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Abstract: In this paper, we propose a Multi-Manifold Discriminant Analysis (MMDA) method for 

image feature extraction and pattern recognition based on graph embedded learning and under the 

Fisher discirminant analysis framework. In MMDA, the within-class graph and between-class graph 

are respectively designed to characterize the within-class compactness and the between-class 

separability, seeking for the discriminant matrix to simultaneously maximize the between-class 

scatter and minimize the within-class scatter. In addition, in MMDA, the within-class graph can 

represent the sub-manifold information, while the between-class graph can represent the 

multi-manifold information. The proposed MMDA is extensively examined by using the FERET, 

AR and ORL face databases, and the PolyU finger-knuckle-print databases. The experimental 

results demonstrate that MMDA is effective in feature extraction, leading to promising image 

recognition performance. 
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1. Introduction 

Dimensionality reduction is to construct a meaningful low-dimensional representation of high 

dimensional data. Since there are large volumes of high-dimensional data in numerous real-world 

applications, dimensionality reduction is a fundamental problem in many scientific fields such as 

visualization, computer vision and pattern recognition. With respect to pattern recognition, 

dimensionality reduction is an effective approach to reveal the distinctive features from the original 

data for pattern matching [1].  

Linear discriminant analysis (LDA) is one representative approach to learning discriminant 

subspaces. Unfortunately, it cannot be applied directly to small sample size (SSS) problems [2] 

because the within-class scatter matrix is singular. Many image recognition problems such as face 

recognition are typical SSS problems, and hence numerous works [4-16] have been proposed to 

adapt LDA for face recognition, such as the Fisherface [3, 4]. In Fisherface, PCA is first used to 

reduce the dimension of the original features space before applying LDA. By throwing away the 

smallest projections in the PCA step, however, some useful discriminatory information may also be 

lost. More discussions about PCA and LDA can be found in [5].  

Recent studies have shown that the face images possibly reside on a nonlinear sub-manifold 

[15-17]. Many manifold learning algorithms have been proposed for discovering the intrinsic 

low-dimensional embedding of the original data, among which the most well-known ones are 

isometric feature mapping (ISOMAP) [15], local linear embedding (LLE) [16], and Laplacian 

Eigenmap [17]. Experiments have shown that these methods can find perceptually meaningful 

embedding for artificial and real-world datasets such as facial or digit images. However, how to 

evaluate the maps remains unclear. He et al. [18] proposed the Locality Preserving Projections 

(LPP), which is a linear subspace learning method derived from Laplacian Eigenmap. The objective 

function of LPP is to minimize the local scatter of the projected data. In contrast to most manifold 
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learning algorithms, LPP possesses a remarkable advantage that it can generate an explicit map, 

which is linear and can be easily computed like PCA and LDA. Yang et al. [19] developed an 

Unsupervised Discriminant Projection (UDP) technique for dimensionality reduction. UDP 

characterizes the local scatter as well as the nonlocal scatter, seeking for a projection that 

simultaneously maximizes the nonlocal scatter and minimizing the local scatter. Xu et al. [20] 

proposed some solutions to overcome SSS problem when LPP is applied in face recognition. 

Inspired by LPP, Zhao et al. proposed LPCA and LLD for feature extraction and recognition [21, 

22]. Hu et al. proposed a 2DLPP method [23] for palmprint recognition, and in [24] Feng et al. 

proposed a framework for matrix-based feature extraction, based on which a method called 

2-dimensional discriminant embedding analysis (2DDEA) was developed. 

Neither LPP nor UDP uses the class label information and they are un-supervised methods in 

nature. In [25] and [26], Yan et al. proposed the Marginal Fisher Analysis (MFA) and Chen et al. 

proposed the Local Discriminant Embedding (LDE), respectively, for feature extraction and 

recognition. The two methods are very similar in formulation, and both of them combine locality 

and class label information to represent the intra-class compactness and interclass separability. 

MFA and LDE take advantage of the partial structural information of classes and neighborhoods of 

samples; however, it is difficult to decide the number of nearest neighbors of each sample and the 

number of shortest pairs from different classes in MFA and LDE. In addition, the region covariance 

matrix lies on the connected Riemannian manifold, instead of the subspace. B. Li et al. proposed a 

namely constrained maximum variance mapping (CMVM) method [27], which uses the local 

scatter and between-class scatter to characterize the sub-manifold and multi-manifold information, 

respectively. The projection matrix is calculated under the Fisher framework. However, CMVM 

ignores the class label information when characterizing the sub-manifold using local scatter, and 

ignores the influences of different class distances when charactering the multi-manifold using the 

between-class scatter. H. Wang et al. proposed a called locality-preserved maximum information 
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projection (LPMIP) method [28], which uses local scatter and nonlocal scatter to characterize the 

sub-manifold and multi-manifold information, respectively. LPMIP can be seen as a scatter 

difference version of UDP, and it is an unsupervised method.  

The basic assumption of manifold learning is that the high-dimensional data can be considered as 

a set of geometrically related points lying on a smooth low-dimensional manifold. Each object 

space is usually a sub-manifold. Different object spaces form a multi-manifold. Actually, the 

multi-manifold information is partly considered in LPP and UDP. In this paper, we develop a novel 

method, namely multi-manifold discriminant analysis (MMDA), to extend the LDA formulation 

and make new contribution to manifold learning. Yang et al. [19] and Wang et al. [28] used the 

non-local scatter, which involves the between-class scatter, to represent the multi-manifold 

information. In [28], Li et al. used the between-class scatter matrix to represent the multi-manifold 

information. These methods achieved interesting results of multi-manifold learning. Inspired by 

these works, we propose to use the between-class graph to represent the multi-manifold information 

and use the within-class graph to represent the sub-manifold information. So in MMDA, we 

construct two graphs to characterize the within-class compactness and the between-class 

separability, and define the criterion function to calculate the projection matrix. The within-class 

compactness and the between-class separability can also be characterized by the within-class 

Laplacian matrix and the between-class Laplacian matrix, which are associated with the 

within-class matrix, between-class matrix under the Fisher discriminant analysis framework. We 

seek for the projection matrix by simultaneously maximizing the between-class Laplacian scatter 

matrix and minimizing the within-class Laplacian matrix.  

It is worthwhile to highlight several aspects of the proposed method here. First, MMDA does not 

overemphasize the effect of large class distance, which degenerates the effect of LDA; second, 

MMDA explicitly considers the sub-manifold information and multi-manifold information, which is 

directly related to classification and recognition; third, MMDA is a linear supervised method and 
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the available class labels are used in it; fourth, MMDA is based on graph embedded learning and 

belongs to the Fisher discriminant analysis framework. 

The organization of this paper is as follows. In Section 2, we review briefly the LDA and LPP. In 

Section 3, we propose the idea and describe the new method in detail. In Section 4, experiments on 

face and finger-knuckle-print image databases are presented to demonstrate the effectiveness of the 

new method. Conclusions are made in Section 5. 

2. Related Work 

2.1 LDA 

LDA seeks for a projection matrix such that the Fisher criterion (i.e. the ratio of the between-class 

scatter to the within-class scatter) is maximized after the projection. Suppose there are C  known 

pattern classes, 1 2, , , Cω ω ω . The between-class scatter matrix bS , within-class scatter matrix wS  

and the total scatter matrix tS  can be denoted as: 

                            
1

1 ( )( )
C

T
b i i o i o

i
S N m m m m

N =

= − −∑                       (1) 

                         
1

1 ( )( )
k i

C
T

w k i k i
i x

S x m x m
N ω= ∈

= − −∑ ∑                       (2) 

                           
1

1 ( )( )
N

T
t k o k o

i
S x m x m

N =

= − −∑                         (3) 

where N  is the total number of training samples, and iN  is the number of training samples in 

class i . The jth training sample in class i  is denoted by j
ix , the mean vector of training samples 

in class i  is denoted by im  and the mean vector of all training samples is om . 

If wS  is nonsingular, the optimal projection optW  is chosen as the matrix with orthonormal 

columns which maximize the ratio of the determinant of the between-class scatter matrix of the 

projected samples to the determinant of the within-class scatter matrix of the projected samples, i.e. 
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                              arg max
T

b
opt T

W w

W S WW
W S W

=                            (4) 

where { }| 1, 2,iw i m=  is the set of generalized eigenvectors of 1( )w bS S−  corresponding to the 

m  largest generalized eigenvalues.  

 

2.2 LPP 

Locality preserving projections (LPP) [18] is a well-known method for image feature extraction and 

dimension reduction. The objective of LPP is to preserve the local structure of the image space by 

explicitly considering the manifold structure. The following objective function is used: 

min ( ) min T
i j ij L

ij

y y S W S W− =∑                     (5) 

where T
i iy W x=  is the low-dimensional representation of original data vector ix  and the matrix 

S  is a similarity matrix, which can include the Gaussian weights or uniform weights of Euclidean 

distances using k-neighborhood or ε-neighborhood, and T
LS XLX= . 

By imposing a constraint 1T T T T
DY DY W XDX W W S W= = = , where 1 2[ , , , ]NX x x x= , and 

D  is a diagonal matrix whose entries are column (or row) sums of S , ii ijj
D S=∑ , T

DS XDX= , 

then the minimization problem becomes 

1
arg min

T
D

T
L

W S W
W S W

=
                             (6) 

The optimal projection matrix W  is given by the minimum eigenvalue solution to the generalized 

eigenvalue problem: 

L DS W S Wλ=                               (7) 

DS  is often singular in the case of SSS. He et al. [18] proposed to implement LPP in the PCA 

subspace, which is similar to the Fisherface framework. 
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3. The Proposed MMDA 

3.1 Motivation 

Before going into the details of our proposed method, let’s make more analysis about LDA and LPP. 

In LDA, the between-class scatter matrix bS  and within-class scatter matrix wS  can be rewritten 

as: 

( )( )T
b i j i jij

S m m m m∝ − −∑                        (8) 

1 ,
( )( )

ki kj k

c
T

w ki kj ki kj
k x x

S x x x x
ω= ∈

∝ − −∑ ∑                     (9) 

If the distance between im  and jm  is large, bS  will be more determinate by class i  and class 

j , so LDA will put more emphasis on class i  and class j  and the neighboring classes may 

merge together in the LDA subspace. If the distance between im  and jm  is small (even i jm m= ), 

bS  will have no discriminative information or it is difficult to discriminate class i  from class j  

according to bS . In each class, each sample has different contribution to wS , or each class has its 

individual manifold structure, which is also ignored in LDA. 

  As for LPP, the matrix D  provides a natural measure on the data points. The bigger the value 

iiD  (corresponding to ix ) is, the more important ix  is. LPP characterizes its global quantity 

according to the distance between each point and the origin according to  

                              ( )T T T
ii ii

W XDX W D W x= ∑                        (10) 

A reasonable method is to characterize the global quantity according to the distance between each 

point and the mean weight of all the samples, as pointed out in [26]. There are 

1 ( )ii ii
iii

m D x
D

= ∑∑
                           (11) 

2( ( ))T T T T
ii ii

Y DY W XDX D W x m= = −∑                  (12) 
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We see that LPP does not explicitly consider the relations between different clusters, and LPP is an 

unsupervised linear method and the class label information is ignored. Although CMVM and 

LPMIP are multi-manifold-based methods, the influence between class means is ignored in CMVM, 

and the class label information is ignored in LPMIM. 

To overcome the shortcomings of LDA and LPP as discussed above, next we propose a novel 

method for feature extraction and recognition, namely multi-manifold discriminant analysis 

(MMDA), which is a graph driven manifold learning method under the Fisher framework. 

 

3.2 Fundamentals 

Denote the sample dataset as 1 2[ , , , ], Rm
N iX x x x x= ∈  with the class label { }1,2, ,il c∈ . For 

the convenience of discussion, we assume that there is the same number of samples in each class. 

By using linear projection P, the low-dimensional representation of the sample can be obtained by 

Ty P x= . Thus in the low dimensional space the sample set is 1 2[ , , , ], R , d
N iY y y y y d m= ∈ . 

The motivation of MMDA is to keep the class labeling after graph embedding or subspace 

learning. In other words, in the low dimensional MMDA subspace, we expect that the points are 

still close if they are from the same class, and the points from different classes are as far from each 

other as possible. To this end, we define two types of graphs in MMDA: within-class graph wG  

and between-class graph bG , with N nodes and c nodes respectively.  

For the within-class graph wG , we only consider the points with the same class label. An edge is 

constructed between nodes ix  and jx  from the same class. The similarity between node ix  and 

jx  is defined as follows: 

2
exp( ) if class label 

0 else
i j i j

ij
x x t l lC

⎧ − − =⎪= ⎨
⎪⎩

                     (13) 
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The above similarity function is widely used in manifold learning. Obviously, for any ix , jx  and 

parameter t , 0 1ijC≤ ≤  always holds. In addition, the weight function is a strictly monotonically 

decreasing function with respect to the distance between points ix  and jx .  

The within-class graph-preserving criterion is defined as 

arg min T T
wP

P XL X P                             (14) 

where w wL D C= −  is the Laplacian matrix, wD  is a diagonal matrix with wiiD  being the column 

(or row) sum of C , i.e. wii ijj
D C=∑ .  

The affinity weight matrix C  and diagonal matrix wD  can be written as: 

1 0
0

0 c

C
C

C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1 0

0
0

w

w

wc

D
D

D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                   (15) 

where 1, , cC C  represent the affinity weight in each class, and 1, ,w wcD D  represent a point’s 

importance in its class. According to matrix wkD , we can get the weighted center of class k :  

1 ( )k kii kii
kiii

m D x
D

= ∑∑
                         (16) 

Then we can get all the class weighted centers 1 2[ , , , ]cM m m m= , which can be more respective 

than the original mean of the each class. 

Each class has its own manifold structure and different classes could reside on different 

manifolds. For recognition, it would be necessary to distinguish between classes from different 

manifolds. To achieve an optimal recognition, the recovered embeddings corresponding to different 

manifolds should be separated as much as possible in the final embedding space.  

For the between-class graph bG , based on the weighted centers of each class, we only consider 

the point pairs of M . An edge is constructed between nodes im  and jm  with weight  



 
10 

 

                            
2

exp( / )ij i jB m m t= − −                             (17) 

The purpose of the weight in Eq. (17) is to directly enhance the contributions of classes that have 

smaller distances. 

The between-class graph-penalizing criterion is defined as 

 arg max T T
bP

P ML M P                           (18) 

where b bL D B= −  is the Laplacian matrix and bD  is a diagonal matrix with bii ijj
D B=∑  

being the column (or row) sum of B . ijB  is the weighted coefficient between nodes im  and jm  

and it adjusts the influence of the distance between nodes im  and jm . 

According to graph embedding, MMDA should satisfy the following two optimization criteria: 

arg min

arg max

T T
wP

T T
bP

P XL X P

P ML M P

⎧⎪
⎨
⎪⎩

                          (19) 

We can further re-write the criteria as follows: 

arg max
T T

b
T T

P w

P ML M PP
P XL X P

=                          (20) 

  According to the framework of Fisher discrimiant analysis, with MMDA the within-class 

Laplacian scatter can be formulated as: 

        ( ) T
w wJ P P Pα=                                (21) 

where ( )( )T T
w ij i j i j wij

C x x x x XL Xα ∝ − − ∝∑  is the within-class Laplacian matrix, w wL D C= −  

is the Laplacian matrix, wD  is a diagonal matrix with wii ijj
D C=∑  being the column (or row) 

sum of C . For non-Gaussian or manifold data, we can process them by using local patches because 

non-Gaussian data can be approximately viewed as locally Gaussian and a curved manifold can be 

viewed as locally Euclidean [29, 30]. 

The between-class Laplacian scatter can be defined 
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                               ( ) T
b bJ P P Pα=                             (22) 

where 
1

( )( )
c

T T
b ij i j i j b

i

B m m m m ML Mα
=

∝ − − ∝∑  is the between-class Laplacian matrix, 

b bL D B= −  is the Laplacian matrix, bD  is a diagonal matrix with bii ijj
D B=∑  being the 

column (or row) sum of B . 

  It is obvious that wα  and bα  are nonnegative symmetrical matrices. To maximize the 

between-class Laplacian scatter and minimize the within-class Laplacian scatter in the MMDA 

subspace, the objective function can be defined as: 

( )( ) arg max
( )

T
b b

T
P w w

J P P PJ P
J P P P

α
α

= =                      (23) 

It can be concluded that our proposed method is a graph embedded learning method and it is under 

the Fisher discrimiant analysis framework. Therefore, we call the proposed method multi-manifold 

discriminant analysis (MMDA). 

The projection matrix P  consists of the generalized eigenvectors corresponding to the largest 

eigenvalues of b wP Pα λα= . However, often the within-class Laplacian matrix wα  is singular 

because the training sample size is smaller than the dimension of the image vector space. To 

address this issue, we first use PCA to reduce the dimension of the original image vectors so that 

wα  is nonsingular in the PCA subspace.   

 

3.3 The algorithm 

The proposed MMDA based feature extraction algorithm can be summarized as follows: 

  Step1. Use PCA to transform the original image into a lower dimensional subspace. Denote by 

PCAW  the transformation matrix of PCA. 

Step2. In the PCA subspace, construct the similarity matrix C , within-class Laplacian scatter 
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matrix wα  and the weighted class center M  using Eqs. (13-16). 

  Step3. Construct the between-class Laplacian scatter matrix bα  using Eqs. (17) and (22), and 

then calculate the eigenvectors 1 2[ , , , ]dP p p p=  of 1( )w bα α−  corresponding to the first d  

largest nonzero eigenvalues. 

Step4. The final projection matrix is PCA= *T TW P W . 

 

3.4 Connections with LDA, LPP, CMVM, LPMIP, 2DDEA 

It is worthwhile to pointed out that the within-class Laplacian matrix T
w wXL Xα ∝  is the same as 

the within-class scatter matrix of LDA, if the parameter t  in Eq. (13) is set as t = +∞ . When 

t = +∞  the similarity between node ix  and jx  becomes: 

1 if class label 
0 else

i j
ij

l l
C

=⎧
= ⎨
⎩

                                     (24) 

Then the within-class Laplacian matrix is equivalent to the within-class scatter matrix wS  in LDA: 

( )( ) ( )( )T T T
w ij i j i j w ki kj ki kj wij k ij

C x x x x XL X x x x x Sα ∝ − − ∝ ∝ − − ∝∑ ∑ ∑     (25) 

The class centers are the means of each class and 1 2[ , , , ]cM m m m= . The between-class 

Laplacian matrix is equivalent to the between-class scatter matrix bS  in LDA when the parameter 

t  in Eq. (17) is set as t = +∞ : 

1 1
( )( ) ( )( )

c c
T T T

b ij i j i j b i j i j b
i i

B m m m m ML M m m m m Sα
= =

∝ − − ∝ ∝ − − ∝∑ ∑        (26) 

From the above analysis we can see that LDA is a special case of MMDA. Sub-manifold 

information in each class is considered in MMDA by the within-class Laplacian matrix, which is 

ignored in LDA. In MMDA, the influence of the distances between class means is considered in 

MMDA by the between-class Laplacian matrix, which is ignored in LDA. 
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LPP and LPMIP are unsupervised subspace learning methods. The objective of LPP is to 

minimize the local scatter of the projected data. In some case, this criterion cannot guarantee to 

yield a good projection matrix for classification purpose. The objective of LPMIP is to minimize the 

local scatter of the projected data and maximize nonlocal scatter of the projected data. The class 

label information is ignored in LPP and LPMIP, which is important for recognition and 

classification. In MMDA, the within-class Laplacian matrix represents the local scatter of the 

projected data or the sub-manifold information; the between-class Laplacian matrix represents the 

between-class scatter or the multi-manifold information. By simultaneously maximizing the 

between-class scatter and minimizing the within-class scatter, MMDA seeks for the optimal 

projection matrix for classification and recognition. 

The objective functions of LPP, CMVM and LPMIP are respectively equivalent to  

arg min ( ) arg max ( )
T T

L D
T T

D L

W S W W S WJ W J W
W S W W S W

= ⇔ =                   (27) 

arg max ( )
T

b
CMVM T

L

W S WJ W
W S W

=                           (28) 

                    arg max ( ) (1 )T T
LPMPIP N LJ W W S W W S Wα α= − −                  (29) 

In LPP, CMVM and LPMIP, when the dataset has an ideal clustering, i.e. each local neighborhood 

contains exactly the same number of training samples belonging to the same class, the local scatters 

of LPP, CMVM and LPMIP are equivalent to the within-class Laplacian scatter of MMDA. In LPP, 

the purpose of constraint 1T
DW S W =  is to remove the scaling in the embedding and the purpose 

of the matrix D  is to provide a natural measure of the vertices of the adjacency graph, and 

maximizing T
DW S W  does not make sense with respect to discrimination. CMVM uses the 

between-class scatter matrix bS  to characterize the multi-manifold information which is used in 
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LDA, and has the same shortcomings as LDA. In LPMIP, the nonlocal scatter is used to 

characterize the multi-manifold information and the class label information is ignored. In contrast, 

the between-class Laplacian matrix in MMDA has a more transparent link to classification and 

recognition. Its physical meaning is very clear: if samples belong to different classes, they become 

as far from each other as possible.  

2DDEA is a general theoretical framework for matrix-based feature extraction algorithms from the 

point of view of graph embedding. MMDA is also based on graph embedding learning and under 

Fisher discriminant analysis framework. Sub-manifold information of each class is all considered in 

our proposed method and the methods in 2DDEA. Multi-manifold information of different classes 

is not explicitly considered in the methods in 2DDEA, but explicitly considered in our method. 

Since our method is based on vectors, the image structural information is ignored. 

 

4 Experiments 

Three face image databases, namely, the Yale database, the ORL database, the FERET database, and 

the PolyU finger-knuckle-print (FKP) database are used to evaluate the proposed MMDA approach 

in comparison with the following algorithms: PCA (Eigenface) [4], LDA (Fisherface) [4], LPP 

( t = +∞ ) [18], LPCA [21], LLD [22], CMVM [27] and LPMIP [28], ICA [31] The parameter in Eq. 

(13) is important for the recognition rate and it depends on the dataset. Currently there is not a good 

rule to choose the parameter t in Eq. (13) and Eq. (17). In the experiments, we set the parameter 

t=r×N (where N is the image size) and then choose r (r is usually set as 0.03). The experiments 

were implemented on a Laptop with P8600 CPU and 2G RAM under the MATLAB (Version 7.01) 

programming environment. 
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4.1 Experiments on the FERET Database 

The FERET face image database is a result of the FERET program, which was sponsored by the US 

Department of Defense through the DARPA Program [32, 33]. It has become a standard database 

for testing and evaluating state-of-the-art face recognition algorithms. 

  The proposed algorithm was tested on a subset of the FERET database. This subset includes 

1,400 images of 200 individuals (each individual has seven images). This subset has variations of 

facial expression, illumination, and pose. In our experiment, the facial portion of each original 

image was automatically cropped based on the location of eyes and the cropped images were 

resized to 40 by 40 pixels. Some example images of one person are shown in Fig. 1. 

 

 
Figure 1. Images of one person in FERET. 
 

In the experiment, we used the first l (l=3,4,5,6) images per class for training and the remaining 

images for testing. In PCA and the PCA stage of LDA, LPP, LLD, CMVM, LPMIP and MMDA, we 

preserved nearly 95% image energy to select the number of principal components. In LPP, the 

number of the nearest neighbors was set as l-1, and the final dimension is set the same as that in 

PCA. Finally a nearest neighbor classifier with cosine distance is employed. The final recognition 

rates are given in Table1, from which we can find that the proposed method has the highest 

recognition rate.  
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Table 1 Recognition Rates on the FERET database by different methods 
 PCA LDA ICA LPP LPCA LLD CMVM LPMIP Proposed 

3l =  0.4150 0.5925 0.5275 0.3575 0.4925 0.5700 0.4088 0.4150 0.6000 

4l =  0.5017 0.7067 0.6733 0.4667 0.6133 0.7033 0.4950 0.5017 0.7217 

5l =  0.4000 0.7000 0.6800 0.6125 0.6875 0.7125 0.4075 0.4000 0.7250 

6l =  0.3050 0.5900 0.5700 0.6700 0.7200 0.7150 0.3300 0.3050 0.7750 

 
Table 2 Average Recognition Results on the FERET database by different methods 

 PCA LDA ICA LPP LPCA LLD CMVM LPMIP Proposed 

Mean 0.7050 0.8615 0.7935 0.6585 0.7155 0.8600 0.7885 0.6995 0.8865 

Std 0.1453 0.1010 0.0505 0.1363 0.0802 0.0987 0.0421 0.1429 0.0929 

 
Table 3 Average training time and testing time on the FERET database(s) 

 PCA LDA ICA LPP LPCA LLD CMVM LPMIP Proposed 

Training 16.1688 16.1861 14.7705 80.8437 13.9079 80.1875 79.0062 129.7406 83.1375 

Testing 4.1874 4.0407 4.2405 4.1812 4.0827 4.1343 4.0672 4.2282 4.2268 

 

 
Figure 2. The recognition rates of PCA, LDA, LPP, LPCA, LLD, CMVM, LPMIP and the proposed MMDA versus different 

training sets on the FERET database. 

 

In the second experiment, six images per person were randomly chosen for training, and the other 

five for testing. Thus, the training set has 1200 images and the test set has 200 images. We run the 

system 10 times. All possible dimensions of the low-dimensional representation were evaluated, and 
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the best average recognition rates and the corresponding standard deviations (std) across 10 runs are 

reported in Table 2. The curve of recognition rate versus the 10 different training sets is shown in 

Fig. 2. We can find that MMDA has good performance. The average training time and testing time 

are shown in Table 3. 

 

4.2 Experiments on the ORL database 

The ORL (http://www.cam-orl.co.uk) database contains 40 persons, each having 10 different 

images. The images of the same person are taken at different times, under slightly varying lighting 

conditions and with various facial expressions. Some people are captured with or without glasses. 

The heads in images are slightly titled or rotated. The images in the database are manually cropped 

and rescaled to 112×92. Fig. 3 shows ten images of one person in ORL. 

 

 
    Figure 3. Ten images of one person in ORL 

                                 

Table 4 Recognition Rate on the ORL database 
 PCA LDA ICA LPP LPCA LLD CMVM LPMIP Proposed 

3l =  0.8429 0.8821 0.7714 0.8571 0.8857 0.9000 0.8964 0.8571 0.9071 

4l =  0.8750 0.9125 0.8375 0.8708 0.9167 0.9208 0.8958 0.8833 0.9500 

5l =  0.9050 0.9300 0.8700 0.8750 0.9200 0.9300 0.9000 0.9150 0.9500 

6l =  0.9563 0.9563 0.9250 0.9063 0.9375 0.9563 0.9625 0.9500 0.9812 

 

In the experiment, we used the first l (l=3,4,5,6) images per class for training and the remaining 

images for testing. In PCA and the PCA stage of LDA, LPP, LLD, CMVM, LPMIP and MMDA, we 

kept nearly 95% image energy to select the number of principal components. In LPP, the number of 

the nearest neighbors was set as 1l − , and the final dimension is the same as that in PCA. Finally a 
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nearest neighbor classifier with cosine distance is employed for classification. The final recognition 

rates are given in Table 4. Again, the proposed method achieves the highest recognition rate. 

 
Table 5 Average Recognition Results on the ORL database 

 
 
 
 
 
 
 
 
 
 

 
 

Table 6 Average training time and testing time on the ORL database(s) 
 3l =  4l =  5l =  6l =  

Training-Testing Training-Testing Training-Testing Training-Testin
g 

PCA 0.0828-0.5890 0.1497-0.7018 0.1969-0.6780 0.3029-0.6908 

LDA 0.1157-0.7109 0.1795-0.8219 0.2889-0.8625 0.4405-0.8533 

ICA 2.2094-0.6110 4.1390-0.6921 6.8407-0.7156 11.8514-0.6876 

LPP 1.2627-0.6093 2.2172-0.6828 3.3921-0.7299 4.7842-0.6751 

LPCA 4.1390-0.5876 4.9718-0.6735 6.5532-0.7452 7.9501-0.6859 

LLD 1.2704-0.5718 2.2188-0.6501 3.3404-0.6564 4.8065-0.6328 

CMVM 1.2001-0.5764 2.1031-0.6423 3.2906-0.6656 4.7313-0.6358 

LPMIP 2.0358-0.6110 3.5842-0.6612 5.3484-0.6642 7.5921-0.6346 

Proposed 1.3078-0.5846 2.1795-0.6391 3.5768-0.7063 5.3938-0.6842 

 

To further evaluate the performance of PCA, LDA, LPP, LPCA, LLD, CMVM, LPMIP and the 

proposed MMDA, in each test, l (l=3,4,5,6) images per class were randomly chosen for training, 

while the remaining eight images were used for testing. We run the system 10 times. All possible 

dimensions of the final low-dimensional representation were evaluated, and the best average results 

are reported in Table 5. We can find that the proposed method works consistently well. The average 

training time and testing time are shown in Table 6. 

 3l =  4l =  5l =  6l =  
PCA 0.8918(0.0189) 0.9375(0.0224) 0.9615(0.0118) 0.9750(0.0093) 

LDA 0.9061(0.0211) 0.9512(0.0195) 0.9710(0.0120) 0.9769(0.0078) 

ICA 0.8789(0.0245) 0.9308(0.0250) 0.9510(0.0173) 0.9681(0.0116) 

LPP 0.8789(0.0235) 0.9300(0.0195) 0.9515(0.0183) 0.9681(0.0133) 

LPCA 0.9032(0.0251) 0.9521(0.0177) 0.9660(0.0094) 0.9774(0.0069) 

LLD 0.9129(0.0237) 0.9504(0.0182) 0.9770(0.0092) 0.9819(0.0055) 

CMVM 0.8525(0.0273)) 0.9063(0.0245) 0.9325(0.0151) 0.9519(0.0164) 

LPMIP 0.8864(0.0301) 0.9221(0.0265) 0.9440(0.0115) 0.9631(0.0130) 

Proposed 0.9164(0.0271) 0.9550(0.0164) 0.9760(0.0081) 0.9831 (0.0084) 
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4.3 Experiments on the AR database 

The AR face [34, 35] contains over 4,000 color face images of 126 people (70 men and 56 women), 

including frontal views of faces with different facial expressions, lighting conditions, and 

occlusions. The pictures of 120 individuals (65 men and 55 women) were taken in two sessions 

(separated by two weeks) and each section contains 13 color images. Twenty face images (each 

session contains 10) of these 120 individuals were selected and used in our experiments. These 

images have variations of neutral expression, smiling, angry, screaming, left light on, right light on, 

all sides light on, wearing sun glasses, wearing sun glasses with left light on, and wearing sun 

glasses with right light on. The face portion of each image was manually cropped. The example 

images of one person are shown in Fig. 4. 

 

 

 

Figure 4. Samples of the cropped images of one person in AR database. 

 

Table 7 Recognition rates on the AR database by different methods.  

 

In the experiment, the first 10 images per class were used for training and the remaining images 

for testing. In the PCA phase, we selected the first 356 principal components. In the second stage of 

 PCA LDA ICA LPP LPCA LLD CMVM LPMIP Proposed 

Recognition Rate 0.6367 0.6750 0.6350 0.5767 0.6617 0.6892 0.6869 0.6512 0.7107 

Dim 356 119 356 356 356 119 119 119 119 
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LDA, LLD, CMVM, LPMIP and MMDA, the dimension was reduced to c-1=119, where c is the 

class number. The final recognition rate of each method and the corresponding dimension are given 

in Table 7.  

 

4.4 Experiments on the PolyU FKP database 

In the last experiments, we used the PolyU finger-knuckle-print (FKP) database [36-38] to evaluate 

the performance of the proposed method. The PolyU FKP database was collected from 165 

volunteers, including 125 males and 40 females. Among them, 143 subjects are 20-30 years old and 

the others are 31-50 years old. The images were collected in two separated sessions. In each session, 

the subject was asked to provide 6 images for each of the left index finger, the left middle finger, the 

right index finger and the right middle finger. In total, the database contains 7,920 images from 660 

different fingers. The size of the ROI (region of interest) is 110×200. Fig. 5 shows twelve sample 

images of one left index finger. In the experiments, we choose a subset of the PolyU FKP database, 

the images of the left index finger, to evaluate the performance of the proposed method. In the 

experiments, we resize the image size to 55×110. Please note that in this paper the FKP database is 

used to illustrate the effectiveness of the proposed MMDA method LDA-based methods and 

manifold learning methods. Our goal is not to compare the FKP recognition accuracy of MMDA 

with our previous methods proposed in [36-37] because they use totally different categories of 

techniques. 
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Figure 5. Samples of the cropped images in the PolyU FKP database 

 
Table 8 Recognition rates on the PolyU FKP database by different methods. 

 

 

Figure 6. The recognition rates versus different dimension on the PolyU FKP database. 

 

According to the protocol of this database, the images captured in the first session were used 

for training and the images captured in the second session for testing. Thus, for each class, there are 

six training samples and six testing samples. PCA, LDA, LPP, LPCA, LLD, CMVM, LPMIP and 

the proposed MMDA are used for FKP feature extraction. In the PCA phase of LDA, LPP, LLD and 

MMDA, the number of principal components was set as 200. In LPP, the number of the nearest 

 PCA LDA ICA LPP LPCA LLD CMVM LPMIP Proposed 

Recognition rate 0.3374 0.6303 0.5202 0.4556 0.6444 0.7091 0.6859 0.6687 0.7303 



 
22 

 

neighbors is set as 5. After feature extraction, a nearest neighbor classifier with cosine distance is 

employed for classification. The maximal recognition rate of each method and the corresponding 

dimension are listed in Table 8. As on the face databases, we see that MMDA achieves the highest 

recognition rate. Fig. 6 shows the recognition rate curve versus the variation of the dimensions and 

the proposed method consistently outperforms over the other methods. 

 

4.4 Discussion 

From the above results, we can conclude that MMDA has good performance and surpasses the other 

competing methods. Each class lies on a manifold space and different classes may reside on 

different manifold spaces. MMDA simultaneously characterizes the sub-manifold information and 

multi-manifold information, which is important for classification. Both CMVM and LPMIP are 

multi-manifold methods. However, CMVM only uses the between-class scatter to characterize the 

multi-manifold information and it ignores the distribution information between sub-manifolds. 

LPMIP uses nonlocal scatter to characterize the multi-manifold information and but it ignores the 

class label information. Different training samples have different contributions to the mean of each 

class, which is explicitly considered in the proposed MMDA to characterize the sub-manifold 

information and multi-manifold information. Compared with LPP, CMVM and LPMIP, MMDA 

uses the class label information and does not need to choose the number of nearest neighbors. In 

LPP, CMVM and LPMIP, it is difficult to choose the suitable number of nearest neighbors in real 

applications, and class label information is not used. Compared to LDA, MMDA considers the 

contribution of each training sample to the class center, which is important to characterize the 

within-class scatter. In addition, MMDA considers the influence of the distances between class 

centers, which is not considered in LDA and CMVM. Experimental results on three benchmark face 
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databases and PolyU FKP database verify the effectiveness of MMDA, indicating that MMDA can 

obtain a robust subspace that approximates the intrinsic geometric structure of the image manifold. 

5 Conclusions 

Recently, many manifold learning based image feature extraction methods have been proposed. To 

model multi-manifolds for classification, it is important to uncover the embeddings corresponding 

to different manifolds and, at the same time, to make different embedding separated as much as 

possible in the final embedding space. To this end, we proposed the multi-manifold discriminant 

analysis (MMDA) for feature extraction and recognition. MMDA is based on graph embedded 

learning and is under the Fisher discriminant analysis framework. In MMDA, two graphs are 

constructed to characterize the within-class compactness and the between-class separability, which 

are corresponding to the within-class scatter matrix and between-class scatter matrix in Fisher LDA. 

The within-class graph characterizes the sub-manifold information of each class and the 

between-class graph characterizes the multi-manifold information of different classes. The 

experimental results on benchmark face databases (FERET, AR, ORL) and the PolyU FKP database 

showed that MMDA outperforms many representative and state-of-the-art subspace learning 

methods.  
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