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a b s t r a c t

Wrist pulse signal contains important information about the health status of a person and pulse signal
diagnosis has been employed in oriental medicine for thousands of years. In this research, a systematic
approach is proposed to analyze the computerized wrist pulse signals, with the focus placed on the
feature extraction and pattern classification. The wrist pulse signals are first collected and pre-processed.
Considering that a typical pulse signal is composed of periodically systolic and diastolic waves, a modified
Gaussian model is adopted to fit the pulse signal and the modeling parameters are then taken as features.
Consequently, a feature selection scheme is proposed to eliminate the tightly correlated features and
select the disease-sensitive ones. Finally, the selected features are fed to a Fuzzy C-Means (FCM) classifier
for pattern classification. The proposed approach is tested on a dataset which includes pulse signals from
100 healthy persons and 88 patients. The results demonstrate the effectiveness of the proposed approach
in computerized wrist pulse diagnosis.

© 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Pulse diagnosis has been successfully used for thousands of
years in oriental medicine [1–6]. In traditional pulse diagnosis,
practitioners use fingertips to feel the pulse beating at the mea-
suring position of the radial artery. Since the wrist pulse signals
contain vital information and can reflect the pathological changes
of a person’s body condition, the practitioners can then determine
the person’s health conditions. However, the accuracy of pulse diag-
nosis depends heavily on the practitioner’s skills and experience.
Different practitioners may not give identical results for the same
patient [2,3]. Therefore, it is necessary to develop computerized
pulse signal analysis techniques to standardize and objectify the
pulse diagnosis method.

The computerized pulse signal analysis has shown promises to
the modernization of traditional pulse diagnosis, such as the pulse
pattern reorganization, the arterial wave analysis and so on [7,8].
Generally speaking, computerized pulse signal diagnosis can be
divided into three stages: data collection, feature extraction and
pattern classification. In the first stage of our work, the pulse sig-
nals are collected using a Doppler ultrasound device and some
pre-processing of the collected pulse signals has been performed.
At the second stage, some diagnostic features that can reflect
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the characteristics of the measured pulse signals are extracted.
These features can be time-domain features (like Doppler param-
eters [9,10]), frequency-domain features extracted by the Fourier
transform [7] or time-frequency features extracted by the wavelet
transform [11–15]. By taking the extracted features as inputs, pat-
tern classification can be carried out at the third stage to classify
the signals into different groups, i.e. the healthy subjects or patients
with particular types of diseases. The pattern classification methods
adopted can be statistical methods, such as Support Vector Machine
(SVM) classifier [13,16] and Bayesian classifier [5], or artificial neu-
ral network (ANN) methods [17]. Although some of the existing
pulse signal diagnosis approaches have shown good results, the
effectiveness of these methods needs further assessment due to
the limited number of testing samples and the types of diseases.

This paper aims to establish a systematic approach to the com-
puterized pulse signal diagnosis, with the focus placed on feature
extraction and pattern classification. The collected wrist pulse sig-
nals are first denoised by the wavelet transform. To effectively and
reliably extract the features of the pulse signals, a two-term Gaus-
sian model is then adopted to fit the pulse signals. The reason
of using this model is because each period of a typical pulse sig-
nal is composed of a systolic wave and a diastolic wave, both of
which are bell-shaped. The obtained Gaussian models can provide
reliable and distinctive features of the wrist pulse signal, such as
the relative differences of the two waves with respect to ampli-
tude, phase and shape. Instead of directly using these features
for pattern classification, a two-step feature selection scheme is
performed. Firstly, the tightly correlated features are eliminated so
that the pattern dimension is reduced to ensure the efficiency of

1350-4533/$ – see front matter © 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.medengphy.2009.08.008



Author's personal copy

1284 Y. Chen et al. / Medical Engineering & Physics 31 (2009) 1283–1289

Fig. 1. Pulse signal collection using ultrasonic blood analyzer.

computation. Secondly, the disease-sensitive features, which can
best describe the symptoms and sings of disease, are selected by
using the training datasets to improve the classification perfor-
mance. These selected features are taken as the inputs to the Fuzzy
C-Means (FCM) classifier for pattern classification. In this paper, a
pulse signal dataset, which contains pulse signals from 100 healthy
persons and 88 patients, was established to validate the effective-
ness of the proposed approach.

The reminder of this paper is organized as follows. Section 2
describes the wrist pulse signal collection and pre-processing. A
modified Gaussian model is proposed in Section 3 to model pulse
signals and extract features. The feature selection scheme is also
presented in this section. Section 4 presents the FCM clustering
classification method to classify the pulse signals. Section 5 per-
forms extensive experiments to validate the proposed method.
Finally, the paper is concluded in Section 6.

2. Wrist pulse signal collection and pre-processing

In our work, a USB-based Doppler ultrasonic blood analyzer
(Edan Instruments, Inc.) is used to collect the wrist pulse signals
(see Fig. 1). Through an USB interface, the collected signals are
transmitted and stored in a PC for further processing and analy-
sis. The signal collection process includes three steps. First is to
find a rough location in the wrist. In traditional pulse diagnosis,
the practitioners usually use three fingertips (Index, Middle and
Ring fingers) to feel the pulse fluctuation on three positions, named
‘Cun’, ‘Guan’ and ‘Chi’, in a patient’s wrist [1,3]. Since there is only
one probe of the Doppler ultrasound device, we can only detect
the pulse fluctuation at one position. Hence the pulse signal at the
‘Guan’ position is detected because the fluctuation of pulse at this
position is bigger than other positions. The second step is to get
the most significant signal by moving the probe around the rough
location whilst changing the angle of the probe against the skin;
and finally, the wrist pulse signal can be recorded and saved in the
form of Doppler spectrograms.

These three steps are repeated several times to collect several
measurements of a subject so that the measurement error can
be reduced. Compared with detecting pulse signal by using the
pressure sensor, which is heavily interfered by the artery blood
flowing in the wrist, capturing pulse signal through ultrasound
scanning is more accurate by locating the probe directly on the sty-
loid processes. In addition, ultrasound scanning can provide new
information, which is not available by using the pressure sensor,
because it can reflect the deep radial artery changes beneath the
skin [18,19].

Fig. 2(a) shows the collected Doppler ultrasonic spectrogram
of a typical wrist pulse signal. Before extracting features, the
collected wrist pulse samples are pre-processed. First, the maxi-
mum velocity envelope of each spectrogram is extracted in order
to reduce dimension of the signal (see Fig. 2(b)). Afterward, the
low-frequency drift and high-frequency noise contained in the
maximum velocity envelopes should be removed without the
phase shift distortion. In this paper, both the low-frequency drift
and the high-frequency noise can be reduced simply by using a

7-level ‘db6’ wavelet transform [20]. By subtracting the 7th level
wavelet approximation coefficients, the low-frequency drift of the
waveform is eliminated. Similarly, the high-frequency noise can
be removed by subtracting the 1st level wavelet detail coefficients
from the waveform. The result of drift and noise removal is shown
in Fig. 2(c).

It can be seen from Fig. 2 that the wrist pulse signal is not a ran-
dom process but a cyclic wave with regularly occurring systolic and
diastolic waves, which is confirmed in [21]. In this study, a sampled
pulse signal is segmented into single-period waveforms for further
analysis. The procedures to extract each period are described as
follows (illustrated in Fig. 3):

1. Perform the Fourier transform to find out the base frequency,
denoted as f, of the signal. Then the base period T is calculated
as T = 1/f.

2. Detect the peak point of the pulse signal within the time interval
[0,T]. The obtained peak point, denoted as P1, is the maximum
point of the first period, and its corresponding time instant is t1.

3. After t1 is determined, we can find out the second peak point P2
within the time interval [t1 + (T/2), t1 + (3T/2)]. Its corresponding
time instant is denoted as t2. The time interval between the two
peak points P1 and P2 is calculated as T′ = t2 − t1.

4. Similarly, the next peak point P3 can be detected within the
time interval [t2 + (T′/2), t2 + (3T′/2)], and its corresponding time

Fig. 2. (a) A typical wrist pulse Doppler spectrogram, (b) the maximum velocity
envelope of this Doppler spectrogram, and (c) the wrist pulse signal after de-noising
and drift removal.
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Fig. 3. Illustration of the wrist pulse signal segmentation process.

instant is t3. It should be noted that T′ is used here instead of T.
The time interval between P2 and P3 is denoted as T′ = t3 − t2.

5. Repeat step 4 until all the peak points for the pulse signal are
detected. These peak points are denoted as Pi, i = 1,. . ., n.

6. Once the peak points are detected, we can search for the start
points on the left side of each peak point. On the left side of each
Pi (i = 2,. . ., n), find out the local minimum point (denoted as Vi)
which is nearest to the Pi. The corresponding time instant of Vi
is denoted as t′

i
.

As a result, each start point Vi of the pulse signal can be detected.
The pulse signal at each time interval [t′

i
, t′

i+1] (i = 2,. . ., n) consists
of two complete waves: a systolic wave and a diastolic wave. Thus
the pulse signal can be partitioned into multiple cycles according
to the start points (see Fig. 4 for examples).

3. Feature extraction and feature selection

3.1. A two-term Gaussian model

With the method described in Section 2, the wrist pulse signal
can be partitioned into several single-period waveforms for fur-
ther feature extraction. Fig. 5(a) shows one typical period of a wrist

Fig. 4. (a) Illustration of the start and peak points for a typical wrist pulse signal;
(b) a single-period waveform of the wrist pulse signal divided using the start point.

Fig. 5. Illustration of the decomposition of a single-period wrist pulse waveform.

pulse signal. A further examination of the waveform in Fig. 5(a)
reveals that this single-period wrist pulse signal can be seen as the
superimposition of two waves: a primary wave with higher ampli-
tude and a secondary wave with lower amplitude and a phase shift.
This distinctive characteristic is caused by the rhythmic contraction
and relaxation of the heart [22]. The primary wave, also called as
the systolic component, is generated when the left ventricle of the
heart is in contraction forcing blood into the aorta. The secondary
wave is due to the phenomenon of wave reflection, which is an echo
of the primary wave and usually occurring when the left ventricle
of the heart is in relaxation following systole. The primary wave
mainly contains information of the heart itself while the secondary
wave contains information of the reflection sites and the periphery
of the arterial system [22]. Moreover, the secondary wave tends to
increase the load to the heart and plays a major role in determining
the wrist pulse waveform patterns [23]. Therefore, how to extract
these two waves, particularly the secondary wave from the wrist
pulse signal is crucial for diagnosis.

Since both of the two waves are ‘bell-shaped’ curves with rel-
ative phase shift to each other, the pulse signal in Fig. 5(a) can be
expressed by a two-term Gaussian function with an offset:

f (x|A1, �1, �1, A2, �2, �2, d) = A1 ∗ e−((x−�1)/�1)2

+A2 ∗ e−((x−�2)/�2)2 + d (1)

where the primary wave and the secondary wave are extracted as
A1 ∗ e−((x−�1)/�1)2 + d and A2 ∗ e−((x−�2)/�2)2 + d, respectively (refer
to Fig. 5(b)). It can been seen from Eq. (1) that there exist seven coef-
ficients in the Gaussian model: A1, A2, �1, �2, �1, �2 and d. Among
them, A1 and A2 determine the amplitudes of the two waves, d is
the offset, �1 and �2 are the phases of the two waves, while �1 and
�2 determine the width of two bell-shaped waves.

These coefficients are obtained by using the nonlinear least
squares formulation to fit the Gaussian model to the wrist pulse
signal. For simplicity, we assume that the Gaussian model for data
fitting can be expressed as:

y = f (X, ˇ) + ε (2)

where y is an n-by-1wrist pulse signal, f is a function of ˇ and X. ˇ is
a parameter vector including the seven coefficients in the Gaussian
model. X is the n-by-m design matrix for the model. ε is an n-by-1
vector of errors.

The fitting process can then be determined as follows:
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Fig. 6. Gaussian model fitting parameters for a typical single-period waveform.

1. Initial estimate of each parameter. Based on our experimental
experience, some reasonable starting values of these parameters
are made.

2. Produce the fitted curve for the current set of coefficients. The
fitted response value ŷ is given by ŷ = f (X, ˇ) and involves the
calculation of the Jacobian of f(X, �), which is defined as a matrix
of partial derivatives taken with respect to the coefficients.

3. Adjust the coefficients and determine whether the fit improves.
The direction and magnitude of the adjustment depend on the
fitting algorithm. Some algorithms, such as trust-region [24],
Levenberg–Marquardt [25] and Gauss–Newton [26] can be the
options. In this study, trust-region algorithm is selected because
it can solve difficult nonlinear problems more efficiently than
the other algorithms.

4. Iterate the process by returning to step 2 until the fit reaches the
specified convergence criteria.

As an example, Fig. 6 shows an original wrist pulse signal in
a single-period and its Gaussian fitting result. It can be seen that
the fitted curve using the two-term Gaussian model is in good
agreement with the original signal.

Except for the above Gaussian parameters, the length of the
single-period waveform L is also calculated. After we separate
a wrist pulse signal into single periods, the length of each sin-
gle period can be determined (i.e. L is the number of points
between two consecutive start points Vi and Vi+1). To summarize,
the obtained parameters can be divided into the ones associated
with magnitude, like A1, A2 and d, and the ones associated with
time, like �1, �2, �1, �2 and L. These parameters are illustrated in
Fig. 6 as well.

By using the curve fitting technology, the models of the pri-
mary wave and secondary wave in the pulse signal can be obtained.
Obtaining parameters by Gaussian curve fitting has two advan-
tages. First, the noise contained in the original pulse signal can be
reduced. Second, the information contained in the primary wave
and the secondary wave can be obtained in a straightforward way.
Particularly, even when the primary wave and secondary wave
contained in a pulse signal cannot be easily distinguished either
because of noise or because of the intrinsic characteristic of the
pulse signal, this curve fitting using Gaussian model can still reliably
extract related parameters.

After the Gaussian model has been identified, the parameters
{Ai, �i, �i, L} (i = 1, 2), which represent the amplitude, phase and
shape information of the two waves as well as the length infor-

Table 1
Feature candidates for wrist pulse signals.

Relative parameters Parameter value

Ratio of the amplitude of the primary wave to the
amplitude of the secondary waves

A2/A1

Ratio of the phase of the primary wave to the phase of the
secondary waves

�2/�1

Ratio of the shape of the primary wave to the shape of the
secondary waves

�2/�1

Ratio of the phase of the primary wave to the length of a
single-period waveform

�1/L

Ratio of the phase of the secondary wave to the length of a
single-period waveform

�2/L

Ratio of the shape of the primary wave to the length of a
single-period waveform

�1/L

Ratio of the phase of the secondary wave to the length of a
single-period waveform

�2/L

mation, can be obtained. Generally, the relative values between
these two waves can provide more reliable information and there-
fore are taken as feature candidates. The seven relative values used
in this research are illustrated in Table 1. A feature vector, which
represents the characteristics of a single-period waveform, is then
constructed using these relative values.

3.2. Feature selection

In the previous section, we have used a Gaussian model to
extract a feature vector for a single-period of a wrist pulse sig-
nal. However, there may be some closely correlated parameters
in the feature vector and these parameters need to be eliminated.
Since a typical wrist pulse signal contains many periods, a ‘pool’ of
feature vectors, each corresponds to one period of the pulse sig-
nal, is obtained. The feature vectors for a typical pulse signal are
illustrated in Fig. 7. It can be seen that the feature will vary with
the period. The correlation coefficient matrix of these features is
shown in Table 2. It can be seen that there exist three tightly corre-
lated feature pairs: (�2/�1, �1/L), (�2/�1, �2/L) and (�2/L, �1/L). Since
these pairs of features provide similar information, using only one

Fig. 7. Variability of the Gaussian fitting parameters of a wrist pulse waveform.

Table 2
Cross-correlation coefficients for the features.

A2/A1 �2/�1 �2/�1 �1/L �2/L �1/L �2/L

A2/A1 1.00 0.16 0.19 −0.28 −0.39 −0.17 0.35
�2/�1 0.16 1.00 −0.25 −0.90 −0.33 0.36 −0.04
�2/�1 0.19 −0.25 1.00 0.02 −0.35 −0.30 0.86
�1/L −0.28 −0.90 0.02 1.00 0.79 −0.16 −0.13
�2/L −0.39 −0.33 −0.35 0.79 1.00 0.31 −0.30
�1/L −0.17 0.36 −0.30 −0.16 0.31 1.00 0.15
�2/L 0.35 −0.04 0.86 −0.13 −0.30 0.15 1.00



Author's personal copy

Y. Chen et al. / Medical Engineering & Physics 31 (2009) 1283–1289 1287

feature from each pair is enough for classification. The redundant
features, such as �1/L, �2/L and �2/L, can then be eliminated from
the feature vector.

So far a feature vector has been obtained which contains
no tightly correlated elements. However, the remaining ele-
ments in this feature vector are still subject to further selection.
Since the purpose of the study is for disease diagnosis, only the
disease-sensitive features are required. A statistical difference
based approach is used here to select the disease-sensitive fea-
tures. Assuming a training dataset is available which contains N1
wrist pulse signals from the healthy persons and N2 pulse sig-
nals from the patients. For a given feature ˛ as an example, a
group of this feature for the healthy person, denoted as {˛}H =
{{˛}H,1, {˛}H,2, . . . , {˛}H,N1

}, is established, where {˛}H,i (i = 1,. . .,
N1) is the features extracted from the ith healthy person. Similarly,
a group of this feature for patients with a certain decease is estab-
lished and is denoted as {˛}P = {{˛}P,1, {˛}P,2, . . . , {˛}P,N2

}, where
{˛}P,i (i = 1,. . ., N2) is the features extracted from the ith patients.
The statistical difference between these two groups can be calcu-
lated as:

statistical difference of ˛ = |{˛}H − {˛}P |
S{˛}H,{˛}P

(3)

where {˛}H and {˛}P are the means of {˛}H and {˛}P, respectively.
S{˛}H,{˛}P is defined as:

S{˛}H,{˛}P =
√

S2
1

N1
+ S2

2
N2

(4)

where S2
1 and S2

2 are the variances of {˛}H and {˛}P, respectively.
For each feature, its statistical difference between the healthy

persons and patients with a certain disease reflects the sensitivity
of this feature to the disease; therefore, the statistical difference
determines whether this feature should be selected. If the statistical
difference of a feature is relatively large, then this feature is a good
indictor for this disease and should be selected for classification.
Otherwise, the feature is not good enough and should not be used.

4. FCM clustering

The selected features are then used as inputs to the classifier
for further pattern classification, which is to determine from these
features that whether the pulse signals are from healthy persons or
from patients with certain disease. In this study, a FCM classifier is
adopted.

Clustering is a common technique for statistical data analysis. It
aims to cluster data points into clusters so that items in the same
class are as similar as possible and items in different classes are
as dissimilar as possible [27]. There are many algorithms for fuzzy
clustering, and the FCM is one of the most widely used ones [28].
In this study, after selecting the disease-sensitive features, we use
the FCM to make the pattern classification. The FCM is used in this
study due to it ability to classify data belonging to two or more
groups. Moreover, another aspect of the FCM is the use of member-
ship function, which means an object can belong to several clusters
at the same time but with different degrees. Such characteristic is
important for the disease diagnosis.

5. Experimental result

By collaborating with the Harbin 211 hospital (Harbin, Hei-
longjiang Province, China), we collected the wrist pulse signals
using a Doppler ultrasonic blood analyzer from both healthy
persons (100 samples) and patients with different diseases (88
samples). Half of these data, which are randomly selected, are used

Table 3
Gaussian fitting parameters for a healthy person (Group H), a pancreatitis patient
(Group P) and a DBU patient (Group DBU).

Gaussian fitting parameters A1 A2 �1 �2 �1 �2 L

Group H 130.4 44.6 15.8 50.3 8.0 9.6 90
Group P 85.7 34.7 17.0 41.5 6.7 26.6 120
Group DBU 110.2 27.8 13.8 45.4 8.7 18.7 63

Table 4
Mean cross-correlation coefficients for Group H.

A2/A1 �2/�1 �2/�1 �1/L �2/L �1/L �2/L

A2/A1 1.00 0.24 0.08 −0.38 −0.27 −0.34 −0.03
�2/�1 0.24 1.00 −0.41 −0.88 0.13 0.42 −0.23
�2/�1 0.08 −0.41 1.00 0.24 −0.40 −0.43 0.91
�1/L −0.38 −0.88 0.24 1.00 0.34 −0.19 0.15
�2/L −0.27 0.13 −0.40 0.34 1.00 0.46 −0.24
�1/L −0.34 0.42 −0.43 −0.19 0.46 1.00 −0.02
�2/L −0.03 −0.23 0.91 0.15 −0.24 −0.02 1.00

for the training purpose, and the remaining data are used for test-
ing. The testing dataset includes 50 signals from healthy persons
(Group H), 23 signals from patients with pancreatitis (Group P) and
21 signals from patients with Duodenal Bulb Ulcer (Group DBU).

As was described previously, these signals are first parti-
tioned into single-period waveforms. Then the modified Gaussian
model is used to fit each single-period waveform. As an exam-
ple, Fig. 8 illustrates three pulse signals (single-period), which
are from Group H, Group P and Group DBU, respectively, as
well as the corresponding fitting results using Gaussian mod-
els. The values of the Gaussian fitting parameters A1, A2, �1, �2,
�1, �2 and the length of each waveform L are calculated (see
Table 3).

As was discussed in Section 3.2, the cross-correlation analysis
is used to find out the tightly correlated features. Tables 4–6 show
the mean value of the cross-correlation coefficients for Group H
(Table 4), Group P (Table 5) and Group DBU (Table 6). All these
calculations are based on the training dataset. Two observations can
be reached from these tables: first, the magnitude related feature,
for example A2/A1, is not correlated with the time-relevant features,
such as �2/�1 and �2/�1; second, for all the three groups, two tightly
correlated pairs can be detected: (�2/�1, �1/L) and (�2/�1, �2/L).

As a result, two features can be eliminated because of the two
tightly correlated pairs. The resulted feature vector contains 5 fea-
tures: A2/A1, �2/�1, �2/�1, �2/L and �1/L. The statistical differences

Table 5
Mean cross-correlation coefficients for Group P.

A2/A1 �2/�1 �2/�1 �1/L �2/L �1/L �2/L

A2/A1 1.00 0.43 0.62 0.35 0.29 0.07 0.68
�2/�1 0.43 1.00 −0.29 0.89 0.22 0.37 0.85
�2/�1 0.62 −0.29 1.00 −0.43 −0.10 0.08 0.10
�1/L 0.35 0.89 −0.43 1.00 0.77 0.25 0.79
�2/L 0.29 0.22 −0.10 0.77 1.00 0.01 0.38
�1/L 0.07 0.37 0.08 0.25 0.01 1.00 0.33
�2/L 0.68 0.85 0.10 0.79 0.38 0.33 1.00

Table 6
Mean cross-correlation coefficients for Group DBU.

A2/A1 �2/�1 �2/�1 �1/L �2/L �1/L �2/L

A2/A1 1.00 −0.09 −0.10 0.18 0.24 −0.12 −0.06
�2/�1 −0.09 1.00 −0.14 −0.84 −0.39 0.47 −0.02
�2/�1 −0.10 −0.14 1.00 −0.30 −0.70 −0.85 0.94
�1/L 0.18 −0.84 −0.30 1.00 0.82 −0.08 −0.43
�2/L 0.24 −0.39 −0.70 0.82 1.00 0.41 −0.79
�1/L −0.12 0.47 −0.85 −0.08 0.41 1.00 −0.78
�2/L −0.06 −0.02 0.94 −0.43 −0.79 −0.78 1.00
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Fig. 8. Gaussian curve fitting results for (a) a healthy person, (b) a pancreatitis patient, and (c) a DBU patient, respectively, where the dots represent the single-period wrist
pulse waveform and the solid line is its Gaussian fitting result.

Table 7
The statistical differences of the selected features for the three groups.

Group H vs.
Group P

Group H vs.
Group DBU

Group P vs.
Group DBU

A2/A1 7.01 5.65 8.98
�2/�1 3.71 2.15 4.62
�2/�1 14.29 7.79 9.47
�2/L 8.64 8.61 10.36
�1/L 1.53 2.96 4.01

of the selected features are calculated and the results are show in
Table 7. Again, the calculation is based on the training dataset. It
can be seen that the feature �2/�1, which has the largest statistical
difference, is the best parameter to be used in order to distinguish
between Group H and Group P. Similarly, the other two features
�2/L and A2/A1 can also be selected to due to their relatively large

statistical difference for all these three groups. In conclusion, three
features (�2/�1, �2/L and A2/A1) with relatively large statistical dif-
ference for all the three groups are selected as the features for
classification.

The classification results on the testing dataset using the FCM
classifier are shown in Table 8. It can be seen that an accuracy of
94.5% is obtained in distinguishing the Group H and Group P using
feature �2/�1 alone, which means only 2 of the 50 healthy persons
and 2 of the 23 pancreatitis patients are misclassified. The classifi-
cation result for the healthy person and DBU patients is relatively
low, which confirms the previous results of statistical difference
in Table 7. By mixing all these three groups together, the accuracy
of the classification can still reach 85%, which is quite encouraging
because no previous work has been done in distinguishing more
than two groups. In Table 8, the classification results of the pro-
posed method are compared with the previous wavelet transform

Table 8
Classification result using FCM.

Sample class Testing samples Classification
results

Accuracy (%)
(Gaussian model)

Accuracy (%) (AR
model [18])

Accuracy (%) (WT
method [13])

Group H 50 73 48(2) 96.0 94.5 88.9 86.3 86.7 84.8
Group P 23 21(2) 91.3 80.6 80.5
Group H 50 71 42(8) 84.0 85.9 85.7 82.3 88.9 85.4
Group DBU 21 19(2) 90.4 74.3 77.1
Group P 23 44 21(2) 91.3 90.9 85.7 87.3 80.6 82.2
Group DBU 21 19(2) 90.4 88.9 83.7

All three groups
Group H 50 94 48(2) 84.0 85.1 86.0 78.9 82.4 71.7
Group DBU 21 21(2) 76.2 77.1 72.7
Group P 23 42(8) 95.7 73.5 60.0
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method [13] and the auto-regressive method [18]. It can be found
that the proposed method can provide a better classification accu-
racy (i.e. about 8% higher than the AR model for distinguishing
healthy person and patients with pancreatitis). This result indicates
that the proposed method has a great potential in pulse diagnosis
for the current situation.

6. Conclusion

The wrist pulse signal of a person contains important informa-
tion about the pathologic changes of the person’s body condition.
Extracting this information from the wrist pulse waveforms is
important for computerized pulse diagnosis. A modified Gaussian
model was proposed in this paper to extract useful features from
each single-period waveform of a wrist pulse signal. The features
were then selected by using the cross-correlation analysis and the
statistical difference calculation. The performance of the selected
parameters was evaluated using the established testing dataset,
including both healthy persons and patients. The experimental
results demonstrate that the proposed method performs well for
the current research: an accuracy of over 90% can be reached in
distinguishing the healthy person from the patients with some spe-
cific types of diseases. Moreover, an accuracy of over 85% can be
reached in distinguishing healthy persons from the mixed kinds of
diseases.
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