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Abstract

With the rapid development of digital imaging and commuti@atechnologies, image set based
face recognition (ISFR) is becoming increasingly impott&mne key issue of ISFR is how to effectively
and efficiently represent the query face image set by usiagy#ilery face image sets. The set-to-set
distance based methods ignore the relationship betwedagrygakts, while representing the query set
images individually over the gallery sets ignores the dati@n between query set images. In this paper,
we propose a novel image set based collaborative repréisengamd classification method for ISFR. By
modeling the query set as a convex or regularized hull, weesgmt this hull collaboratively over all the
gallery sets. With the resolved representation coeffisiethie distance between the query set and each
gallery set can then be calculated for classification. Tlepgsed model naturally and effectively extends
the image based collaborative representation to an imadeased one, and our extensive experiments
on benchmark ISFR databases show the superiority of theopesbmethod to state-of-the-art ISFR

methods under different set sizes in terms of both recagnitate and efficiency.
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I. INTRODUCTION

Image set based classification has been increasingly eetployface recognition_[1], [2],
[3], [4l], [5], [B], [7], [8], [2] and object categorization1l0], [11] in recent years. Due to the
rapid development of digital imaging and communicatiorhteques, now image sets can be
easily collected from multi-view images using multiple camas [10], long term observations
[6], personal albums and news pictures![12], etc. Meanwinbage set based face recognition
(ISFR) has shown superior performance to single image bfaeedrecognition since the many
sample images in the gallery set can convey more withirscl@siations of the subject[[7].
One special case of ISFR is video based face recognitiorgchadollects face image sets from
consecutive video sequences [1],1[13],1[14]. Similar to Wk in [5], [7], in this paper we
focus on the general case of ISFR without considering thepdeah relationship of samples in
each set.

The key issues in image set based classification include banotel a set and consequently
how to compute the distance/similarity between query arlkbryasets. Researchers have pro-
posed parametric and non-parametric approaches for imeigaaeling. Parametric modeling
methods model each set as a parametric distribution, andKulleack-Leibler divergence to
measure the similarity between the distributions [2], [6he disadvantage of parametric set
modeling lies in the difficulty of parameter estimation, aimdnay fail when the estimated
parametric model does not fit well the real gallery and quetg £10], [4], [7].

Many non-parametric set modeling methods have also begroged, including subspace [10],
[1], [15], manifold [16], [17], [4], [11], [18], affine hullb], [7], convex hull [5], and covariance
matrix based ones [18], [19], [20]. The method[in![10] emglagnonical correlation to measure
the similarity between two sets. A projection matrix is ezt by maximizing the canonical
correlations of within-class sets while minimizing the cartal correlations of between-class
sets. The methods in [21] use manifold to model an image sktlafine a manifold-to-manifold
distance (MMD) for set matching. MMD models each image sed ast of local subspaces and
the distance between two image sets is defined as a weighéedgavof pairwise subspace to
subspace distance. As MMD is a non-discriminative meadvenifold Discriminant Analysis
(MDA) is proposed to learn an embedding space by maximizirgifald margin [11]. The

performance of subspace and manifold based methods magd#egruch when the set has a



small sample size but big data variations [7],/[18]. In affimél and convex hull based methods
[5], [7], the between-set distance is defined as the distbeteeen the two closest points of
the two sets. When convex hull is used, the set to set distaneguivalent to the nearest point
problem in SVM [22]. In [23], a method called sparse appraded nearest points (SANP) is
proposed to measure the dissimilarity between two image $etreduce the model complexity
of SANP, a reduced model, which is called regularized négremts (RNP), is proposed by
modeling each image set as a regularized hull [24]. Howetlierclosest points based methods
[5], [7], [25], [24] rely highly on the location of each inddual sample in the set, and the
model fitting can be heavily deteriorated by outliers! [18].[18], an image set is represented
by a covariance matrix and a Riemannian kernel function f;éé to measure the similarity
between two image sets by a mapping from the Riemannian oldnd a Euclidean space. With
the kernel function between two image sets, traditionalréisinant learning methods, e.g., linear
discriminative analysid [26], partial least squares [X&rnel machines, can be used for image
set classification [19], [20]. The disadvantages of covenéamatrix based methods include the
computational complexity of eigen-decomposition of syrtmogositive-definite (SPD) matrices
and the curse of dimensionality with limited number of traghsets.

No matter how the set is modeled, in almost all the previousksv@ilQ], [1], [16€], [17], [4],
[11], [18], [5], [7], [24], the query set is compared to eadtitee gallery sets separately, and then
classified to the class closest to it. Such a classificatiberse does not consider the correlation
between gallery sets, like the nearest neighbor or neavdsipace classifier in single image
based face recognition. In recent years, the sparse repagisa based classification (SRC) [28]
has shown interesting results in image based face recogn@RC represents a query face as
a sparse linear combination of samples from all classes,ctassifies it to the class which
has the minimal representation residual to it. Though SR@hasizes much on the role of
l;-norm sparsity of representation coefficients, it has bdewa in [29] that the collaborative
representation mechanism (i.e., using samples from adlsel&to collaboratively represent the
guery image) is more important to the success of SRC. Thakedacollaborative representation
based classification (CRC) with-regularization leads to similar results to SRC but with muc
lower computational cost [29]. In [30], feature weights exteoduced to the representation model
to penalize pixels with large error so that the model is rollasoutliers. Moreover, a kernel

sparse representation model is proposed for face recogrity mapping features to a high



dimensional Reproducing Kernel Hilbert Space (RKHS), wHiarther improves the recognition
accuracy[[31],[[32]. Similarly, a robust kernel represéintamodel is proposed with iteratively
reweighted algorithms [33].

One may apply SRC/CRC to ISFR by representing each imageeoqjulery set over all the
gallery sets, and then using the average or minimal reptasem residual of the query set images
for classification. However, such a scheme does not expieitorrelation and distinctiveness of
sample images in the query set. If the average represamtasidual is used for classification,
the discrimination of representation residuals by diffiéidasses will be reduced; if the minimal
representation residual is used, the classification cdersiubm the outlier images in the query
set. In addition, there are redundancies in an image set.rdthendancies will lead to great

storage burden and computational complexity, and detggdhe recognition performance.
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Fig. 1. Image set based collaborative representation assification (ISCRC).

In this paper, we propose a novel image set based collaberapresentation and classification
(ISCRC) approach for ISFR, as illustrated in Hig§. 1. The ysat, denoted by (each column
of Y is an image in the set) is modeled as a ik with the sum of coefficients ia being 1.
Let X,k =1,2,..., K, be a gallery set. We then propose a collaborative reprasamtaased set
(i.e.,Y)tosets (i.,e. X = [ X1, ..., X, ..., X]) distance (CRSSD for short); that is, we represent
the hullY a over the gallery setX as X b, whereb is a coefficient vector. Consequently, we can
classify the query seY by checking which gallery set has the minimal representatesidual
to the hullY a. To get a stable solution to CRSSD, regularizations can lpos®d ona andb.
In the proposed ISCRC, the gallery s&Xg can be compressed to a smaller size to remove the



redundancy so that the time complexity of ISCRC can be mudhaoed without sacrificing the
recognition rate. Our experiments on three benchmark IS&RBbases show that the proposed
ISCRC is superior to state-of-the-art methods in terms ¢ lbecognition rate and efficiency.

This paper is organized as follows. Sectloh Il discussesetaidthe proposed CRSSD and
ISCRC methods. Sectian]lll presents the regularized hideddSCRC, followed by the convex
hull based ISCRC in Sectidn 1V. Sectign V conducts experimemd Section VI gives our
conclusions. The main abbreviations used in the developofesur method are summarized in
Table[l.

TABLE |

THE MAIN ABBREVIATIONS USED IN THIS PAPER

ISFR image set based face recognition
SRC sparse representation based classification
CRC collaborative representation based classification
collaborative representation based
CRSSD _
set to sets distance
image set based collaborative
ISCRC _ e
representation and classification
RH-ISCRC regularized hull based ISCRC
KCH-ISCRC kernelized convex hull based ISCRC

[I. COLLABORATIVE REPRESENTATION BASED SET TO SETS DISTANCE

We first introduce the hull based set to set distance In |1+4 then propose the collaborative
representation based set to sets distance (CRSSD) ih Ili @RSSD, the image set based
collaborative representation and classification (ISCR&)eme can be naturally proposed. In

[M=Cland[II-D, the convex hull and regularized hull based GRSare respectively presented.

A. Hull based set to set distance

In image set based classification, compared to the paramatideling of image set, non-

parametric modeling does not impose assumptions on thedisttégbution and inherits many



favorable properties [10], [7],.[18]. One simple non-paedint set modeling approach is the hull
based modeling [5]/17], which models a set as the linear ¢oation of its samples. Given a
sample se¥ = {yi, ..., Yi, ..., Yn}, ¥s € R%, the hull of setY is defined asH (Y) = {3 a;v;}.

Usually, > a; = 1 is required and the coefficients are required to be bounded:

HY)={>Yayi|>Xa=10<a, <7} (1)

If 7 =1, H(Y) is a convex hull[[34]. Ifr < 1, H(Y) is a reduced convex hull [22]. For the
convenience of expression, in the following the developmencall both the cases convex hull.
By modeling a set as a convex hull, the distance betweel'set{y, ..., y;, ..., y», } and set

Z ={z,...,2j,..., Zn,} Can be defined as follows:

ming s || asyi — b2

st.>a,=10<aq; <71 (2)

Ybi=1,0<b; <7

When the two sets have no intersection, the set to set destangq. [2) becomes the distance
between the nearest points in the two convex hulls (CHISD, &§ illustrated in Figl]2. It is
not difficult to see that such a distance is equivalent to tkeadce computed by SVM [22]. If
the discriminative function of SVM i = wx + b, thenw = Y~ a,y;, — > b;z; and the margin
is 2/|Jwl|. If we consider each image set as one class, then maximizergimbetween the
two classes is equivalent to finding the set to set distanSe Bowever, such a distance relies

highly on the location of each individual sample and can besisige to outliers([18].

Fig. 2. Convex hull based set to set distance.

B. Collaborative representation based set to sets distamokclassification

In image set based face recognition (ISFR), we have a query deut multiple gallery sets

X, k=1,2,..., K. One fact in face recognition is that the face images frorfedéht people



still have much similarity. If we compute the distance bedw® and eachX, by using methods
such as hull based set to set distance (refér {d II-A), theetadion between different gallery
sets will not be utilized. As we discussed in the Introduttsection, inspired by the SRC 28]
and CRC[[29] methods in image based face recognition, hernprogose a novel ISFR method,
namely image set based collaborative representation asgdifitation (ISCRC).

The key component of ISCRC is the collaborative represiamdiased set to sets distance
(CRSSD) defined as follows. LeX = [ X1, ..., X, ..., X k] be the concatenation of all gallery
sets. We model each & and X as a hull, i.e..Y a and Xb, wherea and b are coefficient

vectors, and then we define the CRSSD betweerYsand setsX as:
mingp |Ya — Xb|* s.t.>a; =1 (3

whereq; is the** coefficeint ina and we let>" a; = 1 to avoid the trivial solutiomm = b = 0.

In Eq. (3), the hullY a of the query setY is collaboratively represented over the gallery
sets; however, the coefficients i will make the samples it be treated differently in the
representation and the subsequent classification process.

Suppose that the coefficient vectaisand b are obtained by solving EqL](3), then we can
write b asb = [by;...;by; ...; by, whereb, is is the sub-vector of coefficients associated with
gallery setX,. Similar to the classification in SRC and CRC, we use the sgpriation residual
of hull Ya by each setX, to determine the class label &f. The classifier in the proposed
ISCRC is:

Identity(Y') = argminy {r;.} (4)

wherer;, = HY& — X,j)kHi.

Clearly, the solutions tam and b in Eq. (3) determine the CRSSD and hence the result of
ISCRC. In order to get stable solutions, we could imposearasie regularizations om andb.
In the following sections 1I-C and 1I-D, we discuss the coxhelll based CRSSD and regularized
hull based CRSSD, respectively.



C. Convex hull based CRSSD
One important instantiation of CRSSD is the convex hull HaS&®SSD. In this case, both
the hullsY a and X b are required to be convex hulls, and then the distance inddégcomes
ming |Ya — Xb|°

s.t.Zai: ]_,ij = ]_,
0<a; <71 =1,...,n4,

(5)

0 S bj S T,j = 1,...,7’Lb
whereq; andb; are thei" and ;" coefficients ina andb, respectivelyn, andn, are the number

of samples in setY and setsX, respectively, and < 1.
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Fig. 3. Convex hull based CRSSD.

A geometric illustration of convex hull based CRSSD is shawifrig. [3. Different from the
CHISD method in[[5], which models each gallery set as a corudk here we model all the
gallery sets as one big convex hull. Similar to the closesttpsearching in SVM, convex hull
based CRSSD aims to find the closest points in the query'sahd the whole gallery seX
in a large margin manner. With convex hull based CRSSD, tlmeesponding ISCRC method
can be viewed as a large margin based classifier in some ddosetheless, the classification
rules in SVM and ISCRC are very different.

D. [,-norm regularized hull based CRSSD

The convex hull modeling of a set can be affected much by erulamples in the seft [18].

To make CRSSD more stable, thenorm regularized hull can be used to mod&eland X'. For



the query sely’, we should keep the constraifia; = 1 to avoid the trivial solution, and the

l,-norm regularized hull oy” is defined as
H(Y) = {X ay|lal, <d}st.Xa =1 (6)
For the gallery sefX, its regularized hull is defined as:
H(X) = {X biz;[||b]],, <o} (7)
Finally, the regularized hull based CRSSD betw&érand X is defined as:

ming |Ya — Xng
s.t.HaHlp < 01, ||lep < 09,3 a; =1

(8)

[1l. REGULARIZED HULL BASED ISCRC

In Sectionll, we introduced CRSSD, and presented two ingmbrinstantiations of it, i.e.,
convex hull based CRSSD and regularized hull based CRSSIEh &ither one of them, the
ISCRC (refer to Eq.[(4)) can be implemented to perform ISHRtHis section, we discuss
the minimization of regularized hull based CRSSD model, #redcorresponding classification
scheme is called regularized hull based ISCRC, denoted bySRHRC. The minimization of
convex hull based CRSSD and the corresponding classificatiteme will be discussed in
Section1V.

A. Main model
We can re-write the regularized hull based CRSSD model in @y.as its Lagrangian
formulation:
ming [¥'a — Xb|; + Adlal, +Aa|bl,
st > a; =1

(9)

where)\; and )\, are positive constants to balance the representatioruadsasid the regularizer.

In ISFR, each gallery seX,. often has tens to hundreds of sample images so that the whole
set X can be very big, making the computational cost to solve BEgvé®y high. Considering
the fact that the images in each €t have high redundancy, we can compré§sinto a much

more compact set, denoted Wy,, via dictionary learning methods such as KSVDI[36] and
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metaface learning [37]. LeD = [D;, ..., Dy, ..., Dk]. We can then replacX by D in Eq. (9)
to compute the regularized hull based CRSSD:

|Ya— DB+ }

(d,[;') = argmin, g
Mllall, + A8,

(10)
st.> a; =1

where 3 = [By;...;8x; ...; Bk] and 3; is the sub-vector of coefficients associated with.

Based on our experimental results, compress¥ginto D, significantly improve the speed

with almost the same ISFR rate.

Either [;-norm or [,-norm can be used to regularize and 3, while [;-regularization will
lead to sparser solutions but with more computational dake in /;-SVM [38] and SRCI[28],
sparsity can enhance the classification rate if the feaan@sot informative enough. Note that
if the query sefY” has only one sample, then= [1] and the proposed model in EQ. {10) will
be reduced to the SRC (fdr-regularization) or CRC (fol,-regularization) scheme. Next, we
present the optimization df-norm andi;-norm regularized hull based ISCRC in Section 1lI-B

and Sectiof_II-C, respectively.

B. ls-norm regularized hull based ISCRC
When l,-norm is used to regularize and 3, the problem in Eq.[(10) has a closed-form

solution. The Lagrangian function of Ed. (10) becomes

L(a,B8,s) = |Ya — D|l; + M llall; + A2 1815 + As(ea — 1)

2

a M O a a (11)
— [y - D] +[a” BT | + Xs(e 0] —1)
, 0 NI I6; I6}
wheree is a row vector whose elements are 1.
a )\1_[ 0 T
Let z = ,A=]Y - D], B= andd = [e 0] . Then Eq.[(1ll) becomes:
B 0 \I
L(z,\3) = 2T AT Az + 2" Bz + \3(d"z — 1) (12)
There are
oL
— =d'z2-1=0 13
W z (13)
oL
= —ATAz+ Bz 4 \sd =0 (14)

0z
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According to Eq.[(IB) and Eqgl.(1L4), we get the closed form tsmiuto Eq. [11):

=}

zZ= R = Zo/dTZO (15)
B

wherez, = (ATA + B)!d.

After @ and 3 are got, the distance between query¥eand a gallery seX, is calculated as
Ty = HY& — DkBkHz and then the class label &f is determined by Eql[{4). For RH-ISCRC-
l,, the main time consumption is to solve the inverse of matdX' A + B). Hence, the time
complexity of RH-ISCRC, is O((n, + n5)°), wheren, is the number of sample images YA

andng is the number of atoms ib.

C. [;-norm regularized hull based ISCRC

When [;-norm regularization is used, we use the alternating miratmon method, which is
very efficient to solve multiple variable optimization pteims [39]. For Eq.[(1I0), we have the

following augmented Lagrangian function:
L(a,B8,\) = [Ya— DB|; + Mllal, + X181, (16)
+<Nea—1>+1|ea—1[;
where) is the Lagrange multipliex;, -) is the inner product, and > 0 is the penalty parameter.
Then a and 8 are optimized alternatively with the other one fixed. Moreafcally, the
iterations of minimizinga go as follows:
a™V = argming L(a, B, A1)
= argming f(a) + 1 Hea -1+ )\(t)/*sz (17)

- 2
= argmin, HYa — a:H2 + Alall;

where f(a) = [Ya DO + Mllall,, ¥ = [Y:(1/2)%], @ = [DBY; (v/2)2(1 ~
XO /).
The problem in Eq.[(17) can be easily solved by some repratent;-minimization ap-
proaches|[40] such as LARS [41].
After a*V is updated 3+?) can be obtained by solving anothefregularized optimization
problem:
B = argmingL(a*V, B, \)

~ argming [Y o) — DB, + ], °e



12

Oncea!**Y and 3¢+ are got,\ is updated as follows:
A = X0 4 (ea) — 1) (19)

The algorithm of RH-ISCRQ; for ISFR is summarized in Table] Il and it converges. The
problem in Eq. [(1b) is convex, and the subproblems in Eg. éd Eq. [(1B) are convex and
can be solved using the LARS algorithm. It had been shown 2}, [for the general convex
problem, the alternating minimization approach would @ge to the correct solution. One
curve of the objective function value of RH-ISCRCwversus the iteration number is shown in
Fig.[4, where the Honda/US&atabase [13] is used. The query ¥etand each gallery seX;,
has 200 frames, and we compress eachX§etnto a dictionaryD, with 20 atoms by using the
metaface learning method [37]. Since there are 20 galldsy 8 setD = [Dy, ..., Dy, ..., Dy|
has 20x 20=400 atoms. From the figure we can see that RH-ISCR€&nverges after about

five iterations.

0.04

0.03

0.02f

0.01r

objective function value

2 4 6 8 10 12 14 16 18 20
iteration number

Fig. 4. Convergence of RH-ISCRG-

Since the complexity of sparse coding@§m?n®), wherem is the feature dimensiom is
the atom number and > 1.2 [43], we can get that the time complexity of RH-ISCRCis
O(Im?(n.® + ng®)), wheren, is the number of samples i¥f, ng is the number of atoms i

and! is the iteration number.

D. Examples and discussions

Let's use an example to better illustrate the classificapmtess of RH-ISCRC. We use the
Honda/USCD databaseé [13]. The experiment setting is theesasnFig.[ 4. By Eq.[(10), the

http:/ivision.ucsd.edu/ leekc/HondaUCSDVideoDatabidgsadaUCSD.html
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TABLE 1l
ALGORITHM OF RH-ISCRCFORISFR

Input: query setY’; gallery setsX = [X1,..., Xk, ..., Xk], A1 and Xq.
Output: the label of query seY.
Initialize @, A(® and 0 « t.
CompressXy to Dy, k = 1,2, ..., K using metaface learning [B7].
While t < maz_num do
Step 1: Updatex by Eq. [17);
Step 2: Update3 by Eq. [18);
Step 3: Update\ by Eq. [19);
Step 4it +— t+ 1.
End while
Computer;, = ||[Ya — Difx s, k =1,2,..K.
Identity(Y)=arg ming {7 }.

computed coefficients im and 3 are plotted in Figl5 (byi;-regularization) and Fid.16 (by
lo-regularization), respectively. The highlighted coeéts in the figures are associated with set
X9, which has the same class label¥s Clearly, these coefficients are much more significant
than the coefficients associated with the other classesnwiake, from Fig.[5 and Figll6 we
can see that -regularized hull based CRSSD leads to spatsand 3, implying that only few

samples are dominantly involved in representation andsifieation.

query set gallery sets
0.3 0.6 —
) I
c
g 02
2 o1
[ —
]
Q o
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-0.1 . : :
0 100 200 0 100 200 300 400

Fig. 5. The coefficient vectora (of Y) and 3 (of D) by i;-regularized hull based CRSSD.

In Fig. 4, we show the reconstructed faces ¥yi with [;-regularized hull based CRSSD.
The distances betweera and eacthBk, i.e., 1, are also given. We see thaf, is 0.03,

which is the minimal one among all the gallery sets, mearniag KISCRC will make the correct
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guery set gallery sets
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Fig. 6. The coefficient vectora (of Y) and3 (of D) by l>-regularized hull based CRSSD.

va g Dﬁ@

0.88 0.9 0.83 0.70 0.88 0.97 0.89 5
w E 9
‘ A
Dp D, Dp, 4/?4 Dﬂs

Dﬂs D.p, D,
0.87 091 095 087 091 088 092 090 086

iﬂgﬂ‘*‘lll@l

llﬂ]l ]2ﬂ12 l3ﬂl? 14ﬂ14 lSﬂ]S léﬂlé 17ﬂ]7 18ﬂ|3 19ﬂ]9 ZOﬂZO

Fig. 7. Reconstructed facég a, Dﬁ, Dkﬁk (we normalized eachkB;c for better visualization). The number over each

D,y is the residuaky = ||Ya — Dk,ékHz

recognition. Here the relationships between ISCRC and foldrivased methods can be revealed.
MMD assumes that an image set can be modeled as a set of ldrsgdasies so that the image
set distance is defined as the weighted average distancedretany two local subspaces [4].
The distance between two local subspaces is related to tiseclexemplar and principle angel.
Correspondingly, ISCRC seeks for a local subspaé)(in the query image set and a local
subspaceI) in all the gallery sets, as shown in Fig. 5 . In classificatithe distance between
the query set and the template set of #i& class is the distance between the local subspace

(Y @) and the local subspad®; 3.

IV. KERNELIZED CONVEX HULL BASED ISCRC

We then focus on how to compute the convex hull based CRSSOyin# and use it for

ISCRC. Since there can be many sample images in gallery Xetsan be a fat matrix (note
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that usually we use a low dimensional feature vector to sEpreeach face image). Even we
compressX into a more compact sdP, the system can still be under-determined. In Section 3
we imposed thé,-norm regularization o andb to make the solution stable. When the convex
hull is used, however, the constraint may not be strong emaagyet a stable solution of Eq.
@®). In addition, if the underlying relationship betweer thuery set and gallery sets is highly
nonlinear, it is difficult to approximate the hull of querytses a linear combination of gallery
sets.

One simple solution to solving both the above two problentbeskernel trick; that is, we can
map the data into a higher dimensional space where the ssilac be approximately linearly
separable. The mapped gallery data matrix in the high-dsmeal space will be generally over-
determined. In such a case, the convex hull constraint witibong enough for a stable solution.

The kernelized convex hull based CRSSD model is:

ming,g [|¢(Y)a — [$(D1), ¢(Ds), ..., o(Di)] Bl
s.t.Zai = 1726] = 1,
0<a;, <10 =1,...,n4,

0 S ﬁ] S T;j = 17"'7”5'

(20)

The above minimization can be easily solved by the standaadmtic optimization (QR [44])
method. The solution exhibits global and quadratic corerecg, as proved in_[44]. Different
kernel functions can be used, e.g., linear kernel and Gawssirnel. We call the corresponding
method kernelized convex hull based ISCRC, denoted by KEERC. The classification rule
is the same as RH-ISCRC with, = H¢(Y)d — ¢(Dk)[§kH 2. As convex hull based CRSSD is
to solve a convex QP problem, the time complexity of KCH-ISICR O((ngs +n,)?), which is
similar to SVM. The algorithm of KCH-ISCRC is given in Talbl¢| [To reduce the computational
cost, the kernel matrix (D, D) can be computed and stored. When a queryYsetomes, we
only need to calculaté(Y,Y’) and k(Y , D).

Like in Fig.[B and Fig[B, in Figll8 we show the coefficient vesta and 3 solved by Eq.
(20). The Gaussian kernel is used and the experimentahgestithe same as that in Figs. 5 and
(the only difference is that each compressed galleryI3ehas 50 atoms). We can see that
the coefficients associated with gallery 48t, are larger than the other gallery sets, resulting

in a smaller representation residual and hence the comeognition.
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TABLE Il
ALGORITHM OF KCH-ISCRCFORISFR

Input: query setY’; gallery setsX = [X1,..., Xk, ..., Xk]|, 7.
Output: the label of query seY.

CompressXy to Dy, k= 1,2, ..., K by meaface learning [24];
Solve the QP problem in EJ_{20);

Computery = ||¢(Y)a — ¢(Dx)Bk|| 3, k = 1,2, .. K;
Identity(Y')=arg ming {7« }.
query set gallery sets
0.6 0.1 : T
1)
c 04 0.05}
Q
O
E 02 0
S o -0.05} i
(@] ’ 11
-0.2 -0.1 : N - ‘
0 100 200 0 200 400 600 800 1000

Fig. 8. The coefficient vectora (of Y) and 3 (of D) by kernelized convex hull based CRSSD.

V. EXPERIMENTAL ANALYSIS

We used the Honda/UCSD [13], CMU Mobo [45], and Youtube Cedliels [46] datasets to

test the performance of the proposed method. The compamsdimods fall into four categories:

C1. Subspace and manifold based methods: Mutual SubspattedI@SM) [1], Discrimi-
nant Canonical Correlations (DEp[lO], Manifold-Manifold Distance (MME) [4], and
Manifold Discriminant Analysis (MDA) [11].

C2. Affine/convex hull based methods: Affine Hull based Im&g Distance (AHISH) [5],
Convex Hull based Image Set Distance (CHEp[B], Sparse Approximated Nearest Points

2http:/iwww.iis.ee.ic.ac.uk/ tkkim/code.htm
*http:/iwww.jdl.ac.cn/user/rpwang/research.htm
“http://www.jdl.ac.cn/user/rpwang/research.htm
Shttp://www2.0gu.edu.tr/ mlcv/softwareimageset.html

Shttp://www2.0gu.edu.tr/ mlcv/softwareimageset.html
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(SANFH) [7], and Regularized Nearest Points (RNP)![24].

C3. Representation based methods: Sparse Representasien Glassifier (SRC) [28], Collabo-
rative Representation based Classifier (CRC) [29]. We ddsteise the average and minimal
representation residual of query set for classificationfandd that average residual works
better. Hence in this paper, the average residual is use®E/GRC for classification.

C4. Kernel methods: KSRC (Kernel SRC) [31], KCRC (Kernel QRE3], AHISD [5], and
CHISD [B]. For KSRC and KCRC, the average residual is usectfassification.

For the proposed methods, RH-ISCRC is compared with those&kamel methods and KCH-

ISCRC is compared with those kernel methods.

A. Parameter setting

For competing methods, the important parameters were galbyrtuned according to the
recommendations in the original literature for fair compan. For DCC [[10], if there is only
one set per class, then the training set is divided into tvwe S@ce at least two sets per class
are needed in DCC. For MMD, the number of local models is d&ivitng the work in [4]. For
MDA, there are three parameters, i.e., the number of localeiso the number of between-class
NN local models and the subspace dimension. The three ptesrare configured according
to the work in [11]. For SANP, we adopted the same parametefg]aFor SRC, CRC, KSRC
and KCRC,\ that balances the residual and regularization is tuned ffoéi, 0.001, 0.0001].

For AHISD and CHISD,C is set as 100. For all kernel methods, Gaussian kerrel, () =
exp(— ||z — yll5 /20%)) is used, and is set as 5. The experiments of 50 frames, 100 frames and
200 frames per set are conducted on the three databases.ntithber of samples in the set is
less than the given number, then all the samples in the setsack

For the proposed RH-ISCRC, we sgt= 0.001, A\, = 0.001, A\ = 2.5/n, (n, is the number
of samples in the query set),= \/2. The number of atoms in the compressed Begtis set
as 20 on Honda/UCSD and 10 on CMU MoBo and YouTube. For KCHRGCr = 1 and
the number of atoms in eac®, is set as 50 for all datasets. The sensitivity of the proposed

methods to parameters will be discussed in Sedfion V-F.

"https://sites.google.com/site/yiqunhu/cresearciy'san
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B. Honda/UCSD
The Honda/UCSD dataset consists of 59 video sequencewvingd&0 different subjects [13].

The Viola-Jones face detector [47] is used to detect thesfaweeach frame and resize the
detected faces to 220 images. Some examples of Honda/UCSD dataset are showgureF

[@. Histogram equalization is utilized to reduce the illuation variations. Our experiment setting
is the same as [13][7]: 20 sequences are set aside for tgaamd the remaining 39 sequences

for testing. The intensity is used as the feature.

Fig. 9. Some examples of Honda/UCSD dataset

The experimental results are listed in Tableé 1V. We can satftr those non-kernel methods,
the proposed RH-ISCRC outperforms much all the other meathéor the kernel based method,
the proposed KCH-ISCRC performs the best except for the wdws 100 frames per set are
used. We can also see that on this dataset, RH-ISGRd RH-ISCRCE, achieve the same
recognition rate, which implies that on this dataset #lxaorm regularization is strong enough

to yield a good solution to the regularized hull based CRSSEq. [10).

C. CMU MoBo

The CMU Mob@ (Motion of Body) dataset [45] was originally established fmman pose
identification and it contains 96 sequences from 24 subjéctsr video sequences are collected

8http:/www.ri.cmu.edu/publicatiorview. html?pubid=3904
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TABLE IV
RECOGNITION RATES ONHONDA/UCSD %)

Non-kernel 50 100 200 Year
MSM [1] 7436 79.49 89.74 1998
DCC [10] 76.92 84.62 94.87 2007

MMD [4] 69.23 87.18 94.87 2008
MDA [11] 82.05 9487 97.44 2009
SRC [28] 84.62 9231 9231 2009
AHISD [5] 82.05 84.62 89.74 2010
CHISD [5] 82.05 8462 9231 2010
SANP [7] 84.62 9231 94.87 2011
CRC [29] 84.62 9487 9487 2011
RNP [24] 87.18 9487 100.0 2011
RH-ISCRC#;  89.74 9744 100.0
RH-ISCRC{, 89.74 97.44 100.0
Kernel 50 100 200 Year
AHISD [5] 84.62 8462 82.05 2010
CHISD [5] 84.62 87.18 89.74 2010
KSRC [3]] 87.18 9744 97.44 2009
KCRC [33] 82.05 9487 9487 2012
KCH-ISCRC 89.74 9487 100.0

per subject, each of which corresponds to a walking patfggain, the Viola-Jones face detector
[47] is used to detect the faces and the detected face imageesized to 40< 40. The LBP
feature is used, which is the same as the workin [5] and [7].

One video sequence per subject is selected for trainingevithd rest are used for testing. Ten-
fold cross validation experiments are conducted and theageerecognition results are shown
in Table[M. We can clearly see that the proposed methods datpethe other methods under
different frames per set. On this dataset and the Honda/U@&8&set, the proposed non-kernel
RH-ISCRC and the kernel based KCH-ISCRC have similar ISEBsra
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TABLE V
RECOGNITION RATES ONCMU MoBo(%)

Non-kernel 50 100 200 Year
MSM [1] 84.3+ 2.6 86.6:2.2 89.9:-2.4 1998
DCC [10] 82.1 2.7 85.5:2.8 91.6t2.5 2007
MMD [4] 86.2 42.9 94.6:1.9 96.4-0.7 2008
MDA [11] 86.2 £2.9 93.2t2.8 95.8:2.3 2009
SRC [28] 91.0£2.1 91.82.7 96.5+2.5 2009
AHISD [5] 91.6+4+2.8 94.12.0 91.9t2.6 2010
CHISD [5] 91.2+3.1 93.8:2.5 96.6t1.3 2010
SANP [1] 91.942.7 94.2+2.1 97.3:1.3 2011
CRC [29] 89.6+1.8 92.4£3.7 96.4:2.8 2011
RNP [24] 919425 94.#1.2 97.4:1.5 2013
RH-ISCRC#;  935+28 96.54+1.9 98.7+1.7
RH-ISCRC{, 93.5+28 96.4+19 98.4+17
Kernel 50 100 200 Year
AHISD [5] 88.9+1.7 92.4:2.8 93.5t4.2 2010
CHISD [5] 91.5£2.0 93.4:4.0 97.4:1.9 2010
KSRC [3]1] 91.6+2.8 94.1#2.0 96.82.0 2010
KCRC [33] 91.2+3.1 93.4:2.9 96.6:2.6 2012
KCH-ISCRC 942 +£2.1 96.44+2.3 98.4+1.9

D. YouTube Celebrities

The YouTube Celebriti@sis a large scale video dataset collected for face tracking@cogni-
tion, consisting of 1,910 video sequences of 47 celebriiteea YouTube[[46]. As the videos were
captured in unconstrained environments, the recogniasik becomes much more challenging
due to the larger variations in pose, illumination and egpi@ns. Some examples of YouTube
Celebrities dataset are shown in Figlré 10. The face in gachefis also detected by the Viola-
Jones face detector and resized to ax330 gray-scale image. The intensity value is used as
feature. The experiment setting is the same_as|([7], [L1], [L8ree video sequences per subject

are selected for training and six for testing. Five-foldss@alidation experiments are conducted.

®http://seqam.rutgers.edu/site/index.php?option=amnten& view=articleisid =64&Itemid=80
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Fig. 10. Some examples of YouTube Celebrities dataset

The experimental results are shown in Tablé VI. It can be shahamong the non-kernel
methods, the proposed RH-ISCRCachieves the highest recognition rate, while among the ker-
nel based methods, the proposed KCH-ISCRC performs the ®i@se this Youtube Celebrities
dataset was established under uncontrolled environmgre tare significant variations among
the query and gallery sets, and therefore theegularization is very helpful to improve the
stability and discrimination of the solution to E@. [10). Asconsequence, RH-ISCRC1eads
to much better results than RH-ISCRLCon this dataset. On the other hand, the kernel based
KCH-ISCRC leads to better results than RH-ISCRC in this expent. Besides, the number
of frames per set also affect the performance of ISCRC. Whenber of frames is small, the

improvement by ISCRC is more significant.

E. Time comparison

Then let’'s compare the efficiency of competing methods. Tla¢lad codes of all competing
methods are obtained from the original authors, and we remtn an Intel(R) Core(TM)
i7-2600K (3.4GHz) PC. The average running time per set on CM&Bo (200 frames per
set) is listed in Tablé_Vll. We can see that the proposed RERG, is the fastest among
all competing methods except for RNP, while RH-ISCRGilso has a fast speed. Among all
the kernel based methods, the proposed KCH-ISCRC is mudér fdsan others. Overall, the
proposed RH-ISCRC and KCH-ISCRC methods have not only gl accuracy but also high
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TABLE VI

RECOGNITION RATES ONYOUTUBE (V1 %)

Non-kernel 50 100 200 Year
MSM [1] 54.8+8.7 57.4t7.7 56.46.9 1998
DCC [10] 57.6t8.0 62.746.8 65.47.0 2007
MMD [4] 57.8+6.6 62.8:6.2 64.74-6.3 2008
SRC [28] 61.5-6.9 64.4:6.8 66.0:t6.7 2009
MDA [L1] 58.5+6.2 63.3t6.1 65.4:6.6 2009
AHISD [5] 57.5£7.9 59.77.2 57.6:5.5 2010
CHISD [5] 58.0t8.2 62.8t8.1 64.8t7.1 2010
SANP [1] 57.8:7.2 63.1:8.0 65.6:7.9 2011
CRC [29] 56.5-7.4 59.5:6.6 61.4:6.4 2011
RNP [24] 59.9+7.3 63.3t8.1 64.4t7.8 2013
RH-ISCRC{; 62.3+6.2 65.6+6.7 66.7+6.4
RH-ISCRC{, 57.4£7.2 60.46.5 61.4-6.4
Kernel 50 100 200 Year
AHISD [5] 57.2+7.5 59.6:t7.4 61.8:7.3 2010
CHISD [5] 57.9£8.3 62.6t8.1 64.9t7.2 2010
KSRC [31] 61.4:7.0 65.9:6.9 67.8:6.4 2010
KCRC [33] 57.5t7.9 60.6:6.8 62.A47.7 2012
KCH-ISCRC 64.5+7.6 67.4+8.0 69.7+7.4

efficiency than the competing methods.

F. Parameter sensitivity analysis

To verify if the proposed methods are sensitive to pararsgterthis section we present the
recognition accuracies with different parameter values.FH-ISCRC, there are two parameters,
A1 and )\, in Eg. (16), which need to be set. For KCH-ISCRC, there is amg parameter in
Eq. (3). We show the recognition accuracies versus the paesmon the CMU MoBo dataset
in Fig.[11, Fig[1?2 and Fid. 13, respectively, for RH-ISCRCRH-ISCRC¢, and KCH-ISCRC.
The different colors correspond to different accuracisssteown in the color ban; and \, are
selected from{0.0005,0.001,0.01,0.05}. In Fig.[11 and Fig[_12, the top sub-figure is for 50
frames per set, the middle is for 100 frames per set and therbatorresponds to 200 frames

per set. From Fig._11, we can see that the accuracy of RH-ISGRECvery stable when\,
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TABLE VII

AVERAGE RUNNING TIME PER SET ONCMU MOBO (s)

Non-kernel  Time Kernel Time
MSM [1] 0.338 AHISD[5] 18.546
DCC [10] 0.349 CHISD[[5] 18.166
MMD [4] 10.223 KSRC[31] 35.508
SRC[28] 5.301 KCRCI[33] 6.543
MDA [[I] 7.031 KCH-ISCRC 2.03
AHISD [5] 31.365
CHISD [5] 18.029
SANP [7] 11.124
CRC[29] 0.684
RNP [24] 0.113
RH-ISCRC{; 0.788
RH-ISCRC{, 0.280

varies from 0.0005 to 0.05 anal, varies from 0.0005 to 0.01. Whek, is increased to 0.05,
the recognition performance would degrade. Eigd. 12 shoat RH-ISCRCE, is insensitive to
the values of\; and )\,. For example, in the experiments of 100 and 200 frames peitlset
accuracy variation is within 0% for different \; and \,. Considering the performance of both
RH-ISCRC{; and RH-ISCRC5, A; and\; can both be set as 0.001. With this parameter setting,
the accuracy is very stale in different experiments. For KISBRC, its recognition accuracies
with different values ofr are shown in Figl_137 is set as{1,2,5,10,50,100}. One can see

that KCH-ISCRC is insensitive to. Hence, we simplely set as 1.
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Fig. 13. Recognition performance of KCH-ISCRC on CMU MoBailifferentr.

VI. CONCLUSION

We proposed a novel image set based collaborative repetgenand classification (ISCRC)
scheme for image set based face recognition (ISFR). They getrwas modeled as a convex
or regularized hull, and a collaborative representatiosetiaset to sets distance (CRSSD) was
defined by representing the hull of query set over all theegaléets. The CRSSD considers the
correlation and distinction of sample images within thergjset and the relationship between the
gallery sets. With CRSSD, the representation residual efhill of query set by each gallery
set can be computed and used for classification. Experinmmntthe three benchmark ISFR
databases showed that the proposed ISCRC is superior ¢ecdttite-art ISFR methods in terms

of both recognition rates and efficiency.
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