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Abstract：This paper presents a novel object tracking framework by joint registration and 

active contour segmentation (JRACS), which can robustly deal with the non-rigid shape 

changes of the target. The target region, which includes both foreground and background 

pixels, is implicitly represented by a level set. A Bhattacharyya similarity based metric is 

proposed to locate the region whose foreground and background distributions can best match 

those of the tracked target. Based on this metric, a tracking framework which consists of a 

registration stage and a segmentation stage is then established. The registration step roughly 

locates the target object by modeling its motion as an affine transformation, and the 

segmentation step refines the registration result and computes the true contour of the target. 

The robust tracking performance of the proposed JRACS method is demonstrated by real 

video sequences where the objects have clear non-rigid shape changes. 
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1. Introduction 

Visual tracking is an important yet challenging task in various computer vision applications. 

In the past decades many algorithms have been proposed for robust object tracking, aiming to 

overcome the difficulties arising from noises, occlusions, clutters, and changes in the 

foreground object and/or in the background environment [1-5]. In particular, how to design 

the trackers that can handle the target object shape (or contour) changes is one of the hottest 

topics of object tracking [6-15]. 

Because level set can deal with object topological changes seamlessly, many trackers aim 

to describe the motion change information of the object using the active contour method. 

Freedman and Zhang [11] located the best candidate region by matching object distributions 

using the Bhattacharyya similarity and Kullback-Leibler distance, respectively. Afterwards, 

they improved it by combining foreground matching flow and background mismatching flow, 

proposing the so-called the combination flow method [12]. However, both the methods in [11] 

and [12] are level set based image segmentation method with prior distribution. They often 

need many times of iterations to converge when the initial contour is far from the target true 

contour. 

On the other hand, some template (e.g., using a simple rectangle or an ellipse) based 

trackers [16-17] often perform well in real time under complex scenes, but they are difficult to 

track the target with complex contour. Methods in [18] and [19] track the target as a changing 

ellipse obtained by estimating the covariance matrix in scale and orientation. Yilmaz [8] made 

an attempt to deal with the scale and orientation changes of the target. He extended the 

traditional mean shift tracker [17] by using an asymmetric kernel (level set) to represent the 

target. Riklin-Raviv et al. [20] used projective transformation to segment an image by using a 
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single prior shape but without using any point correspondences. Recently, Chiverton et al. [21] 

proposed an online active contour based learning model, which consists of two components: a 

motion based bootstrapper to extract the target shape information from previous tracking 

results and a region based tracker to optimize the extracted shape by active contour. In 

summary, it is of high interest to develop a tracking method which can possess the advantages 

of both the template based trackers (e.g., having less iteration numbers for converge) and the 

segmentation based trackers (e.g., tracking the true contour of the target). 

To achieve the above mentioned goal, in this paper we propose a novel tracking 

framework to track the true contour change of the target. In the proposed method, the target 

region, including the foreground and background components, is represented by a level set. 

By using the Bhattacharyya similarity [22-24] as a measure for target matching, we locate the 

candidate target region such that its foreground distribution and background distribution are 

most similar to the user defined target model. A novel tracking algorithm via joint registration 

and active contour segmentation (JRACS) is then developed. The proposed JRACS consists 

of two stages. First, the registration procedure estimates the affine deformation of the target. 

This stage can be considered as a template based tracker, while it uses arbitrary shape (level 

set), instead of the simple rectangle or ellipse template, to represent the target. This makes the 

proposed method powerful to estimate non-rigid motion of the target. Second, the 

segmentation procedure refines the affine transformation estimated in the registration stage, 

and computes the target’s true shape accurately. Finally, on-line target appearance updating is 

used to remove tracking drift. Extensive experiments on typical videos validate the 

effectiveness of our methods. 
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The proposed method is partially inspired by the works in [11, 12, 16, 17]. However, 

different from mean-shift [16] and foreground flow [11] methods which perform only 

foreground matching, the proposed JRACS model matches both foreground and background. 

In addition, the classical mean-shift tracker considers the target motion as a translation 

transformation; the lately developed EM-shift [18] and SOAMST [19] methods track the 

target with a changing ellipse; methods in [11] and [12] are actually two image segmentation 

methods; in contrast, the proposed JRACS method considers the non-rigid arbitrary shape 

changes of the target object.  

The rest of this paper is organized as follows. Section 2 describes the target representation. 

Section 3 describes in detail the proposed JRACS method. Section 4 presents the 

implementation of the JRACS. Section 5 presents the experimental results and Section 6 

concludes the paper. 

 

2. Target Representation  

To track robustly the target object in the video sequence, we need to represent the target as 

robust as possible. The region where the target locates can be represented as an ellipse, a 

rectangle or an arbitrary contour. Once the region is fixed, there are various features that can 

be used to describe the target defined in it, such as color, edge and texture features, or the 

combination of them. In this paper, we select color histogram to model the target object 

because of its merits such as independence of scaling and rotation, robustness to partial 

occlusions, low computational cost, etc. Of course, when object and background differs much 

from each other on texture features, the texture histogram can also be used to represent the 

target. Follow the notation in [16], we denote by u the feature space of the object indicated by 

the user, denote by m the number of features, and define the foreground distribution q and 
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background distribution o as follows: 

  1, , 1
1

m

u uu m u
q q

 
 

q        (1) 

  1, , 1
1

m

u uu m u
o o

 
 

o               (2) 

To track the target object whose region is initialized in the first frame, in the subsequent 

frames we attempt to find the best candidate region under a certain metric. We use level set to 

represent the target region because of its flexibility in representing an arbitrary target contour. 

Let level set function  denote a candidate target. We use p() to stand for the distribution of 

foreground region 0, and use v()
 
to stand for the distribution of background region 

–d<<0, where threshold d is used to restrict the interested region into a small area. The two 

distributions p()
 
and v()

 
will match q and o, respectively, under certain metrics. 

Fig. 1 shows an example by using level set to represent the contour of a car. The region 

enclosed by the internal curve (in blue color) is the foreground, while the region enclosed 

between the internal and external (in red color) curves is the background. p() and v()
 
are 

respectively defined as follows: 

     11, ,
p = 1

m

u uuu m
p p


  

 (3) 

     11, ,
v = 1

m

u uuu m
v v


  

 (4) 

 

 
 

Figure 1: Target representation implicitly by using level set. 
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Let  *
, 1

x
f

f i i n 
and  *

, 1
x

b
b i i n 

be the pixels falling into the foreground part and 

background part, respectively. Next we define the foreground model and background model. 

The function  2: 1b R m   maps the pixel at location xi  into the bin  *x ib  in the 

quantified feature space. Then, the probability of the feature u=1, 2, …, m in the foreground 

model and background model are respectively calculated as 

 *
,
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1
x
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u i f
if

q b u
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
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where  is the Kronecker delta function. Normalized constants fn  and bn  are the numbers 

of foreground pixels and background pixels, which make 
1

1
m
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1
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
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Similarly, we compute foreground distribution and background distribution in the current 

candidate region  0d   as follows: 

      i
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u i
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

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                      
1
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
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where n is the number of pixels in the candidate region, the Heaviside function H() is used to 

select foreground region, and thus 1H() is employed to select background region. The 

normalization factors fA  and bA , making  
1

1
m

uu
p


   and  

1
1

m

uu
v


  , are 

derived as follows: 

  1
x

n

f ii
A H


    (9) 

   1
1 x

n

b ii
A H


    (10) 
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We select   1 2
1 arctan

2

x
H x

 
        

 as the Heaviside function in the level set 

because of its many advantages [25]. As shown in Fig. 2, the Heaviside function can also be 

regarded as a kernel function, like the Epanechnikov kernel or Gaussian kernel in the mean 

shift tracker [16]. 
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Figure 2: Heaviside function with =1.0. 

 

3. The joint registration and segmentation 

In the proposed method, the Bhattacharyya similarity is adopted for target matching. Based on 

this metric, we derive a registration formula and a segmentation formula. The registration 

formula is used to estimate the affine deformation of the target, and the segmentation formula 

is used to refine the registration results so that the contour of the target can be obtained. 

 
3.1 Matching metric 

Some recently proposed tracking methods achieve good results by constructing an online 

discriminative classifier using both the foreground and background features [26-28]. The 

combination flow method [12] also demonstrates that the background information is 

important to obtain good result for level set based tracking methods. Nonetheless, because 

both the foreground and background information of the target changes smoothly in most 

videos, the background information is also useful to estimate accurately the target contour 

change.   
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Our goal is to find a region in the current frame such that its foreground distribution p() 

and background distribution v() can best match the model foreground distribution q and the 

model background distribution o, respectively. There are many kinds of criteria [29] that can 

be used to compare the similarity of these distributions. In this paper, we adopt the 

Bhattacharyya similarity [22-24] because of its successful applications in object tracking. The 

Bhattacharyya coefficient is a divergence-type measure which has a straightforward geometric 

interpretation. It is the cosine of the angle between q and p() or between o and v(). The 

higher the Bhattacharyya coefficient between target model and candidate target model, the 

higher the similarity between them. In our model, since both the foreground and background 

are considered, we define the similarity distance measure as 

      1

m

u u u uu
E p q v o


       (11) 

where the weight   balances the contributions of foreground and background in the 

matching.  

 
3.2 Deformation estimation 

Deformation estimation is used to handle the shape change of the target. The template based 

trackers [16-19] usually consider the motion of the target as a translation transform or simple 

zooming change, but they encounter difficulties when the contour of the target presents large 

non-rigid change. On the other hand, although the segmentation based tracking methods can 

handle non-rigid motion, they usually require more time to converge and are prone to local 

minima. Therefore, our goal is to present a novel framework which can combine the 

advantages of the above two kinds of trackers. 

Let 0 be the initial position of the target in the current frame. The contour of the target 

can be obtained by letting 0=0. Thus, the two probabilities     0 0 1, ,
p u u m

p


  


 and 

    0 0 1, ,
v = u u m

v


 


 can be computed first. Suppose that  (>-d) is the next position of 
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the target, which is adjacent to 0. Similar to the derivation of classical mean shift tracker 

[16], by applying Taylor expansion around pu(0) and vu(0), we have 

       

     
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1 1 0

0
1 1 0
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u

u u u
u u u

q
E p q p

p

o
v o v

v


 

 

 
       

 
      

 

                    

(12) 

Furthermore, by substituting Eq. (7) and Eq. (8) into Eq. (12), we have 

      

     
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E p q w H
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v o w H
A



 

 

 
      

 
 

     
 

 

 
             (13) 

where 

   ,
1 0

x
m

u
f i i

u u

q
w b u

p




     (14) 

   ,
1 0

x
m

u
b i i

u u

o
w b u

v




     (15) 

It is worth noting that the original mean-shift tracking method [16] considers the motion 

of the target as purely translation, and the weight ,f iw  plays a key role in finding the new 

centroid of the target. It indicates the possibility that pixel xi  belongs to the foreground. In 

our method, ,f iw  plays the similar role. Similarly, ,b iw  indicates the possibility that pixel 

xi  belongs to the background. As we will see later, ,f iw  and ,b iw  will guide the registration 

and segmentation of level set . 

Maximizing Eq. (13) is equivalent to maximizing the Bhattacharyya coefficient defined in 

Eq. (11), which is a function about location x and level set function . Next, we derive the 

formulas for optimizing location and contour, respectively. 
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3.2.1 Registration. We model the motion of the target as an affine transformation. To this end, 

we introduce a warp  x=w x, T  [30] into Eq. (13) to model and estimate the affine 

transformation of the target: 

  1 3 5

2 4 6

1
x=w x,

1
1

x
p p p

T y
p p p

 
        

 

 (16) 

where the column vector  '

1 2 3 4 5 6, , , , ,T p p p p p p   has 6 parameters to characterize the 

pose change of the object, and  ,x y  is the column and row coordinate at pixel x . 

Substituting Eq. (16) into Eq. (13) and omitting the terms that are not a function of T , 

we have  

          , .
1 1

1 1
w x , 1 w x ,

2 2

n n

i f i i b i
i if b

E H T w H T w
A A


 

          (17) 

T  is the incremental warp of the shape kernel represented implicitly by level set function 

 . When T  tends to 0, the affine deformation estimation will converge. 

In order for the convenience to derive T , we rewrite    w x,H T   and 

   1 w x,H T    as     2

w x,H T   and     2

1 w x,H T   , 

respectively [9]. The Taylor expression around T  leads to 

      
  

2

2 1
w x, J

2 x
H T H T

H

 
      
  

   (18) 

      
  

 
2

2 1
1 w x, 1 -J

2 x
H T H T

H

 
        
  

 (19) 

where 

     J x x
x

H W W

T T
   

    
   

 (20) 
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      x x , xx y        (21) 

  0 0 1 0x,

0 0 0 1

x yW T

x yT

   
    

 (22) 

By differentiating Eq. (17) with respect to T , we have 

      

1

, ,
, ,

1 1

1 1 1 1
J J J

2 x 2 1 x

n n
f i b i T T

i i f i b i i
i if b f bi i

w w
T w w

A A A AH H






 

    
                 
 

 (23) 

The level set function  can then be updated by using Eq. (16). Note that the denominator 

  xiH   and   1 xiH   in Eq. (23) will never be zero with the used Heaviside 

function   1 2
1 arctan

2

x
H x

 
          

and each x i  corresponds to a different Ji  according 

to Eq. (20). 

This registration step by solving an affine transformation problem can be viewed as a 

template based tracking process. It iteratively estimates the shape change until convergence. 

For the majority of target shape change types, the affine transformation can usually describe 

them well. 

 
3.2.2 Segmentation. The affine transformation tracker proposed in Section 3.2.1 can estimate 

the non-rigid motion better than traditional template based trackers, such as mean shift tracker 

[16] and the EM-shift tracker [18], but it cannot extract the contour of the target accurately. 

Therefore we propose to refine the registration result by using a novel segmentation based 

tracking procedure. 

 By viewing Eq. (13) as the function of  xi , we optimize it with respect to  xi  

by calculus of variations [31]. The first variation of the functional is 

  
     , ,

x 1 1 1
x

x 2
i

i f i b i
i f b

E
w w

A A
 

  
      

 (24) 
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where       2 2x xi i        is the derivative of the smoothed Heaviside step 

function, i.e., a smoothed Dirac delta function.   xi   acts on all level curves, and it 

tends to compute a global minimization [25]. 

We seek 
  
 

x
0

x
i

i

E 



 by carrying out the steepest-ascent method using the following 

gradient flow: 

     
 

x , x

x
i i

i

E t E

t

   


 
 (25) 

Eq. (24) is actually a segmentation based active contour tracker, where the sign of 

, ,

1 1
f i b i

f b

w w
A A

  determines if the pixel ix  belongs to foreground or background. Because 

the contour obtained by the registration step is very close to the true edge of the target, we 

evolve Eq. (24) by using the result from the registration step as the initial curve. 

 

3.2.3 Target update. In dynamic scenes, the illumination and viewpoint might change and the 

object might be occluded, and thus the foreground distribution and background distribution of 

the target often change gradually. Since our method can estimate the shape deformation 

accurately, the target model updating becomes easy and this can prevent effectively the target 

from drifting. Our updating method is very simple: 

 
 

t

t

q_update = q+ 1- p

o_update = o+ 1- v

 
 
 

  
 (26) 

where tp  and tv  are respectively the foreground and background model at time t. In our 

experiments, we set , [0.7, 0.95]    by experience. 
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4. Implementation 

In this section, we present the numerical implementation of the proposed algorithm in detail. 

Let h be the step length and obviously h=1 in image grid. Let  ,i ix y  be the spatial 

coordinate corresponding to pixel xi . For convenience, we represent  xi  as  ,i ix y  

in another form.   xi 
 
in Eq. (20), i.e.,  ,i ix y , is approximated by the center 

difference scheme as follows: 

            1 1
, 1, 1, ; , 1 , 1

2 2i i i i i i i i i ix y x y x y x y x y
            

 (27)
 

For the registration step, we first compute J in Eq. (20) to estimate the affine transformation 

vector T  in Eq. (23), where  '

1 2 3 4 5 6, , , , ,T p p p p p p   is a 61 vector. In Eq. (20), 

  x   is a scalar,   x i   is 1 2  vector, and 
W

T




 is a 2 6  matrix. So Ji  

which corresponds to each xi is a 1 6  vector and J JT
i i  is a 6 6  matrix. Thus we can get 

T  by Eq. (23) after computing J JT
i i  and J T

i . In practice, we can only use those pixels 

around zero level set to estimate T , and this can speed up the estimation of T . 

For segmentation, Eq. (25) can be implemented by using a numerical scheme on a discrete 

grid. Let t  be the time step. Then we compute 1l  by the following discretization and 

linearization of Eq. (25), 

      
1

, ,

, , 1 1 1
,

2
b

l l
i i i i l l l

i i f i b il l
f

x y x y
x y w w

t A A
 

   
      

 (28) 

Eq. (28) can be rewritten as
 

      1
, ,

1 1 1
, , ,

2
b

l l l l l
i i i i i i f i b il l

f

x y x y t x y w w
A A

 
 

       
 

 (29) 

The convergence of Eq. (29) is guaranteed by 
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   , ,
1, ,

1 1 1
1 max ,

2
b

l l
i i f i b il li n

f

t x y w w
A A

 


 
     

 

l  according to the Courant-Friedrichs-Lewy 

step-size restriction [32]. The level set is represented by a signed distance function and its 

re-initialization can be solved efficiently by using the method proposed in [33]. 

In general, the procedures of JRACS can be summarized as follows. 

i)  Calculate the foreground model q and background model o. 

ii)  Initialize the position 0 of the candidate region in the current frame. 

iii)  Calculate the foreground candidate p(0) and background candidate v(0). 

iv)  Initialize the iteration number 0k   for registration. 

v)  Calculate T  by using Eq. (23). 

vi) Let , 1e T k k    . Set the error threshold  and the maximum iteration 

number N. If ande k N  , then update 0 by using (16) and go to step iii. 

Otherwise, registration converges and then executes segmentation. 

vii) Refine the registration result by using Eq. (25). 

viii) Update the foreground model and background model by using Eq. (26). 

 

5. Experimental results and discussions 

Since the proposed JRACS is inspired by both template based tracking methods and 

segmentation based tracking methods, we evaluate it in comparison with the combination 

flow algorithm [12], which is a representative and state-of-the-art segmentation-based 

tracking method, and the EM-shift algorithm2 [18], which improves the template based mean 

shift tracker by estimating iteratively the scale and orientation changes of the target. In 

addition, the recently developed SOAMST algorithm [19], which is robust to scale and 

orientation changes of the target, and the tracking method developed by Chiverton et al. [21], 

                                                        
2 We thank Dr. Zivkovic for sharing the code in [35]. 
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which consists of a bootstrap stage and an adaptive shape memory based active contour stage, 

are also employed in the experiment. Note that the results of Chiveton et al.’s method were 

obtained by using only the active tracking part without the bootstrap stage3 for a fair 

comparison with the other methods which use a non-automatic (manual) initialization.  

In the JRACS method, there are several parameters to set. First, d (>-d) is used to select 

the size of background region. In our experiments, the size of background region is set 

approximately that of the foreground region. Second,   is used to balance the foreground 

matching score and background matching score. In the experiments, we set b fA A  , and 

then , ,

1 1
f i b i

f b

w w
A A

  can be rewritten as  , ,

1
f i b i

f

w w
A

 , in which , ,f i b iw w  will guide 

the registration and segmentation and 1 fA  is a normalization constant. b fA A   implies 

that some foreground pixels will be considered as the background. Third, a big   in the 

Heaviside function can speed up the convergence of registration and segmentation process. 

We select [1, 5]   and set the foreground and background distribution update parameters 

  and   in Eq. (25) as 0.9 in our experiments. 

We first use an example to illustrate the registration and the segmentation stages of the 

proposed JRACS method. Then we present the experimental results on five real video 

sequences. The algorithms are implemented in the environment of MATLAB 7.10 and run on 

a PC with Intel Core i7 CPU (2.93 GHZ) and 8GB RAM. The RGB color model is selected as 

the feature space to represent the target. The videos of all the tracking results in the following 

experiments can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/JRACS.htm. 

 

5.1 An example of the proposed JRACS method 

In this section, we demonstrate the proposed JRACS method by an example of hand, which 

                                                        
3 We thank Dr. Chiverton for providing the experimental results of their tracking algorithm. 



16 
 

shows obvious non-rigid motion. We first demonstrate the registration performance of JRACS, 

i.e., estimating the affine transformation of the hand, in Figure 3. Due to the high flexibility of 

human hand, it is not accurate to represent the hand shape by using an ellipse template [18, 

19], while the level set can be used to accurately represent the hand shape. Figure 3 (b) shows 

the initial position of level set in a certain frame and it can be clearly seen that the target has 

large non-rigid deformation. Figures 3 (c)-(f) illustrate the registration process of JRACS. It 

can be seen that although there is a significant change of scale and orientation, the JRACS can 

still estimate the hand shape well. The combination flow method [12] uses 180 iterations 

(about 1.95s) to convergence, while JRACS uses only 8 iterations to converge (about 0.13s) 

since it matches the template quickly by estimating the affine transformation of the hand. 

It can also be seen from Figure 3 that although the registration process in JRACS can 

estimate the general deformation of hand, the boundary is not very accurate. Therefore we 

further perform segmentation to refine the registration result for a more accurate hand shape 

contour. The segmentation process is illustrated in Figure 4. 

 
 

   
(a)                      (b)                    (c) 

   
(d)                     (e)                    (f) 

 
Figure 3: The registration process by the proposed JRACS method. (a) The tracked target (including 
foreground and background). (b) Initial level set location in the current frame. (c)-(f) The registration 
process and the final results. 
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(a)                    (b)                     (c) 

 
Figure 4: The segmentation process in the proposed JRACS method. 

 

 
5.2 Experimental results on real video sequences 

We then use several real video sequences to validate the proposed JRACS method. Because 

Chiverton et al.’s method [21] fails to track the sequences of car, head and outdoor face, we 

only show its tracking results on the hand and fish sequences in the following figures. 

The first one is a car sequence, whose scale grows gradually. In this sequence, some 

features of the car present in the background might disturb the estimation of scale and 

orientation. As can be seen in Figure 5(d), the JRACS tracks the target over the whole 

sequence with good scale estimation, while the combination flow algorithm (refer to Figure 

5(c)) does not perform well because the main features of background are similar to some 

features of the car, which disturbs the evolution of the level set. The EM-shift (Figure 5(a)) 

and SOAMST (Figure 5(b)) methods, which are template based trackers, cannot capture the 

true contour of the car. 
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(a) EM-shift 

    
(b) SOAMST 

    
(c) Combination flow 

    
(d) JRACS 

 
Figure 5: Tracking results on the car sequence with large scale changes by the competing methods. 

 
 
 

The second sequence was the one used in [36]. The target is an indoor face that moves 

quickly. In this sequence, the face shows some complex changes of viewpoint, background 

and pose. Figure 6 illustrates the tracking results. The skin color of neck (which is part of the 

background) is close to that of the face. Because the combination flow method considers the 

dissimilarity between the background and target, the neck of the man is wrongly regarded as a 

part of the target, leading to inaccurate tracking results. On the other hand, the proposed 

JRACS method simultaneously matches foreground and background of the target, and it 

performs much better in tracking the target face. Because of the big pose change of the face, 

the EM-shift method and SOAMST method do not perform well. 
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(a) EM-shift 

    
(b) SOAMST 

    
(c) Combination flow 

    
(d) JRACS 

 
Figure 6: Tracking results on the indoor face sequence with obvious viewpoint and background 
changes by the competing methods. 
 
 
 

In the third sequence, our goal is to track a moving hand with large non-rigid deformation 

(which was used in Section 5.1). In this hand sequence, the fast stretching and clenching 

actions and the disturbance of some background features raise many difficulties to estimate 

the contour changes of hand. In the proposed JRACS method, the registration step estimates 

rigid deformation of the target, and then the segmentation step makes the contour of the target 

complete. The tracking results in Figure 7 show that JRACS performs much better than the 

combination flow method on this sequence. We can see that EM-shift and SOAMST are hard 

to handle the complex shape change of the target, while the active contour based tracking 

method in [21] does not perform well. 
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(a) EM-shift 

    
(b) SOAMST 

    
(c) Combination flow 

    
(d) Chiverton et al.’s method 

    
(e) JRACS 

 
Figure 7: Tracking results on the hand sequence with obvious non-rigid changes. (Note that the result 
of Chiveton et al.’s method was obtained by the active tracking part only.) 

 
 

The fourth video is an outdoor face sequence which has obvious viewpoint and 

illumination changes and occlusion. Figure 8 shows the experimental results by the four 

tracking methods. Because of the illumination and viewpoint changes, segmentation based 

combination flow algorithm fails to track after the 60th frame. The template based trackers 

such as EM-Shift and SOAMST perform better than combination flow. For the proposed 

JRACS method, the registration step of it estimates the non-rigid deformation of the object by 

affine transformation and overcomes effectively the effect of the illumination and viewpoint 

change, and then the segmentation step further optimizes the object area by active contour. 
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Note that in Figure 8 we only show the selected results from the first 60 frames for the 

combination flow method because it fails to track after the 60th frame. For EM-Shift, 

SOAMST and JRACS method, we show the representative experimental results selected from 

all the 380 frames. 

The last experiment is on a fish sequence, where the motion and shape of the fish are very 

irregular, and there are similar objects appearing around the target object. The experimental 

results in Figure 9 show that our method performs well even when a similar fish is presented 

near the target fish. However, the combination flow method cannot handle it well because it 

considers another fish as the desired target as well. Meanwhile, the active contour stage of the 

tracking method in [21] does not estimate the contour change of the target well. 

 

    
(a) EM-shift 

    
(b) SOAMST 

    
 (c) Combination flow 

    
(d) JRACS 

 
Figure 8: Tracking results on the outdoor face sequence with illumination and viewpoint changes and 
occlusion. 
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(a) EM-shift 

    
(b) SOAMST 

    
(c) Combination flow 

 

    
(d) Chiverton et al.’s method 

    
(e) JRACS 

 
Figure 9: Tracking results on fish sequence with obvious non-rigid changes and similar objects. (Note 
that the result of Chiveton et al.’s method was obtained by the active tracking part only.) 
 

 

In order to compare quantitatively the proposed JRACS method with the other four 

methods, we manually labeled the ground truth contours of the target objects in the five 

videos, and evaluate the tracking performance by applying the overlap index (OI) [34]: 

G M

G M

A A
OI

A A





 (30) 

where AG represents the ground truth area of the interesting object and AM represents the area 

of tracking outputs. A big OI generally implies that the tracking method has good localization 
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accuracies. Table 1 lists the OI values of the five tracking methods on the five video 

sequences. Because the tracking method in [21] fails to track the car and two face sequences, 

we only show its target localization accuracies on the hand and fish sequences. A similar case 

arises for the combination flow method to handle the outdoor face sequence. The proposed 

JRACS method achieves the highest OI among the five tracking methods. 

 

Table 1: The target localization accuracies for the five tracking methods according to OI. (Note that 
the result of Chiveton et al.’s method was obtained by the active tracking part only.) 
 

Method Car Face (indoor) Hand Fish Face (outdoor) 

EM-shift [18] 57% 45% 55% 63% 25% 

SOAMST [19] 60% 40% 66% 70% 48% 

Combination flow [12] 64% 66% 81% 71% - 

Chiverton et al.’s method [21] - - 19% 50% - 

JRACS 75% 67% 82% 82% 69% 
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Figure 10: The iteration number by the proposed JRACS on the indoor face sequence in registration 
stage. 

 

The proposed JRACS algorithm has a registration stage and a segmentation stage. By 

many experiments, we found that the registration stage needs 3~5 iterations in average to 

converge for small deformation, but more iterations are necessary for severe deformation. 

Figure 10 plots the number of iterations of the proposed algorithm on the face sequence for 

each frame. The average number of iteration is 3.8. After estimating the affine transformation 
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of the target in the registration step, the segmentation step furthermore refines the result of 

registration in order to better approximate the true shape of the target. Theoretically, the more 

iterations used in the segmentation stage, the more accurate result can be obtained, but it may 

consume more computational time. According to our experiments, 5~15 iterations are 

appropriate. For the combination flow method, it will require about 35 iterations in average 

because segmentation-based tracking methods often require more iterations than template 

matching based tracking methods. 

 
 Table 2: Average speed for the four tracking methods (frames/per second) 

Method Car Face (indoor) Hand Fish Face (outdoor) 

Combination flow [12] 7 4 2 3 - 

EM-shift [18] 49 31 21 25 22 

SOAMST [19] 57 38 30 29 31 

JRACS 32 22 15 19 17 

 

In MATLAB environment, the tracking speed of JRACS is faster than foreground 

flowing and the combining flowing methods reported in [11, 12]. Certainly, JRACS is slower 

than EM-shift and SOAMST because the time complexity of estimating affine transformation 

(in JRACS) is higher than that of estimating covariance matrix (in EM-Shift and SOAMST). 

Table 2 compares the average tracking speed for the combination flow, EM-shift, SOAMST 

and JRASC methods4. 

The proposed JRACS method combines the advantages of the segmentation based 

tracker and the template based tracker. The registration step estimates adaptively the target 

shape change by using affine transformation based on level set method. Because the 

registration result is close to the true contour of the object, the segmentation step can easily 

optimize it and get accurate object contour. Actually, the work by Chiverton et al [21] shares 

this merit with our work.  

                                                        
4 Note that the speed of Chiverton et al.’s method [21] is not listed here because the results of this algorithm 

were run on a different PC and software system. 
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6. Conclusions 

This paper presented a novel tracking framework with joint registration and active contour 

segmentation (JRACS). The tracked target was implicitly represented by using a level set, 

which can handle seamlessly the topological changes of the target. The goal is to find a 

candidate region, whose foreground distribution and background distribution can best match 

the template foreground and background based on the Bhattacharyya similarity. A joint 

registration and segmentation scheme was developed, which first estimates the rigid 

deformation of the object and then refines the registration result.  

The advantages of JRACS come from the two key weights, which indicate the possibility 

of a pixel in the candidate region belonging to foreground or background, and guide the 

evolution process of registration and segmentation. The good performance of JRACS was 

demonstrated by representative testing videos where the targets show large scale non-rigid 

shape changes. Experimental results validated that JRACS overcomes some limitations of 

previous works, including EM-shift tracker, SOAMST tracker and the combination flow 

tracker, and JRACS can be considered as an extension of them. In the future, we will consider 

how to extend JRACS by integrating the spatial information into the target representation. 
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