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Abstract Understanding human activity is very challenging
even with the recently developed 3D/depth sensors. To solve
this problem, this work investigates a novel deep structured
model, which adaptively decomposes an activity instance
into temporal parts using the convolutional neural networks
(CNNs). Our model advances the traditional deep learning
approaches in two aspects. First, we incorporate latent tem-
poral structure into the deep model, accounting for large
temporal variations of diverse human activities. In particu-
lar, we utilize the latent variables to decompose the input ac-
tivity into a number of temporally segmented sub-activities,
and accordingly feed them into the parts (i.e. sub-networks)
of the deep architecture. Second, we incorporate a radius-
margin bound as a regularization term into our deep model,
which effectively improves the generalization performance
for classification. For model training, we propose a princi-
pled learning algorithm that iteratively (i) discovers the op-
timal latent variables (i.e. the ways of activity decomposi-
tion) for all training instances, (ii) updates the classifiers
based on the generated features, and (iii) updates the pa-
rameters of multi-layer neural networks. In the experiments,
our approach is validated on several complex scenarios for
human activity recognition and demonstrates superior per-
formances over other state-of-the-art approaches.
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1 Introduction

In computer vision, it has received increasing attention in
human activity understanding to determine what people are
doing given an observed video in different application do-
mains, e.g. intelligent surveillance, robotics, and human -
computer interaction. Recently developed 3D/depth sensors
have opened up new opportunities with enormous commer-
cial values, which provide more rich information (e.g. extra
depth data of scenes and objects) compared with the tra-
ditional cameras. Built upon the enriched information, hu-
man poses can be estimated more easily. However, model-
ing complicated human activities still remains challenging,
mainly due to the following difficulties.

– (a) The complexity of representing high-level activities
with the rich appearance and motion information from
video. The actors may appear in diverse views or poses
under different motions, and the surrounding objects and
environments can also vary within the same activity cat-
egory. Moreover, the depth maps provided by the 3D
sensors are often unavoidably contaminated [30] due to
the noise or the self-occlusion of the body parts.

– (b) The ambiguity in the temporal segmentation of the
sub-activities which constitute an activity. An activity
can be considered as a sequence of actions (i.e. sub-
activities) occurred over time [5]. For instance, the ac-
tivity of “microwaving food” can be temporally decom-
posed into several parts such as picking up food, walking
and operating microwave. However, the activity compo-
sition may vary for a category of activity instances. Fig-
ure 1 shows two activities belonging to the same cate-
gory, where the temporal lengths of decomposed actions
are different for different subjects. It is therefore difficult
to capture the temporal variation of activities during the
category recognition.
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Most of previous methods recognize 3D human activ-
ities by training discriminative/generative classifiers based
on carefully designed features [50, 30, 49, 44]. These ap-
proaches often require sufficient domain knowledge and heavy
feature engineering because of the difficulty (a), which could
limit their applications. To improve the discriminative per-
formance, some compositional methods [46, 5] model com-
plex activities by segmenting the videos into temporal seg-
ments of fixed length. But because of the difficulty (b), they
may have problems handling complex activities composed
of actions of diverse temporal durations, e.g. the examples
in Figure 1.

Fig. 1 Two activities of the same category. We consider one activity as
a sequence of actions occurred over time, and the temporal composi-
tion of an action may differ for different subjects.

In this work, we develop a deep structured human ac-
tivity model to address the above mentioned challenges, and
demonstrate superior performance over other state-of-the-
art approaches on the task of recognizing human activities
from Grayscale-Depth videos which are captured by a RGB-
D camera (i.e. Microsoft Kinect). Our model adaptively rep-
resents the input activity instance as a sequence of tempo-
rally separated sub-activities, and each one is associated with
a cubic-like video segment of a flexible length. Our model is
inspired by the effectiveness of two widely successful tech-
niques: deep learning [21, 14, 20, 16, 48, 26, 45] and the
latent structured models [56, 11, 1, 32, 24]. One example
of the former is Convolutional Neural Networks (CNNs),
which was recently applied to generate powerful features for
video classification [16, 17]. On the other hand, the latent
structured models (such as Deformable Part-based Model
[11]) have been demonstrated as an effective class of mod-
els for handling large object variations for recognition and
detection. One of the key components in these models is
the reconfigurable flexibility of model structure, which of-
ten implemented by estimating latent variables during infer-
ence.

We adopt the deep CNN architecture [21, 16] to layer-
wisely extract features from the input video data, and the ar-
chitecture are vertically decomposed into several sub-networks
corresponding to the video segments, as Figure 2 illustrates.
In particular, our model searches for the optimal composi-
tion for each activity instance during the recognition, which
is the key to handle the temporal variation of human activ-
ities. Moreover, we introduce relaxed radius-margin bound
into our deep model, which effectively improves the gen-
eralization performance for classification. In the following,
we briefly overview the main components of our model and
summarize the advantages.

First, the configuration of our deep model can be flexi-
bly adjusted to adapt to different input videos, and the sig-
nificance of this property has been justified for human ac-
tion recognition [22, 38, 45]. In our approach, we make our
model adaptively capture temporal structure by using the la-
tent variables. This motivation finely accords with a batch of
existing part-based structured models in visual recognition
[24, 27]. More specifically, we utilize the latent variables to
explicitly represent the temporal composition of the human
activities, i.e. the input video is partitioned into several seg-
ments of alterable lengths (each segment indicating a sub-
activity). The different temporal compositions actually cor-
respond to the different temporal durations of the separated
sub-activities. And the frames of different video segments
are extracted to feed to the corresponding sub-networks.

During the inference of activity recognition, we aggre-
gate the responses from sub-networks while searching for
the optimal temporal activity segmentation. This inference
will inevitably cause extra computation cost just like tradi-
tional latent structured models [24]. It is worth mentioning
that we can implement the inference in a parallel manner us-
ing GPU (Graphic Processing Unit) programming, in order
to counter-balance the extra computational demand.

Second, we integrate the radius-margin regularization with
the deep feature learning, effectively conducting the classifi-
cation with good generalization performance. Collecting 3D
data of human activities is relatively expensive in practice,
while the large amount of training data plays a critical role
in recent successful deep learning approaches [20, 27, 17].
On the other hand, the max-margin methods (e.g. Support
Vector Machines) have shown very impressive generaliza-
tion power and thus been widely applied for small scale
training data. According to [9, 7], their performance (i.e. the
error rate) for classification depends on not only the margin
of positive/negative samples but also the radius of the en-
closing ball of all samples, and this is more critical for joint
learning of feature representation and classifier. Inspired by
these works, we incorporate a radius-margin bound as a reg-
ularizer into our deep model, and demonstrate better gen-
eralization performance compared to the softmax or SVM
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classifier. More detailed discussion will be presented Sec-
tion 3.3.

Training our deep structured model is nontrivial, as it
needs to jointly optimize three components: (i) the activ-
ity decomposition, (ii) the classifier upon the generated fea-
tures, and (iii) the neural networks. Seeking the global op-
timum for such a model is extremely intractable due to the
non-convexity, and we consider an approximate solution by
iteratively optimizing these components for a local conver-
gence. In each iteration, the learning algorithm performs the
following three steps.

1. We compute the optimal latent variables (i.e. sub-activity
decompositions) for all training activities, and their fea-
ture vectors are then specified.

2. Based on the generated features, we optimize the classi-
fication margin of all training examples under the fixed
radius bound.

3. We learn the parameters of the CNNs using the tradi-
tional backward propagation, which will lead to the de-
crease of the radius.

The main contributions of this work are several folds.
First, we present a novel deep neural network model to han-
dle various challenges in 3D human activity recognition, and
demonstrate superior performance over state-of-the-art ap-
proaches under several challenging scenarios. Second, our
deep model incorporates latent temporal structure to account
for large temporal variations of diverse human activities. To
the best of our knowledge, this is a novel contribution to
the literature of deep learning. Third, we unify the radius-
margin method with the feature learning in a principled way,
providing a very general framework for many classification
tasks. In addition, we construct a new database of RGB-D
data, which includes 1180 instances of human activities in
20 categories.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a review of related work. Then we present our
deep model in Section 3 and 4, followed by a description of
model learning algorithm in Section 5. Section 6 discusses
the procedure of activity recognition using our model. The
experimental results, comparisons and component analysis
are exhibited in Section 6. Section 7 concludes this paper.

2 Related Work

Many works on human action/activity recognition mainly
focus on designing robust and descriptive features [49, 13,
30, 29, 55, 51, 34]. For example, Xia and Aggarwal [49]
extracted spatio-temporal interest points from depth videos
(DSTIP) and developed a depth cuboid similarity feature
(DCSF) to model human activities. Oreifej and Liu [30] pro-
posed to capture spatio-temporal changes of activities by us-
ing a histogram of oriented 4D surface normals (HON4D).

Most of these methods, however, overlooked detailed spatio-
temporal structure information, and limited in periodic ac-
tivities.

Several compositional part-based approaches have been
studied for complex scenarios and achieved substantial pro-
gresses [46, 42, 54, 31, 33, 44, 6], and they represent an
activity with the deformable parts and contextual relations.
For instance, Wang et al. [46] recognized human activities in
common videos by training the hidden conditional random
fields in a max-margin framework. For activity recognition
in RGB-D data, Packer et al. [31] employed the latent struc-
tural SVM to train the model with part-based pose trajecto-
ries and object manipulations. An ensemble model of action-
lets were studied in [44] to represent 3D human activities
with a new feature called local occupancy pattern (LOP). To
handle more complicated activities with large temporal vari-
ations, some improved models [38, 43, 3] discovered tem-
poral structures of activities by localizing sequential actions.
For example, Wang and Wu [43] proposed to solve the tem-
poral alignment of actions by maximum margin temporal
warping. Tang et al. [38] captured the latent temporal struc-
tures of 2D activities based on the variable-duration hidden
Markov model. Koppula and Saxena [18] applied the Con-
ditional Random Fields to model the sub-activities and af-
fordances of the objects for 3D activity recognition.

Recently, the And-Or graph representations are intro-
duced as extensions of the part-based models [56, 32, 22, 39,
23], and produce very competitive performance to deal with
large data variations. These models incorporate not only the
hierarchical decompositions, but also the explicit structural
alternatives (e.g. the different ways of compositions). Zhu
and Mumford [56] first explored the And-Or graph mod-
els for image parsing. Pei et al. [32] then introduced the
models for video event understanding, but their approach
required elaborate annotations. Liang et al. [22] proposed to
train the spatio-temporal And-Or graph model using a non-
convex formulation, which is discriminatively trained from
weakly annotated training data. However, the above men-
tioned models rely on the hand-crafted features, and their
discriminative capacities are not optimized for 3D human
activity recognition.

In the mean time, the past few years have seen a resur-
gence of research in the design of deep neutral networks, and
impressive progresses have been made on learning image
features from raw data [14, 20, 25]. To address human ac-
tion recognition from videos, Ji et al. [16] developed a novel
deep architecture of convolutional networks, where they ex-
tracted features from both spatial and temporal dimensions.
Luo et al. [27] proposed to incorporate a new Switchable
Restricted Boltzmann Machine (SRBM) to explicitly model
the complex mixture of visual appearance for pedestrian de-
tection, and train their model using an EM-type interative al-
gorithm. Amer and Todorovic [1] applied Sum Product Net-
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Fig. 2 The architecture of spatio-temporal convolutional neural networks. The neural networks are stacked up by convolutional layers, max-
pooling operators and a fully connected layer, where the raw segmented videos are treated as the input. A sub-network is referred to a vertically-
decomposed subpart stacked up by several layers, which extracts features for one segmented video section (i.e. one sub-activity). Moreover, by
using the latent variables, our architecture is capable of explicitly handling diverse temporal compositions of complex activities.

works (SPNs) to model human activities based on variable
primitive actions. Our deep model is partially motivated by
these works, and we target on an more flexible and powerful
solution by jointly considering the latent structure embed-
ding, feature learning, and radius-margin classification.

Recently, recurrent neural networks (RNN) has been used
for activity recognition due to its capability in modeling com-
plex temporal dynamics. Donahue et al. [10] presented a
long-term recurrent convolutional network (LRCN) archi-
tecture to integrates CNN and RNN into an unified model,
and achieved promising results in a number of vision tasks.
Rohrbach et al. [41] further improved LRCN by adding a
pooling layer and had shown its potentials in video descrip-
tion. The main difference between RNN models and ours is
that their models exploit several types of neural gates and
memory cells to learn temporal dynamics implicitly, while
our deep structured model explicitly accounts for temporal
variations of human activities by inferring latent variables.
Speficially, compared with these RNN models, our model
has the following advantages. First, the temporal composi-
tion is explicitly captured by our model, giving rise to a bet-
ter interpretability, i.e. the semantic correspondence of video
segments and sub-activities. Second, as some recent works
report [2], the RNN models may have problems on using
common dropout tricks and this limitation would influence
the performances. Moreover, the integration with explicit
regularization approaches (e.g. the radius-margin bound) is
also an important superiority of our model.

3 Deep Structured Model

In this section, we introduce the main components of our
deep structured model, including the spatio-temporal CNNs,
the latent structure of activity decomposition, and the radius-
margin bound for classification.

3.1 Spatio-temporal CNNs

We propose an architecture of spatio-temporal convolutional
neural networks (CNNs), as Figure 2 illustrates. In the in-
put layer, the activity video is decomposed into M video
segments, where each segment associates to one separated
sub-activity. Accordingly, the proposed architecture con-
sists of M sub-networks to extract features from the cor-
responding decomposed video segments, respectively. Our
spatio-temporal CNNs involve both 3D and 2D convolu-
tional layers. The 3D convolutional layer extracts spatio-
temporal features for jointly capturing appearance and mo-
tion information, and is followed by a max-pooling opera-
tor to improve the robustness against local deformations and
noise. As shown in Figure 2, each sub-network (highlighted
by the dashed box) is stacked up by two 3D convolutional
layers and one 2D convolutional layer. For the input to each
sub-network, the number of frames is very small (e.g. 9). Af-
ter two layers of 3D convolution followed with max-pooling,
the temporal dimension for each set of feature maps is too
small to perform 3D convolution. Thus, we stack a 2D con-
volutional layer upon the two 3D convolutional layers. The
outputs from different sub-networks are merged to be fed
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to one fully connected layer that generates the final feature
vector of the input video.
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Fig. 3 Illustration of incorporating latent structure into the deep
model. Different sub-networks are denoted by different colors.

3.2 Latent Temporal Structure

Unlike the traditional deep learning methods with the fixed
architectures, we incorporate latent structure into the deep
model to flexibly adapt to the input video during inference
and learning. To address the large temporal variation of hu-
man activities, we assume the input video is temporally di-
vided into a number M of segments, corresponding to the
sub-activities. We associate the CNNs with the video seg-
mentation by feeding each segmented part into a sub-network
as Figure 2 illustrates. Next, according to the way of video
segmentation (i.e. decomposition of sub-activities), we ma-
nipulate the CNNs by inputting sampled video frames.

Specifically, we index each video segment by its start-
ing anchor frame s j and its temporal length (i.e. the num-
ber of frames) t j for each sub-network, which must take m
video frames as the input. Note that when t j ̸= m, a uni-
form sampling is performed to extract m key frames. Thus,
for all video segments, we denote the indexes of starting
anchor frames as (s1, ...,sM) and their temporal lengths as
(t1, ..., tM), which are regarded as the latent variables in our
model, h= (s1, ...,sM, t1, ..., tM). These latent variables spec-
ifying the segmentation will be adaptively estimated for dif-
ferent input videos. Figure 3 shows an intuitive example of
our structured deep model, where the input video are seg-
mented into three sections corresponding to the three sub-
networks in our deep architecture. In this way, the configu-
ration of the CNNs are dynamically adjusted together with
searching for the appropriate latent variables of input videos.

Given the parameters of CNNs ω and the input video xi
with its latent variables hi, the generated feature of xi can be
represented as ϕ(xi;ω,hi).

3.3 Deep Model with Relaxed Radius-Margin Bound

The large amount of training data is crucial for the suc-
cess of many deep learning models. Given sufficient train-
ing data, the effectiveness of applying the softmax classifier
with CNNs has been validated for image classification [20].
However, for 3D human activity recognition, the available
training data are usually less what we expected. For exam-
ple, the CAD-120 dataset [19] consists of only 120 RGB-
D sequences of 10 categories. Under this scenario, though
parameter pre-training and dropout are available, the model
training often suffers from the over-fitting issue. Hence, we
consider introducing a more effective classifier together with
regularizer to improve the generalization performance of the
deep model.

In supervised learning, Support Vector Machine (SVM),
also known as the max-margin classifier, is theoretically sound
and generally can achieve promising performance compared
with the alternative linear classifiers. In the deep learning
research, the combination of SVM and CNNs has been ex-
ploited [15] and obtained excellent results in object detec-
tion [12]. Motivated by these approaches, we impose a max-
margin classifier (w,b) upon the feature generated by the
spatio-temporal CNNs for human activity recognition.

As a max-margin classifier, standard SVM adopts ∥w∥2,
the reciprocal of the squared margin γ2, as the regularizer.
However, the generalization error bound of SVM depends
on the radius-margin ratio R2/γ2, where R is the radius of
the minimum enclosing ball (MEB) of the training data [40].
When the feature space is fixed, the radius R is constant and
can thus be ignored. However, in our approach, the radius
R is determined by the MEB of the training data in the fea-
ture space generate by the CNNs. Under this scenario, the
model has the risk that the margin can be increased by sim-
ply expanding the MEB of the training data in the feature
space. For example, simply multiplying a constant to the
feature vector can enlarge the margin between the positive
and negative samples, but obviously it will not really work
for better classification. To overcome this problem, we in-
corporate the radius-margin bound together with the feature
learning, as Figure 4 illustrates. In particular, we impose a
max-margin classifier with radius information upon the fea-
ture generated by the fully connected layer of the spatio-
temporal CNNs. The optimization tends to maximize the
margin while shrinking the MEB of the training data in the
feature space, and we thus obtain a tighter error bound.

Suppose there are a set of N training samples (X ,Y ) =
{(x1,y1), ... , (xN ,yN)}, where xi is the video, y ∈ {1, ...,C}
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Fig. 4 Illustration of our deep model with the radius-margin bound. To improve the generalization performance for classification, we propose
to integrate the radius-margin bound as a regularizer with the feature learning. Intuitively, together with optimizing the max-margin parameters
(w,b), we shrink the radius R of the minimum enclosing ball (MEB) of the training data that distribute in the feature space generated by the CNNs.
The resulting classifier with the regularizer shows better generalization performance compared to the traditional softmax output.

represents the category labels and C is the number of ac-
tivity categories. We extract the feature for each xi by the
spatio-temporal CNNs, ϕ(xi;ω,hi), where hi refers to the
latent variables. By adopting the squared hinge loss and the
radius-margin bound, we define the following loss function
L0 of our model:

L0 =

Radius−margin Ratio︷ ︸︸ ︷
1
2
∥w∥2R2

ϕ

+λ
N

∑
i=1

max
(

0,1−
(
wT ϕ(xi;ω,hi)+b

)
yi

)2

,

(1)

where λ is the trade-off parameter, 1/∥w∥ denotes the mar-
gin of the separating hyperplane, b denotes the bias, and Rϕ
denotes the radius of the MEB of the training data ϕ(X ,ω,H)
= {ϕ(x1;ω,h1), ...,ϕ(xN ;ω,hN)} in the CNNs’ feature space.
Formally, the radius Rϕ is defined as [4, 40],

R2
ϕ = min

R,ϕ0
R2,s.t.∥ϕ(xi;ω,hi)−ϕ0∥2 ≤ R2,∀i. (2)

The radius Rϕ is implicitly defined by both the training
data and the model parameters, making that: (i) the model
in Eq. (1) is highly nonconvex, (ii) the derivative of Rϕ with
respect to ω is hard to compute, and (iii) the problem is dif-
ficult to solve using the stochastic gradient descent (SGD)
method. Motivated by the radius-margin based SVM [9, 8],
we investigate the relaxed form to replace the original defi-
nition of Rϕ in Eq. (2). In particular, we introduce the max-
imum pairwise distance R̃ϕ over all the training samples in
the feature space, as

R̃2
ϕ = max

i, j
∥ϕ(xi;ω,hi)−ϕ(x j;ω,h j)∥2. (3)

Do and Kalousis [8] proved that Rϕ could be well bounded
by R̃ϕ with the following lemma,

Lemma 1

R̃ϕ ≤ Rϕ ≤ 1+
√

3
2

R̃ϕ .

This above Lemma guarantees that the true radius Rϕ
can be well approximated by R̃ϕ . With the proper parameter
η , the optimal solution for minimizing the radius-margin ra-
tio ∥w∥2R2

ϕ is the same with that for minimizing the radius-
margin sum ∥w∥2 + ηR2

ϕ [8]. Thus, by approximating R2
ϕ

with R̃2
ϕ and replacing the radius-margin ratio with the radius-

margin sum, we suggest the following deep model with the
relaxed radius-margin bound,

L1 =
1
2
∥w∥2 +max

i, j
∥ϕ(xi;ω,hi)−ϕ(x j;ω,h j)∥2

+λ
N

∑
i=1

max
(

0,1−
(
wT ϕ(xi;ω,hi)+b

)
yi

)2

.

(4)

However, the first max operator in Eq. (4) is non-smooth
and defined over all pairs of training samples, and it is thus
unsuitable for using the mini-batch-based SGD optimization
method. In the following, we first use the softmax function
to avoid the non-smoothness of the max operator, and then
further relax the radius to avoid the definition over all pairs
of training samples. More specifically, we first transfer the
max operator into a softmax form, resulting the following
model,

L2 =
1
2
∥w∥2 +η ∑

i, j
κi j∥ϕ(xi;ω,hi)−ϕ(x j;ω,h j)∥2

+λ
N

∑
i=1

max
(

0,1−
(
wT ϕ(xi;ω,hi)+b

)
yi

)2

.

(5)



A Deep Structured Model with Radius-Margin Bound for 3D Human Activity Recognition 7

with

κi j =
exp(α∥ϕ(xi;ω ,hi)−ϕ(x j;ω,h j)∥2)

∑i j exp(α∥ϕ(xi;ω,hi)−ϕ(x j;ω,h j)∥2)
, (6)

where κi j is a coefficient measuring the correlation of the
two samples and α ≥ 0 is the parameter to control the ap-
proximation degree to the hard max operator. When α is
infinite, the approximation in Eq. (5) becomes the model in
Eq. (4). Specifically, when α = 0, there is κi j = 1/N2, and
the relaxed loss function can be reformulated as:

L3 =
1
2
∥w∥2 +2η ∑

i
∥ϕ(xi;ω,hi)− ϕ̄ω∥2

+λ
N

∑
i=1

max
(

0,1−
(
wT ϕ(xi;ω,hi)+b

)
yi

)2

.

(7)

with

ϕ̄ω =
1
N ∑

i
ϕ(xi;ω,hi). (8)

The optimization objectives in Eq. (5) and (7) are two re-
laxed losses of our deep model with the strict radius-margin
bound in Eq. (1). In this work, we focus on the objective in
Eq. (7) for the model training. The learning algorithm will
be discussed in Section 5.

4 Implementation

In this section, we first explain the implementation that
makes our model adaptive to alterable temporal structure,
and then describe the detailed setting of our deep architec-
ture.

4.1 Latent Temporal Structure

During our learning and inference procedures, we search for
the appropriate latent variables that determine the tempo-
ral decomposition of the input video (i.e. the decomposition
of activities). There are two parameters related to the latent
variables in our model: the number M of video segments and
the temporal length m of each segment. Note that the sub-
activities decomposed by our model have no precise defini-
tion given a complex activity, i.e. actions can be ambiguous
depending on the considering temporal scale.

To incorporate the latent temporal structure, we asso-
ciate the latent variables with the neurons (i.e. convolutional
responses) in the bottom layer in the spatio-temporal CNNs.

The choice of the number of segments M is important
to the performance of 3D human activity recognition. The
model with a small M could be less expressive to handle

temporal variations, while a large M could lead to over-
fitting due to high complexity. Furthermore, when M = 1,
the model latent structure would be disabled, and our ar-
chitecture degenerates to the conventional 3D-CNNs [16].
By referring to the setting of the number of parts for the
deformable part-based model [11] in object detection, the
value M can be set by the cross validation on a small set. In
all our experiments, we set M = 4.

Considering that the number of frames of the input videos
are diverse, we develop a process to normalize the inputs by
two-step sampling in the learning and inference procedure.
First, we sample 30 anchor frames uniformly from the in-
put video. Based on these anchor frames, we search for all
of the possible non-overlapped temporal segmentations, and
the anchor frame segmentation corresponds to the segmen-
tation of the input video. Then, from each video segment
(indicating a sub-activity) we uniformly sample m frames
to feed the neural networks, and in our experiments we set
m = 9. In addition, we reject the possible segmentations that
cannot offer m frames for any video segment.

For an input video, the possibility of temporal structure
variations is 115 in our experiments (i.e. the possible enu-
meration numbers of anchor frame segmentation).

Fig. 5 Illustration of the 3D convolution across both spatial and tempo-
ral domains. In this example, the temporal dimension of the 3D kernel
is 3, and each feature map is thus obtained by performing 3D convolu-
tions across 3 adjacent frames.

4.2 Architecture of Deep Neural Networks

The proposed spatio-temporal CNN architecture is constructed
by stacking up two 3D convolution layers, one 2D convo-
lution layer and one fully connected layer, and the max-
pooling operator is deployed after each 3D convolutional
layer. In the following, we introduce the definitions and im-
plementations of these components in our model.
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3D Convolutional Layer. The 3D convolution operation
is adopted to perform convolutions spanning over both spa-
tial and temporal dimensions for the characterization of both
appearance and motion features [16]. Suppose p is the input
video segment with the width w, the height h, and the num-
ber of frames m, ω is the 3D convolutional kernel with the
the width w′, height h′, and temporal length m′. As shown in
Figure 5, a feature map v can be obtained by performing 3D
convolutions from the sth to the (s+m′−1)th frames, where
the response for the position (x,y,s) in the feature map is de-
fined as,

vxys = tanh(b+
k′−1

∑
i=0

h′−1

∑
j=0

m′−1

∑
k=0

ωi jk · p(x+i)(y+ j)(s+k)), (9)

where p(x+i)(y+ j)(s+k) denotes the pixel value of the input
video p at position (x+ i,y+ j) in the (s+ k)th frame, ωi jk
denotes the value of the convolutional kernel ω at the posi-
tion (i, j,k), b stands for the bias, and tanh denotes the hy-
perbolic tangent function. Thus, given p and ω , m−m′+ 1
feature maps can be obtained, each with size of (w−w′ +
1,h−h′+1).

Based on the 3D convolution operation, 3D convolution
layer is designed for spatio-temporal feature extraction by
considering three issues:

– Number of convolutional kernels. The feature maps gen-
erated by one convolutional kernel are limited in cap-
turing appearance and motion information. To generate
more types of features, several kernels are employed in
each convolutional layer. We define the number of 3D
convolutional kernels in the first layer as c1. After the
first 3D convolutions, we obtain c1 sets of m−m′ + 1
feature maps. Then we use 3D convolutional kernels on
the c1 sets of feature maps, and obtain c1 × c2 sets of
feature maps after the second 3D convolution layer.

– Decompositional convolutional networks. Our deep model
consists of M sub-networks, and the input video seg-
ment to each sub-network involves m frames (the later
frames might be unavailable). In the proposed architec-
ture, all of the sub-networks use the same structure but
each one has its own convolutional kernels, as we as-
sume that each temporally decomposed sub-activity has
its distinct features in terms of discriminative classifica-
tion. For example, the kernels belonging to the first sub-
network are only deployed to perform convolutions on
the first temporal video segment. .

– Application to gray-depth video. The RGB images are
first converted to the gray-level images, and the gray-
depth video is then adopted as the input to the neural
networks. The 3D convolutional kernels in the first layer
are respectively applied for both the gray channel and
the depth channel in the video, and the convolution re-
sults from these two channels are further aggregated to

produce the feature maps. Note that the dimensions of
the features remain the same as from only one channel.

In our implementation, the input frame is scaled with the
height h = 80 and width w = 60. In the first 3D convolution
layer, the number of 3D convolutional kernels is c1 = 7, and
the size of the kernel is w′×h′×m′ = 9×7×3. In the second
layer, the number of 3D convolutional kernels is c2 = 5, and
the size of the kernel is w′× h′×m′ = 7× 7× 3. Thus, we
have 7 sets of feature maps after the first 3D convolution
layer, and obtain 7×5 sets of feature maps after the second
3D convolution layer.

Max-pooling Operator. After each 3D convolution, the
max-pooling operation is introduced to enhance the defor-
mation and shift invariance [20, 52]. Given a feature map
with the size of a1 × a2, a d1 × d2 max-pooling operator is
performed by taking the maximum of every non-overlapping
d1×d2 sub-regions of the feature map, resulting in an a1/d1×
a2/d2 pooled feature map. In our implementation, 3×3 max-
pooling operator was applied after every 3D convolution
layers. After two layers of 3D convolution and max-pooling,
for each sub-network, we have 7×5 sets of 6×4×5 feature
maps.

2D Convolutional Layer. After two layers of 3D con-
volution followed with max-pooling, 2D convolution is em-
ployed to further extract higher-level complex features. The
2D convolution can be viewed as a special case of 3D con-
volution with m′ = 1, which is defined as

vxy = tanh(b+
k′−1

∑
i=0

h′−1

∑
j=0

ωi j · p(x+i)(y+ j)), (10)

where p(x+i)(y+ j) denotes the pixel value of the feature map
p at position (x+ i,y+ j), ωi j denotes the value of the con-
volutional kernel ω at the position (i, j), and b denotes the
bias. In the 2D convolution layer, suppose the number of
2D convolutional kernels is c3, c1 × c2 × c3 sets of new fea-
ture maps are obtained by performing 2D convolutions on
c1 × c2 sets of feature maps generated by the the second 3D
convolution layer.

In our implementation, the number of 2D convolutional
kernels is set as c3 = 4 with the kernel size 6×4. Hence for
each sub-network we can obtain 700 feature maps with size
1×1.

Fully Connected Layer. There is only one fully con-
nected layer with 64 neurons in our architecture. All these
neurons connect to a vector of 700×4 = 2800 dimensions,
which is generated by concatenating the feature maps from
all of the sub-networks. The margin-based classifier is de-
fined based on the output of the fully connected layer, where
we adopt the squared hinge loss to predict the activity cate-
gories as

θ(z) = argmax
i
(wT

i z+bi) (11)
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where z is the 64-dimensional vector from the fully con-
nected layer, and {wi,bi} denotes the weight and bias con-
nected to the i-th activity category.

Dropout trick. Since our deep architecture contains a
large number of parameters (i.e. 179200 weighs at the fully-
connected layer), we apply the standard dropout approach
during the model training to alleviating the over-fitting prob-
lem. According to the recent reports [36], the dropout method
is capable of effectively improving the generalization power
of neural network models by randomly turning off the neu-
rons in the learning. Specifically, we set turning-off proba-
bility rate is 0.6 for each neuron at the fully-connected layer
in each learning iteration, and this dropout approach is ap-
plied by default in every experiment.

5 Learning Algorithm

The proposed deep structured model involves three compo-
nents to be optimized: (i) the latent variables H that manip-
ulate the activity decomposition, (ii) the margin-based clas-
sifier {w,b}, and (iii) the CNNs’ parameters ω . The latent
variables are not continuous and need to be estimated adap-
tively for different input videos, making the standard back
propagation algorithm [21] unsuitable for our deep model.
In this section, we present a joint component learning algo-
rithm that iteratively optimizes the three components. More-
over, to overcome the problem of insufficient 3D data, we
propose to borrow the large amount of 2D videos to pre-
train the CNNs’ parameters in advance.

5.1 Joint Component Learning

Denote (X ,Y ) = {(x1,y1), ... , (xN ,yN)} as the training set
with N examples, where xi is the video, yi ∈ {1, ...,C} de-
notes the activity category. Denote H = {h1, ...,hN} as the
set of latent variables for all training examples. The model
parameters to be optimized can be divided into three groups,
i.e. H, {w,b}, and ω . Fortunately, given any two groups of
parameters, the other group of parameters can be efficiently
learned using either the stochastic gradient descent (SGD)
algorithm (e.g. for {w,b} and ω) or enumeration (e.g. for
H).

Therefore, we adopt a principled coordinate type algo-
rithm to optimize the our deep structured model in Eq. (5)
and (7). This learning algorithm actually is a general expec-
tation maximization (GEM) method [47], which iteratively
performs the E-step and the M-step: the former discover-
ing the optimal latent variables by global searching and the
latter optimizing the CNN and classifier parameters for a
sub-optimal solution. As shown in [47], such a GEM proce-
dure can converge monotonically to a stationary point. More
specifically, our learning algorithm iterates with the three

steps: (i) Given the model parameters {w,b} and ω , we es-
timate the latent variables hi for each video and update the
corresponding feature ϕ(xi;ω,hi) (Figure 6 (a)); (ii) Given
the updated features ϕ(X ;ω,H), we update the max-margin
classifier {w,b} (Figure 6 (b)); (iii) Given the model pa-
rameters {w,b} and H, we update the CNN parameters ω ,
which will lead to both the increase of the margin and the
decrease of the radius (Figure 6 (c)). It is worth mentioning
that the two steps (ii) and (iii) can be performed in the same
procedure of SGD, i.e. their parameters are jointly updated
in an end-to-end way.

In the following, we explain in detail the three steps for
minimizing the loss in Eq. (7), which are derived from our
deep model.

(i) Given the model parameters ω and {w,b}, for each
sample (xi,yi), the most appropriate latent variables hi can
be determined by exhaustive searching over all the possible
choices,

h∗i = argmin
hi

1−
(
wϕ(xi;ω,hi)+b

)
yi. (12)

GPU programming is employed to accelerate the searching
process. With the updated latent variables, we further obtain
the feature set ϕ(X ;ω,H) of all the training data.

(ii) Given ϕ(X ;ω,H) and the CNNs’ parameters ω , batch
stochastic gradient descent (SGD) is adopted for updating
model parameters in Eq. (7). In iteration t, a batch Bt ⊂
(X ,Y,H) of k samples is chosen. We can obtain the gradi-
ents of the max-margin classifier with respect to parameters
{w,b},

∂L3

∂w
=w−λ ∑

(xi,yi,hi)∈Bt

yiϕ(xi;ω,hi)max
(

0,1−
(
wT ϕ(xi;ω ,hi)+b

)
yi

)
,

(13)

∂L3

∂b
=−2λ ∑

(xi,yi,hi)∈Bt

yi max
(

0,1−
(
wT ϕ(xi;ω ,hi)+b

)
yi

)
, (14)

(iii) Given the latent variables H and the max-margin
classifier {w,b}, based on the gradients with respect to ω ,
the back propagation algorithm can be adopted to learn CNNs’
parameters ω . More specifically, we first update the mean
ϕ̄ω in Eq. (8) based on ϕ(X ;ω,H), and then compute the
derivative of the relaxed loss in Eq. (7) as

∂L3

∂ω
= 4η ∑

(xi,yi,hi)∈Bt

(
ϕ(xi;ω,hi)− ϕ̄ω

)T ∂ϕ(xi;ω,hi)

∂ω

−2λ ∑wT yi
∂ϕ(xi;ω,hi)

∂ω
max

(
0,1−

(
wT ϕ(xi;ω,hi)+b

)
yi

)
.

(15)

By performing the proposed back propagation algorithm,
we can further decrease the relaxed loss and optimize the
model parameters. During the back propagation, batch SGD
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hi

(xi, hi)

( ∂L
∂w

, ∂L

∂b
)

(w, b,H)

(w, b, ω)

φ(xi;ω, hi)

φ(X;ω,H)

φ(X;ω,H)

Fig. 6 Illustration for our joint component learning algorithm. It iteratively performs with the three steps: (a) Given the classification parameters
{w,b} and the CNNs’ parameters ω , we estimate the latent variables hi for each video and generate the corresponding feature ϕ(xi;ω ,hi); (b) Given
the updated features ϕ(X ;ω,H) for all training examples, the classifier {w,b} is updated via SGD ; (c) Given {w,b} and H, back propagation
updates the CNNs’ parameters ω .

is adopted to simultaneously update the parameters of both
step (ii) and (iii). The optimization algorithm iterates be-
tween these three steps until convergence.

5.2 Model Pre-training

Parameter pre-training followed by fine-tuning is an effec-
tive method to boost the performance in deep learning, espe-
cially when the training data is scarce. In the literature, there
are two popular solutions, i.e. unsupervised pre-training on
unlabeled data [35] and supervised pre-training for an aux-
iliary task [12]. The latter usually requires the data formate
(e.g. image) for parameter pre-training is exactly the same
as that (e.g. image) for fine-tuning.

In our approach, we suggest an alternative solution for
3D human activity recognition. Although collecting RGB-D
videos of human activities is expensive, a large amount of
2D activity videos can be easily obtained. Consequently, we

first apply the supervised pre-training using a large number
of 2D activity videos, and then fine-tune the CNNs’ param-
eters for training the 3D human activity models.

In the step of pre-training, the CNNs’ parameters are
randomly initialized at the beginning. For each input 2D
video, we equally segment it into M parts without estimat-
ing its latent variables. Here we simply employ the softmax
classifier to pre-train the parameters of CNN, since the soft-
max loss unbiasedly treat all samples and it is suitable for
learning a general feature representation [12].

The 3D and 2D convolutional kernels obtained in pre-
training are only for gray channel. Thus, after pre-training,
we duplicate the dimension of the 3D convolutional kernels
in the first layer and initialize the parameters for the depth
channel by the parameters for the gray channel, which al-
lows us to borrow the features learned from the 2D video
while directly learning the higher level information from the
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Algorithm 1 Learning Algorithm
Input:

The labeled 2D, 3D activity dataset and learning rate αw,b, αω .
Output:

Model parameters {ω ,w,b}.
Initialization:

Pre-train the spatio-temporal CNNs using the 2D videos.

Learning on 3D video dataset:
repeat

1. Estimate the latent variables H for all samples by fixing model
parameters {ω,w,b}.

2. Optimize {w,b} given the CNN model parameters ω and the
input sample segments indicated by H:

2.1 Calculate ϕ(X ;ω ,H) by forwarding the neural network
with ω .

2.2 Optimize {w,b} via:
w := w−αw,b ∗ ∂L

∂w by Eq. (13);
b := b−αw,b ∗ ∂L

∂b by Eq. (14);

3. Optimize ω given {w,b} and H:

3.1 Calculate κi j , κi and ϕi for L2, or calculate ϕ̄ω for L3.
3.2 Optimize the parameters ω of the spatio-temporal CNNs:

ω := ω −αω ∗ ∂L
∂ω by Eq. (15).

until L in (5) or (7) converges.

specific 3D activity dataset. For the fully connected layer,
we set its parameters as random values.

We summarize the overall learning procedure in Algo-
rithm 1.

6 Inference

Given an input video xi, the inference task aims to recognize
its category of the activity, which can be formulated as the
minimization of Fy(xi,ω ,h) with respect to the activity label
y and the latent variables h,

(y∗,h∗) = argmax
(y,h)

{Fy(xi,ω,h) = wT
y ϕ(xi;ω,h)+by}. (16)

where {wy,by} denotes the parameters of the max-margin
classifier for the activity category y. Note the possible val-
ues for y and h are discrete. Thus the problem above can be
solved by searching across all of the labels y(1 ≤ y ≤C) and
calculate the maximum Fy(xi,ω,h) by optimizing h. To find
the maximum of Fy(xi,ω,h), we enumerate all the possible
values of h, and calculate the corresponding Fy(xi,ω,h) via
forward propagations. Since the forward propagations de-
cided by different h are independent, we can parallelize the
computation via GPU to accelerate the inference process.

7 Experiments

To validate the advantages of our model, experiments are
conducted on several challenging public datasets, i.e. CAD-
120 Dataset [19], SBU Kinect Interaction Dataset [53], and

a larger dataset newly created by us, namely Office Activity
(OA) Dataset. Moreover, we introduce a more comprehen-
sive dataset in our experiments by combining five existing
datasets of RGB-D human activity. In addition to demon-
strating the superior performance of the proposed model over
other state-of-the-arts, we extensively evaluate the main com-
ponents of our framework.

7.1 Datasets and Setting

The CAD-120 dataset comprises of 120 RGB-D video se-
quences of humans performing long daily activities of 10
categories, and has been widely used for testing 3D human
activity recognition methods. These activities recorded via
the Microsoft Kinect sensor were performed by four dif-
ferent subjects, and each activity was repeated three times
by the same actor. These activities have a long sequence
of sub-activities, which vary from subject to subject signif-
icantly in terms of length of the sub-activities, order of the
sub-activities as well as in the way they executed the task.
Moreover, the challenges on this dataset also lie in the large
variance in object appearance, human pose, and viewpoint.
Several sampled frames and depth maps from this databases
of these 10 categories are exhibited in Figure 7 (a).

The SBU dataset consists of 8 categories of two-person
interaction activities, including a total of about 300 RGB-D
video sequences, i.e. about 40 sequences for each interac-
tion category. Even though most interactions in this dataset
are simple, it is still challenging for modeling two-person
interactions by considering the following difficulties: i) one
person is acting and the other person is reacting in most
cases, ii) the average frame length of these interaction is
short (ranging from 20 to 40), iii) the depth maps have noises.
Figure 7 (b) shows several sampled frames and depth maps
of these 8 categories.

The proposed OA dataset is more comprehensive and
challenging compared with the existing datasets, and it cov-
ers the regular daily activities taken place in an office. To
the best of our knowledge, it is the largest activity dataset
of RGB-D videos consisting of 1180 sequences. The OA
database is publicly accessible 1. Three RGB-D sensors (i.e.
Microsoft Kinect cameras) are utilized to capture data from
different viewpoints, and more than 10 actors are involved.
The activities are captured in two different offices to increase
the variability, where each actor performs the same activity
twice. The activities performed by two subjects with inter-
actions are also included. Specifically, it is divided into two
subsets, each of which contains 10 categories of activities:
OA1 (complex activities by a single subject) and OA2 (com-
plex interactions by two subjects). Several sampled frames

1 http://vision.sysu.edu.cn/projects/3d-activity/
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a

c

d

b

Fig. 7 Activity examples from the testing databases. Several sampled frames and depth maps are presented. (a) CAD-120, (b) SBU, (c) OA1, (d)
OA2, respectively, show two activities of the same category selected from the three databases.

and depth maps are exhibited in Figure 7 (c) and Figure 7
(d) from OA1 and OA2, respectively.

To evaluate our model under a larger scale scenario, we
collect an extra dataset by combining existing RGB-D hu-
man activity datasets: RGBD-HuDaAct [28], CAD120, SBU,
UTKinect-Action [50] and OA. This dataset contains 2989
video sequences with 5, 500, 000 frames (approximately 50
hours long) belonging to 50 activity categories, and we name
it as Merged 50 Dataset. Note that we merge very similar
activity categories from the different datasets. In addition,
we create a coarse-level variant of this dataset by merging
the 50 categories into only 4, that is, all of the 2989 activity
instances are roughly divided into 4 types: {a person inter-
acting small objects (e.g. answering-phones, having-meal), a
person interacting large objects (e.g. sleeping-in-bed, cleaning-
objects), physical contacting of persons (e.g. departing, asking-
and-way), non - physical contacting of persons (e.g. exchang-
ing objects, hugging objects together)}. And we name this
coarse-level dataset as Merged 4.

All the experiments are executed on a desktop PC with
an Intel i7 4.0GHz CPU, 8GB RAM and GTX 980 GPU.
For model learning, Algorithm 1 is employed to learn the
CNN ω and the classifier {w,b}. The main time-consuming
part is the model pre-training, which can take several days
based on our desktop PC. Afterwards, the training time of
our model on 3D activity datasets is acceptable: 3 hours
on CAD-120 (including 120 long videos). Each iteration
of training costs similar time, and the convergence of our
model over iterations is shown in Figure 8. For inference,
with the GPU-based parallel implementation, it only takes
around 0.4 seconds to complete recognition on a given video
with about 200 frames. For CAD-120 and SBU, we follow
the same training/test split adopted in the comparison meth-
ods. For OA1 and OA2, we adopt the 5-fold cross validation
by ensuring that the subjects in training set are different with
those in testing set. Since Merged 50 and Merged 4 datasets
contain different subjects in different environments, we ran-
domly select 70%, 10%, 20% video sequences from the two
datasets for training, validating and testing, respectively.



A Deep Structured Model with Radius-Margin Bound for 3D Human Activity Recognition 13

[16] Softmax SVM R-SVM Softmax SVM R-SVM
+ CNN + CNN + CNN + LCNN + LCNN + LCNN

without pre-training 56.4% 61.8% 57.5% 62.5% 70.8% 66.7% 74.7%
with pre-training 63.1% 68.3% 78.3% 77.7% 82.7% 89.4% 90.1%

Table 1 Average accuracy with/without incorporating the latent structure on CAD 120 dataset with different top classifiers: Softmax, linear SVM,
radius-margin SVM.
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Fig. 8 Test error rates with/without incorporating the latent structure
in the deep model. The solid curve represents the deep model trained
by the proposed joint component learning method, and the dashed
curve represents the traditional training way (i.e. using standard back-
propagation).

7.2 Empirical Analysis

Empirical analysis are given to assess the main components
of the proposed deep structured model, including latent struc-
ture, relaxed radius-margin bound, model pre-training, and
depth/grayscale channel. Several variants of our method are
suggested by enabling/disabling some components. Specif-
ically, we denote the conventional 3D convolutional neural
network with the softmax classifier as Softmax + CNN, de-
note the 3D CNN with the SVM classifier as SVM + CNN,
denote the 3D CNN with the relaxed radius-margin bound
classifier as R-SVM + CNN. Analogously, we denote our
deep model as LCNN, and then define Softmax + LCNN,
SVM + LCNN, and R-SVM + LCNN accordingly.

Latent Model Structure. In this experiment, we imple-
ment a simplified version of our model by removing the la-
tent structure and compare it with our full model. The sim-
plified model is actually a spatio-temporal CNN model in-
cluding both 3D and 2D convolutional layers, and this model
uniformly segments the input video into M sub-activities.
Without the latent variables to be estimated, the standard
back propagation algorithm is employed for model training.
We execute this experiment on CAD120 dataset. Figure 8
shows the test error rates with different iterations of the
simplified model (i.e. CNN) and the full version (i.e. struc-
tured CNN) in the same CNN initialization. Based on the
results, we observe that our full model outperforms the sim-

plified model in both error rate and training efficiency. Fur-
thermore, one can see that the structured models with model
pre-training, i.e. Softmax + LCNN, SVM + LCNN, R-SVM
+ LCNN, achieve 14.4%/11.1%/12.4% better performance
than the traditional CNN models, i.e. Softmax + CNN, SVM
+ CNN, R-SVM + CNN, respectively. The results clearly
demonstrate the significance of incorporating latent tempo-
ral structure in dealing with the large temporal variations of
human activities.

Pre-training. To justify the effectiveness of pre-training,
we discard the parameters trained on 2D videos, and learn
the model directly on the grayscale-depth data. We com-
pare the performance with/without pre-training using SVM
+ LCNN and R-SVM + LCNN, as listed in Table 1. One can
see that pre-training is effective in reducing the test error
rate. Actually, the test error rate with pre-training is about
15% less than that without pre-training.

Relaxed Radius-margin Bound. As described above,
the training data for grayscale-depth human activity recog-
nition are scarce. Thus, for the last fully connected layer, we
adopt the SVM classifier by incorporating with the relaxed
radius-margin bound, resulting in the R-SVM + LCNN model.
To justify the role of the relaxed radius-margin bound, Ta-
ble 3 compares the accuracies of Softmax + LCNN, SVM +
LCNN, and R-SVM + LCNN on all datasets with the same
experimental settings. It is observed that the max-margin
based classifiers (SVM and R-SVM) are particularly effec-
tive on small scale datasets (CAD120, SBU, OA1, OA2,
Merged 50). On average, the accuracy of R-SVM + LCNN
is average 6.5% higher than that of Softmax + LCNN, and is
about 1% higher than that of SVM + LCNN. On Merged 4
dataset, the improvement of R-SVM + LCNN is incremen-
tally evident, 1.8% higher than Softmax + LCNN. These
results finely accord with our motivation of incorporating
the radius-margin bound into our deep learning framework.
Moreover, when the model is learned without pre-training,
R-SVM + LCNN gains about 4% and 8% improvements
over Softmax + LCNN and SVM + LCNN by accuracy, re-
spectively, as Table 1 reports.

Channel Analysis. To evaluate the contribution of the
grayscale and depth data, we execute the following experi-
ment on the OA datasets: keeping only one channel data as
input. Specifically, we first disable the depth channel and in-
put the grayscale data to perform the training/testing, and
then disable the grayscale channel and employ the depth
channel for training/testing. Table 4 proves that depth data
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[37] best result from [19] [49] [16] best result from [18] R-SVM + LCNN
arranging-objects - 33.0% 75.0% 68.3% 50.0% 91.7%
cleaning-objects - 67.0% 68.3% 60.0% 67.0% 83.3%

having-meal - 100.0% 41.7% 60.0% 100.0% 91.7%
making-cereal - 100.0% 76.7% 77.6% 100.0% 100.0%

microwaving-food - 100.0% 36.7% 71.7% 67.0% 100.0%
picking-objects - 75.0% 75.0% 58.3% 67.0% 91.7%
stacking-objects - 92.0% 75.0% 48.3% 92.0% 91.7%

taking-food - 75.0% 83.3% 73.3% 67.0% 91.7%
taking-medicine - 100.0% 58.3% 76.7% 92.0% 84.6%

unstacking-objects - 100.0% 33.3% 36.7% 92.0% 75.0%
Average accuracy 59.7% 84.2% 62.3% 63.1% 83.1% 90.1%

Table 2 Accuracy of all categories on CAD120 dataset. Accuracy per activity category and average accuracy of all categories are reported.
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Fig. 9 Confusion Matrices of our proposed deep structured model on (a) CAD120, (b) SBU, (c) OA1, (d) OA2 datasets. It is evident that these
confusion matrices all have a strong diagonal with few errors.

Softmax + SVM + R-SVM +
LCNN LCNN LCNN

CAD120 82.7% 89.4% 90.1%
SBU 92.4% 92.8% 94.0%
OA1 60.7% 68.5% 69.3%
OA2 47.0% 53.7% 54.5%

Merged 50 30.3% 36.4% 37.3%
Merged 4 87.1% 88.5% 88.9%

Table 3 Average accuracy of all categories on four datasets with dif-
ferent classifiers.

can boost the performance by large margins, especially in
OA1 and Merged 50. This is due to the fact that large ap-
pearance variances existed in grayscale data. In particular,
our testing is performed on the new subjects and this would
further increase the appearance variance. On the contrary,
the depth data are more reliable and have much smaller vari-

grayscale depth grayscale + depth
OA1 60.4% 65.2% 69.3%
OA2 46.3% 51.1% 54.5%

Merged 50 27.8% 33.4% 37.3%
Merged 4 81.7% 85.5% 88.9%

Table 4 Channel analysis on the three datasets. Average accuracy of
all categories are reported.

Linear SVM MILBoost ours
Average accuracy 87.3% 91.1% 93.4%

Table 5 Average accuracy on SBU dataset.

ances, which is helpful in capturing the salient motion infor-
mation.
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7.3 Experimental Results and Comparisons

CAD-120 dataset. On this dataset, we adopt five state-of-
the-art methods for comparison. Note that for different meth-
ods we train the models using the same data annotation,
which only includes the activity labels on videos. As shown
in Table 2, our method obtains the average accuracy of 90.1%,
which is significantly superior to the results generated by
other five competing methods, i.e. 59.7% [37], 84.2% [19],
62.3% [49], 63.1% [16] and 83.1% [18]. Table 2 reports
the accuracies per activity category of our method and the
method based on hand-crafted feature engineering [49], the
deep architecture of convolutional neutral networks [16] 2,
and the rich spatio-temporal relations modeling [18]. Our
method achieves the highest accuracies on 6 of the 10 activ-
ity categories.

SBU dataset. As shown in Table 5, our method obtains
the average accuracy of 93.4% and performs better than the
methods based on body-pose features [53], which indicates
that our method is effective in learning discriminative fea-
tures directly from raw data for modeling person-to-person
interaction.

2 We implement the 3D-CNN model [16]. For fair comparison, pa-
rameter pre-training and dropout have been also employed in our im-
plementation, and the configuration of 3D-CNN is the same with that
of our model except that we set M = 1 for 3D-CNN.

[49] [16] ours
answering-phones 12.5% 40.0% 61.7%

arranging-files 59.7% 53.3% 68.3%
eating 40.3% 41.7% 66.7%

moving-objects 48.6% 51.7% 70.0%
going-to-work 34.7% 41.7% 68.3%
finding-objects 65.3% 36.7% 71.7%

mopping 63.9% 66.7% 76.7%
sleeping 25.0% 45% 81.7%

taking-water 58.3% 40.0% 61.7%
wandering 56.9% 50.0% 66.7%
Accuracy 46.5% 46.7% 69.3%

Table 6 Quantitative results on OA1 dataset. Accuracy per activity
category and average accuracy of all categories are reported.

[49] [16] ours
asking-and-away 12.5% 39.6% 62.3%

called-away 45.8% 44.8% 53.5%
carrying 66.7% 56.8% 48.3%
chatting 37.5% 17.2% 57.9%

delivering 20.1% 34.5% 48.3%
eating-and-chatting 50.0% 35.8% 46.6%

having-guest 37.5% 34.1% 55.2%
seeking-help 16.7% 44.8% 56.1%

shaking-hands 41.7% 32.8% 51.7%
showing 37.5% 29.3% 64.6%
Accuracy 36.6% 37.0% 54.5%

Table 7 Quantitative results on OA2 dataset. Accuracy per activity
category and average accuracy of all categories are reported.

[49] [16] ours
Merged 50 21.1% 24.1% 37.3%
Merged 4 79.1% 81.2% 88.9%

Table 8 Average accuracy on Merged 50 and Merged 4 datasets.

OA dataset. In this experiment, we apply our method on
the two OA subsets. Tables. 6 and 7 list the accuracies per
category and average accuracy of the competing methods,
and our method outperforms the state-of-the-art methods in
terms of the average accuracy. On the OA1 set, our method
achieves the best accuracies on all categories and obtains the
highest average accuracy of 69.3%, as shown in Table. 6. On
the OA2 set, our method achieves the best accuracies on 8
out of 10 activity categories and obtains the highest average
accuracy of 54.5%, as shown in Table 7. By checking the re-
sults, we find that the failure cases are mainly caused by the
lack of contextualized scene understanding. For example,
understanding the activities of having-guest and eating-and-
chatting actually requires extra higher level information, and
we will consider this issue in the future work.

Merged datasets. Table 8 reports the average accuracy
of the competing methods, and our method outperforms the
state-of-the-art methods [49, 16] in terms of the average ac-
curacy.

In summary, our method consistently achieves better re-
sults than the competing methods on the three 3D activ-
ity datasets. Figure 9 shows the confusion matrices of our
model for all datasets. One can see that, the confusion ma-
trices are strongly diagonal with few errors, which indicates
that our deep structured model is effective in handling vari-
ous challenges in 3D human activity recognition.

8 Conclusion

In this paper, we have introduced, first, a deep and latent-
structured model using the convolutional neural networks.
Second, a unified formulation integrating the radius-margin
regularization with the feature learning. Third, an effective
learning algorithm that iteratively optimizes the sub-activity
decomposition, the margin-based classifier, and the neural
networks. We have demonstrated the practical applicability
of our model by effectively recognizing human activities us-
ing a depth camera. Experiments on the public datasets sug-
gest that our model convincingly outperforms other state-of-
the-art methods under several very challenging scenarios.

One main drawback of our current solution is the scala-
bility of model inference. The brute-force enumeration over
all settings of the latent variables will cause extra compu-
tation cost and this issue may become much more serious
when the number (e.g., 1000) of human activity categories
is large. Apart from the scalability issue, we intend to extend
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our work in the following directions. The first is to general-
ize our model with compositional grammar rules (e.g. the
And-Or grammars), and thus deal with more complicated
event understanding (e.g. the causality inference). The sec-
ond is to revise our neural network for recognizing human
action / activity from 2D videos. Note that there are distinct
differences between 2D videos and 3D videos. For example,
these mentioned 2D datasets basically include diverse envi-
ronments (e.g., indoor / outdoor) with the camera moving,
and the 3D depth data are all captured indoor with a fixed
sensor (i.e. Microsoft Kinects). In addition, the 2D videos
are usually in higher resolution than the data (i.e. 320 × 240)
captured by the depth sensor.
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