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The key problem of extracting independent components (ICs) is to learn the demixing matrix from the
known training images which can be unfolded to vectors in conventional independent component anal-
ysis (ICA). However, the unfolded vectors lead to the small sample size problem (SSS) and the curse of
dimensionality. In this paper, a novel independent feature extraction method is proposed to solve these
problems by encoding each input image as a matrix. In addition, the row and column directional images
of the matrix are introduced to better exploit the spatial and structural information embedded in image
during the training phase. Compared with the conventional ICA, the proposed method directly evaluates
the two correlated demixing matrices from the image matrix without matrix-to-vector transformation,
greatly alleviates the SSS and the curse of dimensionality, reduces the computational complexity, and
simultaneously exploits the spatial and structural information embedded in image. Extensive experi-
ments show that the proposed method is superior to the standard ICA method and some unsupervised

methods.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction (DR) is one of the fundamental prob-
lems in computer vision, machine learning and Biometric recogni-
tion. The goal of DR is to capture the meaningful low-dimensional
structures embedded in high-dimensional data and obtain more
useful representations of the data for subsequent analysis such
as classification, visualization, clustering, or outlier detection (Law-
rence and Sam, 2003; Koren and Carmel, 2004). Up to now, it
assembles numerous methods, all striving to present high-dimen-
sional data in a low -dimensional space, in a way that faithfully
captures the meaningful structures and unexpected relationships
embedded in images. In the absence of prior knowledge, such rep-
resentations must be learned or discovered automatically. Auto-
matic methods which discover hidden structure from the
statistical regularities of large data sets can be studied in the gen-
eral framework of unsupervised and supervised learning (Law-
rence and Sam, 2003; Koren and Carmel, 2004).

Principal component analysis (PCA) and linear discriminant
analysis (LDA) are the two classical dimensionality reduction
techniques in unsupervised and supervised learning, respectively
(Yan et al., 2007). In using them for face representation and recog-
nition, Turk and Pentland (1991) and Belhumeur et al. (1997)
developed the well-known Eigenfaces and Fisherfaces algorithms,
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respectively. Based on these contents, PCA and LDA have been suc-
cessfully used and widely investigated in pattern recognition, ma-
chine learning, and computer vision (Koren and Carmel, 2004; Yan
et al., 2007; Moghaddam, 2002; Yang et al., 2004; Ye, 2005). The
two techniques, however, exploit the second-order statistics which
capture the amplitude spectrum of the images but they ignore the
higher-order statistical dependencies which may contain useful
structural information of the 2D image for subsequent analysis
(Yang et al., 2004; Ye, 2005; Bartlett et al., 2002).

Independent component analysis (ICA), as an extension of the
PCA, extracts a set of statistically independent components via
analyzing the higher-order statistics in the training dataset and
has been widely used in blind source separation, signal processing,
medical image analysis, pattern recognition, etc. (Hyvafinen,
1999). In using ICA for face representation and recognition, Bartlett
et al. (2002) proposed two ICA architectures. Architecture I seeks to
find a set of spatially independent basis vectors (images) and the
coefficients are not necessarily independent, while architecture II
seeks to find a set of basis vectors which make the projection coef-
ficients as statistically independent as possible. Experimental re-
sults on FERET database illustrate that ICA is superior to PCA in
face recognition and representation. Since then, ICA has been
widely investigated in face representation, recognition, and image
retrieval, and many algorithms have been developed to improve
the classification accuracy up to now (Liu, 2004; Pong and Lai,
2002; Bressan and Vitria, 2003; Vicente et al., 2007). What’s more,
Kim et al. (2005) and Li et al. (2005) found that ICA outperforms
PCA and some unsupervised learning algorithms in estimating
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the pose and multi-view subspace and the case of partial occlu-
sions and local distortions, respectively.

In above algorithms, linear algebra is used to extract the inde-
pendent components (ICs). Thus they are hard to distinguish the
statistic features arisen from different factors inherent to image
formation, such as viewpoint, illumination, facial expression, etc.
(Vasilescu and Terzopoulos, 2005). To address this problem, Vasile-
scu and Terzopoulos (2005) used multi-linear algebra to represent
theses factors of datasets and extract ICs which contain the rela-
tionships between factors, and had achieved better recognition
accuracy. But it is not convenient for image recognition because
of the unknown different factors in training. What’s more, each in-
put image is still unfolded to vector as the same as the above men-
tioned algorithms. The unfolded vectors, however, lead to the small
sample size (SSS) problem and the losing of useful local structure
embedded in image.

Inspired by the successful application of face representation
with matrix or higher-order tensor in PCA and FLD (Fishers Linear
Discriminant) (Yang et al., 2004; Ye, 2005; Liu et al., 1993; Yan
et al., 2005) and the work of Zhang et al. (2006), we propose a novel
ICs extraction method by encoding each image as a matrix. The
proposed method uses two interrelated demixing matrixes (low-
dimensional spaces), which correspond to the row and column
direction of image, respectively, rather than one demixing matrix
in conventional ICA for ICs extraction. Different from the classical
two-dimensional subspace analysis that directly learns the low-
dimensional subspace from the row/column vectors of images
(Gao, 2007; Gao et al., 2007), the proposed method introduces
the row and column directional images of the image matrix to effi-
ciently learn the demixing matrixes which efficiently preserve the
local structure and spatial information embedded in images.
Experimental results on two well-known dataset (Yale and AR)
and one palmprint database verify that the proposed method is
superior to the conventional ICA algorithm, PCA and 2DPCA, even
supervised algorithms.

The rest of this paper is organized as follows: Section 2 reviews
the ICA. A novel ICs extraction algorithm is presented in Section 3.
Section 4 presents experiment results and analysis. Finally, we pro-
vide some concluding remarks and suggestions for future work in
Section 5.

2. Independent component analysis (ICA)

As above mentioned, there are two architectures for pattern
representation and recognition via ICA. Here, we use the architec-
ture II. Denote by x an arbitrary p-dimensional image vector, the
aim of ICA is to seek a sequence of projection vectors wy, ws,...,wy
(g < p) to maximize the statistical independence of the projected
data s. It can be expressed as follows:

s =Wk, (1)

where s = [s1,5,,...,54] denotes the ICs of ¥ and W= [wy,..
called the demixing matrix, i.e. projection matrix.

To efficiently evaluate the demixing matrix W, many algorithms
based on three criterions, maximum non-Gaussian, minimization
of mutual information and maximum likelihood, have been pro-
posed (Hyvatinen, 1999). Among them, the FastICA algorithm (Hy-
vafinen, 1999), which is based on maximum non-Gaussian, has
been dominantly used. In order to reduce complex computation
and the number of ICs, PCA is usually implemented to whiten the
data and reduce the dimensionality before applying ICA (Bartlett
et al,, 2002; Liu, 2004; Pong and Lai, 2002; Bressan and Vitria,
2003).

In order to improve the classification accuracy and further re-
duce the dimensionality of features, it usually selects a sub-matrix

LWyl is

of W via the discriminability of each column of W, which can be
defined as (Bartlett et al., 2002)

Op
r= Fw’ (2)
where g, = (¢ — ©)(¢ — €) and 0w =55, . (St — €)' (8¢ — €)
represent the between-class and the within-class variability,
respectively, of the projected coefficients of the training images. ¢
denotes the global mean of the projected coefficients, ¢; denotes
the mean of the projected coefficients for the jth class. s, denotes
the kth ICs in s. Based on the magnitude of r, an optimal sub-demix-
ing matrix can be easily obtained by selecting the columns of W
corresponding to the several biggest magnitudes. It is an open diffi-
cult problem to select the specific number.

In the conventional ICA algorithms, each input image is un-
folded to vector x in learning the demixing matrix W. Natural
images, however, are usually represented in the form of matrices
(second-order tensor) or higher-order tensors. Therefore it is not
well suited to represent natural images using one-dimensional
vectors. In addition, the unfolded vectors lead to the SSS problem
and the curse of dimensionality. To address these problems, we
will propose a novel ICs extraction scheme by using bilinear alge-
bra in Section 3.

3. Methodology
3.1. Idea and model of extraction ICs

As mentioned in Sections 1 and 2, most existing algorithms
stretch the input image to a vector for estimating the demixing
matrix. The unfolded vectors lead to the SSS which makes the sta-
tistics estimation difficult and inaccurate. Inspired by the scheme
of 2DPCA that dilutes the SSS and the successful application of it,
we study how to perform ICA with the matrix representation for
each input image.

Recently, some researches have revealed that 2DPCA is equiva-
lent to perform PCA on all rows/columns of image matrices under
the assumption that all sample are centered (Gao, 2007; Gao et al.,
2007), and this scheme ignores the spatial relationship between
different rows (columns) of image which is be related with image
formation and useful for classification (Zhang et al., 2006, 2008).
Inspired by the works of Gao (2007), Gao et al. (2007) and Zhang
et al. (2006), we propose the following model to extract ICs with
matrix representation for each input image

S=U"xAxV, (3)

where A€ R™" denotes an arbitrary image matrix, matrix
U € R™%(d, < m), which is called the demixing or projection ma-
trix, contains the orthogonal vectors spanning the column space
of A, and V € R™%(d. < n), called the demixing matrix, contains
the orthogonal vectors spanning the row space of A. S, called the
ICs of A, governs the interaction between the matrix U and V, and
is used for subsequent analysis, such as classification.

Our goal is to find two demixing matrices U and V such that the
elements of § are as independent as possible and simultaneously
reflect the local structure information embedded in input images.
Unfortunately, most existing algorithms use the iteration step or
sequential row-column scheme to solve the matrix U and V
(Vasilescu and Terzopoulos, 2005; Ye, 2005). The former needs lar-
ger computation, while the latter does not ensure to achieve the
optimal projection matrices and features extracted by it may lose
useful spatial and local structure information embedded in the im-
age. Here, we introduce the row and column directional images of
training images, and then estimate the demixing matrices via all
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the row/column vectors of directional images to solve this prob-
lem. This algorithm will be described in the following sub-sections.

Note that, the tensor form of Eq. (3) was published in
CVPR’2008 (Zhang et al., 2008). For a high-order tensor, the dimen-
sionality of column vector of a directional image is usually smaller
than that of row vector of it. However, for an arbitrary second-
order tensor A € R™" (without loss of generality, suppose that
m > n), it is not always true. The dimensionality of column vector
is usually larger than that of row vector in column directional im-
age of A. The proposed method is developed to address this prob-
lem via different directional image under this case.

3.2. Directional images and analysis

In the conventional two-dimensional technique, the projection
matrices can be directly calculated from the row and column vec-
tors of training images, respectively (Gao, 2007; Gao et al., 2007).
So U and V only reflect the structural information of column vec-
tors and row vectors of images, respectively. In other words, the
spatial relationship embedded in different rows/columns in the
original image, which is determined by the image formation and

173

may be useful for classification, is lost. To address this problem
and improve the classification accuracy, we propose to use row
and column directional images to estimate the demixing matrices
U and Vin Eq. (3).

Given an arbitrary image matrix A € R™" (without loss of gen-
erality, suppose m > n), the column and row directional images
can be defined as follows:

Column directional image: Re-sample and re-arrange the ma-
trix A along the row direction to generate the column directional
image B, as shown in Fig. 1a. Where h =n/2.

Row directional image: Re-sample and re-arrange the matrix A
along the column direction to generate the row directional image
B, as shown in Fig. 1b. Where h = n/2.

Fig. 2 shows the row and column directional images of the ori-
ginal image, respectively. From the Figs. 2 and 1, it is easy to find
that arbitrary column/row of column/row directional images con-
tains pixels which come from the multi-columns/rows rather than
one column/row of original image. Thus, the spatial relationship
embedded in different columns/rows of the original image can be
preserved in column/row directional image. If column/row vectors
of column/row directional image are used to learn the demixing
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(b) row-directional image

Fig. 1. Row and column

directional images formation.
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(b) ()

Fig. 2. Original image and directional images. (a) original image; (b) column
directional image and (c) row directional image.

matrices U and V, respectively, then the spatial structure embed-
ded in original images can be preserved in U and V. By projecting
the original image onto the two demixing matrices, the corre-
sponding ICs can contain the spatial structure embedded in origi-
nal images because the column/row vectors of column/row
directional images are different from the column/row vectors of
original images. Next in Section 3.3 we will introduce how to esti-
mate the two demixing matrices U and V, and then in Section 3.4
we will present the ICs extraction and classification of the pro-
posed algorithm.

3.3. Evaluate the demixing matrices

Different from the conventional two-dimensional subspace
algorithms of solving low-dimensional spaces, the proposed algo-
rithm views column/row vectors of column/row directional images
as training samples to learn the demixing matrices U and V via the
FastICA algorithm without the iteration step, and similarly pre-
serves the local structure embedded in different columns/rows of
the original image. Algorithm of calculating the demixing matrices
can be summarized as follows:

Step 1: Get the training samples A; € R™" j=1,2,...,N, where
N denotes the total number of training samples.

Step 2: Obtain the column directional images B’@j =1,2,...,N.
B’(C> denotes the column directional image of original image A;
obtained via the column directional image definition.

Step 3: Calculate the demixing matrix U. U, can be learned
from the column vectors of B{C)(j =1,2,...,N) by using the Fas-
tICA algorithm.

Step 4: Extract the demixing matrix U € R™% (d < m) of Eq. (3).
U is a sub-matrix of U, and can be selected via Eq. (2).

Step 5: Obtain the row directional images B{r),j =1,2,...,N. B’@
denotes the row directional image of original image A; obtained
via the row directional image definition in Section 3.2.

f
.

Step 6: Calculate the demixing matrix V,. V; can be learned from
the row vectors of B{r)ﬁ =1,2,...,N) by using the FastICA
algorithm.

Step 7: Obtain the demixing matrix V € R™% of Eq. (3). Vis a
sub-matrix of V; and can be selected via Eq. (2).

3.4. Feature selection and classification

After obtaining the demixing matrices U and V, the ICs, S, of im-
age matrix A; can be extracted by simultaneously projecting A;
onto the spaces spanned by U and V

Si=U xAxV, j=1,2,...,N. (4)
For an arbitrary probe image, A, the ICs of probe image A" is
S =U"xA" xV. (5)

For classification, it needs to calculate the similarity between S; and
S". Here, we use Euclidean distance to measure their similarity. The
distance between S; and S’ can be defined as:

d(s’,85) =I5 ) = S Dl (6)

where S7(:,i) and S{(:,i) denote the ith column of S and S
respectively.

If d(S",Sk) = arg ming(d(S',S;)), then the probe image and the Ay
belong to the same class.

4. Experimental results

The performance of the proposed algorithm is evaluated on the
Yale and AR face database, and PolyU Palmprint database and com-
pared with the classical unsupervised method, including PCA
(Eigenfaces) (Turk and Pentland, 1991), ICA (Bartlett et al., 2002),
2DPCA (Yang et al., 2004), and Tensor-PCA (Ye, 2005), as well as
the classical supervised methods, such as FLD (Fisherfaces) (Bel-
humeur et al., 1997), 2DFLD (Liu et al.,, 1993) and Tensor-FLD
(Yan et al., 2005). In all experiments, the nearest neighbor classifier
with Euclidean distance is employed for classification.

4.1. Face recognition

4.1.1. Experiment using the Yale database

The Yale face database (http://cvc.yale.edu/projects/yalefaces/
yalefaces.html) was taken from the Yale Center for Computational
Vision and Control. It consists of images from 15 different people,
using 11 images from each person, and has 165 images in total.
The images contain variations with the following total expressions
or configurations: center-light, with glasses, happy, left-light,

Fig. 3. Some preprocessed images of Yale database.
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Table 1
Top recognition accuracies (%) and the associated dimensionalities on the Yale database by different schemes.
Methods PCA ICA FLD 2DPCA Tensor-PCA 2DFLD Tensor-FLD Proposed method
Accuracy 88.00 90.67 96.00 88.00 89.33 92.00 90.67 97.33
Dimension 8 20 13 504 32 336 198 36
(a) 1 . . . . . the total number of training samples and test images are 90 and
75, respectively. PCA, ICA, FLD, 2DPCA, 2DFLD, Tensor-PCA, Ten-
0.9} e g sor-FLD and the proposed method are used to extract features,
¥ \* respectively. Table 1 shows the top recognition accuracy of differ-
3 08} g ent schemes with the corresponding dimensionality of features.
g The curve of recognition accuracy versus the different dimensions
§ 0.7} g or projection vectors of features is illustrated in Fig. 4. Note that
s LDA, ICA, and the proposed method all involve a PCA phase. In this
5 06¢ g phase, we keep nearly 85%, 90%, 95% and 98% image energy,
£ respectively, and select the number of principal components which
ﬁ 0.5} g corresponds the best recognition accuracy for each method. In the
o following experiments, we always select the principal components
0.4} g in PCA phase via this way for these methods.
oA It can be seen that the proposed method is obviously superior to
0.3} pcA | all the other unsupervised algorithms (PCA, 2DPCA, Tensor-PCA
—E&— FLD and ICA) and even slightly better than the supervised methods
0.2L& - - - - - (FLD, 2DFLD and tensor-FLD) in the recognition accuracy. The main
0 5 10 ) 5 ) ) 20 25 30 reason may be that the proposed method uses higher-order statis-
Projected dimension tics between variable and also exploits the structure information
(b) 1 ' ' embedded in different rows/columns of original images by intro-
ducing column and row directional images. However, the proposed
0.9} ) method may need more features than the conventional ICA.
0.8+ v
§ 4.1.2. Experiment using the AR face database
5 07r AR database (Martinez and Benavente, 2003) contains over
§ 06l 4000 color face images from 126 people (70 men and 56 women),
s including frontal views of faces with different facial expression,
T 05¢ lighting conditions and occlusions. The pictures of most persons
2 were taken in two sessions, separated by two weeks. Each session
@ 0.4} . . R
a contains 13 color images per person and 120 individuals (65 men
O oaf —+— Proposed thod and 55 women) participated in both sessions. In our experiments,
2DPCA the facial portion of each image is manually cropped and then nor-
0.2f —+— 2DFLD ) malized to a size of 50 x 40. The images from the first session with
01l i:ensor-pca ] (a) neutral expression, (b) smile, (c) anger, (d) scream, (e) left-light
ensorfld on, (f) right-light on, and (g) both side light on were selected for
00 '5 1'0 15 gallery. Thus we have 840 images from 120 individuals. Fig. 5

Number of project vectors

Fig. 4. The recognition accuracy of PCA, ICA, FLD, 2DPCA, 2DFLD, Tensor-PCA, and
Tensor-FLD on the Yale database. (a) ICA, PCA, and FLD; (b) 2DPCA, 2DFLD, tensor-
pca, tensor-fld, and the proposed method.

without glasses, normal, right-light, sad, sleepy, surprised, and
wink. In experiments, the facial portion of each image is manually
cropped and then normalized to the size of 168 x 120. Fig. 3 shows
some face images of one subject.

In experiments, we select the first 6 samples of each person for
training images, and the remaining images for the probe set. Thus,

shows some sample images of one subject.

In the experiment, the four sample images per person with (a)
neutral expression, (b) smile, (c) anger and (d) scream in the first
session are selected for training, and the other three images for
testing. The second experiment exchanges the training and testing
images. Table 2 lists the top classification accuracies of different
algorithms and the corresponding number of features. Fig. 6 plots
the curve of the recognition accuracy versus the different dimen-
sions or projection vectors of features in the second experiment.
From them, we can easily find that the proposed method has the
best recognition accuracy with the smaller number of features. It
is consistent with the experimental results in Yale database.

(@) (b (©) @ @& 0O @

Fig. 5. Some sample images of one subject in the AR database.
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Table 2

The recognition accuracies (%) of different schemes on the AR database. The values in parentheses are the corresponding number of features.

Methods PCA ICA 2DPCA Tensor-PCA Tensor-FLD FLD 2DFLD Proposed method
First experiment 68.89 97.22 98.61 97.78 98.61 92.78 98.06 100.00

(418) (99) (1250) (500) (270) (113) (1150) (126)
Second experiment 79.79 95.00 92.92 92.71 95.21 95.83 95.63 96.46

(110) (96) (500) (143) (60) (79) (250) (90)

(a) 1 - : ; . :

o
©
K

0.8

0.7} R

Classification accuracy

0.5} 1
PCA
—&— ICA

FLD

03 1 1 1 1 1
60 70 80 90 100 110 120

Projected dimension

(b) 1 -

08}
0.7}
06}

05}

Classification accuracy

2DPCA
2DFLD
—+H— Proposed method
—<— tensor-pca b
—©— tensor-fld

04t

03}

0.2 L L
0 5 10 15

Number of project vectors

Fig. 6. The recognition accuracy of different vector-based and matrix-based
representation algorithms on the AR database. (a) vector-based algorithms, i.e.
ICA, PCA, FLD; (b) matrix-based algorithms, i.e. 2DPCA, 2DFLD, Tensor-FLD, Tensor-
PCA and the proposed method.

4.1.3. Experiment using the palmprint database

The PolyU palmprint database (http://www.comp.pol-
yu.edu.hk/~biometrics/) was collected from 50 people at different
times. The palmprints from right-hand and left-hand of the same

person are treated as palmprints from different people. Thus we
view the palmprint images from 100 different palms. The resolu-
tion of the original palmprint images is 384 x 284. After prepro-
cessing by using the algorithm mentioned in (Zhang, 2004), the
central part of the image is cropped for feature extraction and
matching and normalized to a size of 128 x 128. Fig. 7 shows some
palmprint images after preprocessing.

In the experiment, each one of the 100 different palms has 6
samples taken in two sessions, where the first three are captured
in the first session and the other three in the second session. The
average interval between the first and the second session is two
months. The samples from the first session are used for training,
and the samples from the second session for testing. Thus, the total
number of training samples and test images are both 300. Table 3
shows the top recognition accuracy of different schemes with the
associated number of features. The curve of the recognition accu-
racy versus the different dimensions or projection vectors of fea-
tures is illustrated in Fig. 8. It can be seen that the proposed
method is obviously superior to all the other unsupervised algo-
rithms (PCA, 2DPCA, Tensor-PCA and ICA) and even slightly better
than the supervised methods (FLD, 2DFLD and Tensor-FLD) in the
recognition accuracy. But, the proposed method may need more
features than the conventional ICA. It is consistent with the conclu-
sions in face database.

4.2. Computational complexity and dimensionality dilemma

Given an arbitrary training image A € R™*", in the conventional
ICA, the size of the covariance matrix in the whitening stage is
L x L, where L =m x n. Usually the training sample size N is much
smaller than L, i.e.,, N < L, in most practical applications. It is hard
to calculate accurately and robustly the statistics of the vector var-
iable because the training sample size is much smaller than the
dimensionality of the vector variable. In the proposed method,
however, the size of the step-wise covariance matrix is only
n x n or m x m, which is much smaller than L in the conventional
ICA. So the computational complexity is obviously reduced in our
proposed method. On the other hand, the training samples are
the column/row directional vectors of directional images and the
number of them is N x m(N x n), which is much greater than N.
Therefore, the dimensionality dilemma is significantly alleviated.

4.3. Discussion

Comparing experiments in Section 4.1, it is easy to find that the
proposed method efficiently improves the recognition accuracy,
and is superior to some state-of-the-art methods. However, several
questions remain to be investigated in our future work. First, the

Fig. 7. Some preprocessed images in the palmprint database.
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Table 3
Top recognition accuracies (%) and the associated dimensionalities on the palmprint database by different schemes.
Methods PCA ICA FLD 2DPCA Tensor-PCA 2DFLD Tensor-FLD Proposed method
Accuracy 88.00 92.00 93.00 94.00 9433 95.00 99.00 99.33
Dimension 105 39 84 2432 253 2176 224 112
] umn/row directional image is used in training to learn the two
(a) ' ' ' ' ' ' ' ' demixing matrixes which better exploit the relationship between
0.98f : the different columns/rows of original image. Compared with tra-
0.96} | ditional ICs extraction algorithms, the proposed method has the
> following advantages: (1) it helps to alleviate the small sample size
O 0.941 E . . . . .
g problem and avoid the curse of dimensionality; (2) it reduces the
g 0.92F 1 computational complexity because of the reduced dimensionality
g 0.9} 4 of training samples; (3) it uses two interrelated demixing matrices
-% 0.8l which can better preserve the relationship embedded in rows/col-
S 7\ i umns of original image. Experimental results show the efficiency of
‘@ 0.86) 1 the proposed method. However, some questions (see Section 4.3)
8 0.84} 1 remain to be investigated in our future work.
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Fig. 8. The recognition accuracy of different vector-based and matrix-based
representation algorithms on the palmprint database. (a) Vector-based algorithms,
i.e. ICA, PCA, FLD; (b) matrix-based algorithms, i.e. 2DPCA, 2DFLD, Tensor-PCA,
Tensor-FLD, and the proposed method.

optimal demixing matrices U and V in Eq. (3) are usually estimated
using the iteration step, however, they are calculated via using the
directional images separately without iteration step in our pro-
posed method. It is unclear whether the proposed method gives
an approximated optimal solution to Eq. (3) in theory. Second, as
aforementioned analysis in Section 3.2, directional encoding plays
an important role for improving the performance of proposed
method. However, it is unclear whether the proposed directional
encoding is optimal under arbitrary conditions in theory.

5. Conclusions

A novel algorithm is proposed to extract the independent com-
ponents by encoding each input image as a matrix. A novel col-

providing the cropped images of AR and Dr. Zhao Qijun for provid-
ing the cropped images of Yale database. This work is supported by
the National Science Foundation of China under Grants No.
60802075, the Key Laboratory on Integrated Serves Networks of
China under Grants No. ISN090403, and the 111 Project of China
(B08038).
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