 color images per person and 120 individuals
(65 men and 55 women) participated in both sessions. In
our experiment, the images of these 120 individuals are selected
and used. The face portions of those images were manually
cropped to 50� 40 pixels. Fig. 6 shows the cropped images of one
person.

To evaluate the performance of RC-ICA comprehensively,
we perform experiments by varying the number of training
samples per person. In the kth test, we randomly select k images
for each person for training and use the remaining samples
for testing. The ICA, EICA, PCA, 2D-PCA, BDPCA and W-BDPCA
methods are used for comparison. The top CRR values of
these methods at different number of training samples and
corresponding number of features are listed in Table 4. It is shown
that RC-ICA is always much better than ICA, and it works the best



ARTICLE IN PRESS

Fig. 6. Images for one subject of the AR database.

Table 4
Comparison of the recognition accuracies (%) of RC-ICA, PCA, ICA and 2DPCA on AR database

Training samples PCA 2DPCA BDPCA W-BDPCA ICA EICA RC-ICA

1 53.97 (49) 63.93 (550) 68.93 (240) 69.77 (108) 52.03 (100) 59.03 (50) 68.93 (108)

2 54.90 (50) 63.81 (500) 66. 60 (228) 70.07 (99) 58.37 (90) 62.74 (49) 69. 90 (121)

3 65.62 (50) 71.56 (500) 73.77 (330) 74.86 (132) 69.24 (90) 70.11 (47) 75.54 (130)

4 63.75 (49) 70.91 (500) 73.11 (330) 74.32 (144) 69.70 (90) 70.98 (49) 74.39 (91)

5 62.30 (49) 69.44 (450) 72.22 (270) 73.69 (144) 71.11 (89) 70.95 (44) 73.81 (100)

6 73.92 (50) 85.46 (700) 86.42 (315) 89.17 (120) 86.42 (100) 88.79 (88) 89.46 (120)

7 73.90 (49) 86.05 (700) 86.32 (294) 89.52 (120) 89.52 (99) 90.00 (87) 90.44 (98)

8 72.50 (49) 85.32 (650) 86.44 (294) 90.05 (120) 90.60 (97) 90.65 (88)

9 70.94 (50) 85.25 (700) 86.37 (315) 90.64 (156) 89.90 (97) 90.00 (90) 92.01 (77)

The values in parentheses are the corresponding number of features.

Fig. 7. The basis images of (a) the proposed RC-ICA and (b) the conventional ICA.

Fig. 8. Original images and reconstructed images. (a) and (d) are two original
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among all the methods except when only 1 and 2 training samples
are used.
images selected from the training dataset and test set respectively; (b) and (e) are

the reconstructed images of (a) and (d) by using ICA; (c) and (f) are the

reconstructed images of (a) and (c) by proposed RC-ICA.
4.4. Face representation

In this section, we present face image using the extracted
features to illustrate what kind of features are captured by the
proposed method. We used the training images and test images in
the 9th test on the AR database in Section 4.3. As it can be seen
from Table 4, the proposed method has the top accuracy
recognition 92.01% with 77 features, while U and V are of the
size 7�50 and 11�40, respectively. Then the basis image can be
calculated as

B_I ¼
X

j

X
i

Uðj; : ÞT � Vði; :Þ
Similarly, the basis image corresponding to the ICA algorithm can
be easily calculated.

Fig. 7 shows the basis images corresponding to the features
extracted by the propose RC-ICA and conventional ICA. As can be
seen, the basis image of ICA looks more like a face than the basis
image of RC-ICA because in RC-ICA, the rows and columns, instead
of the original face image, are used for training and feature
extraction. The basis image for RC-ICA can capture more local
features. Fig. 8 shows some example-reconstructed images by the
conventional ICA and the proposed RC-ICA. We see that the
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reconstructed images by ICA look more likes the original images,
which may, however, lead to incorrect classification when some
occlusion (e.g. the glass) occurs in the face. The RC-ICA is more
suitable and stable for feature extraction and classification.
5. Conclusion and discussions

A new face recognition method called sequential row-column
independent component analysis (RC-ICA) was presented in this
paper. RC-ICA works directly on the rows and columns of images
without image-to-vector stretching as in traditional ICA. RC-ICA has
two sequential steps: a row-ICA followed by a column-ICA. In each
step, the dimensionality of the training vector is much smaller and
the number of training samples is much greater compared with the
traditional ICA. Therefore, RC-ICA significantly dilutes the dilemma
in ICA: the dimensionality of training vector is very high but the size
of training samples is relatively very small. Extensive experiments
on Yale-B, AR and FERET databases were conducted to validate the
performance of the proposed RC-ICA scheme. The results show that
RC-ICA has three advantages over traditional ICA: higher recogni-
tion accuracy; lower storage space; and lower computation load.

In each of the two sequential steps, RC-ICA takes image rows
and columns as training samples to compute the demixing
matrices separately. The computed two demixing matrices (right
and left multiplication matrices respectively) only reflect the
variations within rows or columns of the face images. Theoreti-
cally, demixing by the two matrices will not make the output face
features completely independent. Can we find a better transfor-
mation than RC-ICA, which can preserve the advantages of RC-ICA
while make the face features be more independent? This will be
our future research work.
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