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Scale and Orientation Adaptive Mean Shift Tracking 

 
Jifeng Ning, Lei Zhang1, David Zhang and Chengke Wu 

 

Abstract – A scale and orientation adaptive mean shift tracking (SOAMST) algorithm is 

proposed in this paper to address the problem of how to estimate the scale and orientation 

changes of the target under the mean shift tracking framework. In the original mean shift 

tracking algorithm, the position of the target can be well estimated, while the scale and 

orientation changes can not be adaptively estimated. Considering that the weight image 

derived from the target model and the candidate model can represent the possibility that a 

pixel belongs to the target, we show that the original mean shift tracking algorithm can be 

derived using the zeroth and the first order moments of the weight image. With the zeroth order 

moment and the Bhattacharyya coefficient between the target model and candidate model, a 

simple and effective method is proposed to estimate the scale of target. Then an approach, 

which utilizes the estimated area and the second order center moment, is proposed to 

adaptively estimate the width, height and orientation changes of the target. Extensive 

experiments are performed to testify the proposed method and validate its robustness to the 

scale and orientation changes of the target. 
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1. Introduction 

Real-time object tracking is a critical task in computer vision, and many algorithms have been 

proposed to overcome the difficulties arising from noise, occlusions, clutters, and changes in 

the foreground object and/or background environment [14]. Among various tracking methods, 

the mean shift tracking algorithm is a popular one due to its simplicity and efficiency. The 

mean shift algorithm was originally developed by Fukunaga and Hostetler [2] for data 

analysis, and later Cheng [3] introduced it to the field of computer vision. Bradski [6] 

modified it and developed the Continuously Adaptive Mean Shift (CAMSHIFT) algorithm for 

face tracking. Comaniciu and Meer successfully applied mean shift algorithm to image 

segmentation [8] and object tracking [7, 9]. Some optimal properties of mean shift were 

discussed in [13, 15]. 

In the classical mean shift tracking algorithm [9], the estimation of scale and orientation 

changes of the target is not solved. Although it is not robust, the CAMSHIFT algorithm [6], as 

the earliest mean shift based tracking scheme, could actually deal with various types of 

movements of the object. In CAMSHIFT, the moment of the weight image determined by the 

target model was used to estimate the scale (also called area) and orientation of the object 

being tracked. Based on Comaniciu et al’s work in [9], many tracking schemes [10, 11, 17, 18, 

23] were proposed to solve the problem of target scale and/or orientation estimation. Collins 

[10] adopted Lindeberg et al’s scale space theory [19, 20] for kernel scale selection in 

mean-shift based blob tracking. However, it cannot handle the rotation changes of the target. 

An EM-shift algorithm was proposed by Zivkovic and Kröse in [11], which simultaneously 

estimates the position of the local mode and the covariance matrix that can approximately 

describe the shape of the local mode. In [23], a distance transform based asymmetric kernel is 

used to fit the object shape through a scale adaptation followed by a segmentation process. Hu 
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et al [17] developed a scheme to estimate the scale and orientation changes of the object by 

using spatial-color features and a novel similarity measure function [12, 16]. 

In this paper, a scale and orientation adaptive mean shift tracking (SOAMST) algorithm is 

presented under the mean shift framework. Unlike CAMSHIFT, which uses the weight image 

determined by the target model, the proposed SOAMST algorithm employs the weight image 

derived from the target model and the target candidate model in the target candidate region to 

estimate the target scale and orientation. Such a weight image can be regarded as the density 

distribution function of the object in the target candidate region, and the weight value of each 

pixel represents the possibility that it belongs to the target. Using this density distribution 

function, we can compute the moment features and then estimate effectively the width, height 

and orientation of the object based on the zeroth order moment, the second order center 

moment and the Bhattacharyya coefficient between target model and target candidate model. 

The experimental results demonstrate that SOAMST can deal with various movements of the 

tracked object flexibly and robustly. 

The rest of the paper is organized as follows. Section 2 introduces the classical mean shift 

algorithm. Section 3 analyzes the moment features of the target candidate region and then 

describes in detail the proposed SOAMST approach. Section 4 performs extensive 

experiments to test the proposed SOAMST algorithm in comparison with state-of-the-art 

schemes. Section 5 concludes the paper. 

 

2. Mean Shift Tracking Algorithm 

2.1 Target Representation 

In object tracking, a target is usually defined as a rectangle or an ellipsoidal region in the 

image. Currently, a widely used target representation is the color histogram because of its 

independence of scaling and rotation and its robustness to partial occlusions [9, 21]. Denote 
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Similarly, the probability of the feature u in the target candidate model from the candidate 

region centered at position y is given by 
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where ( )p̂ y  is the target candidate model, ( )ˆ yup  is the probability of the uth element of 

( )p̂ y , { } 1
x

h
i i n=  are pixels in the target candidate region centered at y, h is the bandwidth and 

Ch is the normalization function which is independent of y [9]. 

In order to calculate the likelihood of the target model and the candidate model, a metric 

based on the Bhattacharyya coefficient [1] is defined by using the two normalized histograms 

)y(p̂ and q̂  as follows 
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The distance between )y(p̂  and q̂  is then defined as 

( )[ ] ( )[ ]q̂,yp̂1q̂,yp̂ ρ−=d   (6) 

 
2.2 Mean Shift 

Minimizing the distance ( )ˆ ˆp y ,qd ⎡ ⎤⎣ ⎦  in Eq. (6) is equivalent to maximizing the 

Bhattacharyya coefficient ( )ˆ ˆp y ,qρ ⎡ ⎤⎣ ⎦  in Eq. (5). The optimization process is an iterative 

process and is initialized with the target position, denoted by y0, in the previous frame. By 

using the Taylor expansion around ( )0yˆ up , the linear approximation of the Bhattacharyya 

coefficient ( )ˆ ˆp y ,qρ ⎡ ⎤⎣ ⎦  in Eq. (5) can be obtained as: 
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Since the first term in Eq. (7) is independent of y, to minimize the distance in Eq. (6) is to 

maximize the second term in Eq. (7). In the mean shift iteration, the estimated target moves 

from y to a new position y1, which is defined as 
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When we choose the kernel k(x) with the Epanechnikov profile, there is g(x)=-k(x)=1, and Eq. 

(9) can be reduced to [9] 
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By using Eq. (10), the mean shift tracking algorithm finds in the new frame the most similar 

region to the object. 

From Eq. (10) it can be observed that the key parameters in the mean shift tracking 

algorithm are the weights iw . In this paper we will focus on the analysis of iw , with which 

the scale and orientation of the tracked target can be well estimated, and then a scale and 

orientation adaptive mean shift tracking algorithm can be developed. 

 

3. Scale and Orientation Adaptive Mean Shift Tracking 

In this section, we first analyze how to calculate adaptively the scale and orientation of the 

target in sub-sections 3.1 ~ 3.5, then in sub-section 3.6, a scale and orientation adaptive mean 

shift tracking (SOAMST) algorithm is presented. 

The enlarging or shrinking of the target is usually a gradual process in consecutive frames. 

Thus we can assume that the scale change of the target is smooth and this assumption holds 

reasonably well in most video sequences. If the scale of the target changes abruptly in 

adjacent frames, no general tracking algorithm can track it effectively. With this assumption, 

we can make a small modification of the original mean shift tracking algorithm. Suppose that 

we have estimated the area of the target (the area estimation will be discussed in sub-section 

3.2) in the previous frame, in the current frame we let the window size or the area of the target 

candidate region be a little bigger than the estimated area of the target. Therefore, no matter 

how the scale and orientation of the target change, it should be still in this bigger target 

candidate region in the current frame. Now the problem turns to how to estimate the real area 

and orientation from the target candidate region. 
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3.1 The Weight Images in Target Scale Changing 

  

 

(a) (b)  
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Fig. 1: Weight images in CAMSHIF [6] and mean shift tracking [9] algorithms when the object scale 
changes. (a) A synthesized target with three gray levels. (b) A target candidate window that is bigger than 
the target. (c), (f) and (i) are the target candidate regions enclosed by the target candidate window (dashed 
box) when the scale of the target decreases, keeps invariant and increases, respectively. (d), (g) and (j) are 
respectively the weight images of the target candidate regions in (c), (f) and (i) calculated by CAMSHIFT. 
(e), (h) and (k) are respectively the weight images of the target candidate regions in (c), (f) and (i) 
calculated by mean shift tracking.  
 

 
In the CAMSHIFT and the mean shift tracking algorithms, the estimation of the target 

location is actually obtained by using a weight image [10, 24]. In CAMSHIFT, the weight 

image is determined using a hue-based object histogram where the weight of a pixel is the 

probability of its hue in the object model. While in the mean shift tracking algorithm, the 

weight image is defined by Eq. (8) where the weight of a pixel is the square root of the ratio of 

its color probability in the target model to its color probability in the target candidate model. 

Moreover, it is not accurate to use the weight image by CAMSHIFT to estimate the location 
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of the target, and the mean shift tracking algorithm can have better estimation results. That is 

to say, the weight image in the mean shift tracking algorithm is more reliable than that in the 

CAMSHIFT algorithm. 

As in the CAMSHIFT algorithm, in the SOAMST scheme to be developed, the scale and 

orientation of the target will be estimated by using the moment features [4-6] of the weight 

image. Since those moment features depend only on the weight image, a properly calculated 

weight image could lead to accurate moment features and consequently good estimates of the 

target changes. Therefore, let’s analyze the weight images in the CAMSHIFT and mean shift 

tracking methods in order for the development of the SOAMST algorithm. 

As mentioned at the beginning of Section 3, we will track the target in a larger candidate 

region than its size to ensure that the target will be within this candidate region when the 

tracking process ends. With this strategy, let’s compare the weight images in CAMSHIFT and 

mean shift tracking under different scale changes by using the following experiments. Figure 

1-(a) shows a synthesized target that has three gray levels. Figure 1-(b) shows the candidate 

region that is a little bigger than the target. Figures 1-(c), (f) and (i) are the tracking results 

when the scale of the synthesized target decreases, keeps invariant and increases, respectively. 

Figures 1-(d), (g) and (j) illustrate the weight images calculated by the CAMSHIFT algorithm 

in the three cases, while Figures 1-(e), (h) and (k) illustrate the weight images calculated by 

the mean shift tracking algorithm in the three cases. 

From Figure 1, we can see clearly the difference of the weight images between 

CAMSHIFT and mean shift tracking. First, the weight image in the CAMSHIFT algorithm is 

constant and it only depends on the target model, while the weight image in the mean shift 

tracking algorithms will change dynamically with the scale changes of the target. Second, the 

weight image is closely related to the target scale change in mean shift tracking. The closer 

the real scale of the target is to the candidate region, the better the weight image approaches to 



 9

1. That is to say, the weight image in mean shift tracking can be a good indicator of the scale 

change of the target. However, the weight image in CAMSHIFT does not reflect this. 

Based on the above observation and analysis, we could consider the weight image in the 

mean shift tracking algorithm as a density distribution function of the target, where the weight 

value of a pixel reflects the possibility that it belongs to the target. In the following sections, 

we can see that the scale and orientation of the target can be well estimated by using this 

density distribution function together with the moment features of the weight image. 

 

3.2 Estimating the Target Area 

Since the weight value of a pixel in the target candidate region represents the probability that 

it belongs to the target, the sum of the weights of all pixels, i.e., the zeroth order moment, can 

be considered as the weighted area of the target in the target candidate region: 

( )00
1

x
n

i
i

M w
=

=∑  (11) 

In mean shift tracking, the target is usually in the big target candidate region. Due to the 

existence of the background features in the target candidate region, the probability of the 

target features is less than that in the target model. So Eq. (8) will enlarge the weights of target 

pixels and suppress the weight of background pixels. Thus, the pixels from the target will 

contribute more to target area estimation, while the pixels from the background will contribute 

less. This can be clearly seen in Figures 1-(e), 1-(h) and 1-(k). 

On the other hand, the Bhattacharyya coefficient2 (referring to Eq. (5)) is an indicator of 

the similarity between the target model q̂  and the target candidate model ( )p̂ y . A smaller 

Bhattacharyya coefficient means that there are more features from the background and fewer 

features from the target in the target candidate region, vice versa. If we take 00M  as the 

                                                 
2 In the remaining of the paper, for the convenience of expression we will only use “Bhattacharyya coefficient” 

to represent the “Bhattacharyya coefficient between the target model and the target candidate model”. 
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estimation of the target area, then according to Eq. (11), when the weights from the target 

become bigger, the estimation error by taking 00M  as the area of the target will be bigger, 

vice versa. Therefore, the Bhattacharyya coefficient is a good indicator of how reliable it is by 

taking 00M  as the target area. Table 1 lists the real area of the target in Figure 1 and the 

estimation error by taking 00M  as the target area. We can see that with the increase of the 

Bhattacharyya coefficient, the estimation accuracy by taking 00M  as the target area will also 

increase (e.g., the estimation error will decrease). 

Based on the above analysis, we see that the Bhattacharyya coefficient can be used to 

adjust 00M  in estimating the target area, denoted by A. We propose the following equation to 

estimate it: 

00( )A c Mρ=  (12) 

where c(ρ) is a monotonically increasing function with respect to the Bhattacharyya 

coefficient ρ ( 0 1ρ≤ ≤ ). As can be seen in Figures 1-(e), 1-(h) and 1-(k) and Table 1, 00M  is 

always greater than the real target area and it will monotonically approach to the real target 

area with ρ increasing. Thus we require that c(ρ) should be monotonically increase and reach 

maximum 1 when ρ is 1. Such a correction function c(ρ) is possible to shrink 00M  back to 

the real target scale. There can be alternative candidate functions of c(ρ), such as linear 

function c(ρ)=ρ, Gaussian function, etc. Here we choose the exponential function as c(ρ) 

based on our experimental experience3: 

1( ) expc ρρ
σ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (13) 

From Eqs. (12) and (13) we can see that when ρ approaches to the upper bound 1, i.e., 

when the target candidate model approaches to the target model, c(ρ) approaches to 1 and in 
                                                 
3 By our experimental experience, both exponential and Gaussian functions can achieve satisfying results, and 

we choose the former here for simplicity.  
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this case it is more reliable to use 00M  as the estimation of target area. When ρ decreases, i.e., 

the candidate model is not identical to the target model, 00M  will be much bigger than the 

target area but c(ρ) is less than 1 so that A can avoid being biased too much from the real 

target area. When ρ approaches to 0, i.e., the tracked target gets lost, c(ρ) will be very small so 

that A is close to zero. 

 

Table 1. The area estimation (pixels) of the target under different scale changes by the proposed method. 

Tracking result Fig. 1 (e) Fig. 1 (h) Fig. 1 (k) 
Real area of target 100 150 240 
Background area 140 90 0 

Bhattacharyya coefficient 0.6454 0.7906 1 

Estimated area A under 
different σ  and the relative 
estimation error (%) in 
comparison with M00. 

M00 150 +50% 195 +30% 240 0% 
σ =1.5 118.42 +18.42% 169.59 +13.06% 240 0% 
σ =1 105.22 +5.22% 158.16 +5.44% 240 0% 
σ =0.8 96.29 -3.71% 150.09 +0.06% 240 0% 
σ =0.5 73.81 -26.19% 128.28 -14.48% 240 0% 

 

 
Table 1 lists the area estimation results of the target by using Eq. (12) under different scale 

changes in Figures 1-(e), 1-(h) and 1-(k). Though an optimal value of σ  should be adaptive 

to the video content, by our experimental experiences it was found that when the target model 

is appropriately defined (containing not too many background features), setting σ  between 1 

and 2 can achieve very robust tracking results for most of the testing video sequences. 

 

3.3 The Moment Features in Mean Shift Tracking 

In this sub-section, we analyze the moment features in mean shift tracking and then combine 

them with the estimated target area to further estimate the width, height and orientation of the 

target in the next sub-section. Like in CAMSHIFT, we can easily calculate the moments of the 

weight image as follows: 

10 ,1 01 ,2
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x x
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i i i i
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where pair (xi,1, xi,2) is the coordinate of pixel i in the candidate region.  

Comparing Eq. (10) with Eqs. (11) and (14), we can find that y1 is actually the ratio of the 

first order moment to the zeroth order moment: 

( )1 1 2 10 00 01 00y x , x ( / , / )M M M M= =  (16) 

where ( 1x , 2x ) represents the centroid of the target candidate region. The second order center 

moment could describe the shape and orientation of an object. By using Eqs. (10), (11), (15) 

and (16), we can convert Eq. (9) to the second order center moment as follows 

1 2

2 2
20 20 00 11 11 00 1 2 02 02 00/ / /M M x M M x x M M xμ μ μ= − = − = −  (17) 

Eq. (17) can be rewritten as the following covariance matrix in order to estimate the width, 

height and orientation of the target: 

20 11

11 02

Cov
μ μ
μ μ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  (18) 

 

3.4 Estimating the Width, Height and Orientation of the Target 

By using the estimated area (sub-section 3.2) and the moment features (sub-section 3.3), the 

width, height and orientation of the target can be well estimated. The covariance matrix in Eq. 

(18) can be decomposed by using the singular value decomposition (SVD) [22] as follows 

1

T2
11 12 11 12

2
21 22 21 222

0

0
T u u u u

Cov U S U
u u u u

λ

λ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= × × = × ×⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (19) 

where 11 12

21 22

u u
U

u u
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 
2

1
2
2

0
0

S
λ

λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 2
1λ  and 2

2λ  are the eigenvalues of Cov. The 

vectors (u11, u21)T and (u12, u22)T represent, respectively, the orientation of the two main axes 

of the real target in the target candidate region. 
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Because the weight image is a reliable density distribution function, the orientation 

estimation of the target provided by matrix U is more reliable than that by CAMSHIFT. 

Moreover, in the CAMSHIFT algorithm, 1λ  and 2λ  were directly used as the width and 

height of the target, which is actually improper [4, pp. 12-14]. Next, we present a new scheme 

to more accurately estimate the width and height of the target. 

   Suppose that the target is represented by an ellipse, for which the lengths of the 

semi-major axis and semi-minor axis are denoted by a and b, respectively. Instead of using 1λ  

and 2λ  directly as the width a and height b, it has been shown [4, pp. 12-14] that the ratio of 

1λ  to 2λ  can well approximate the ratio of a to b, i.e., 1 2 a bλ λ ≈ . Thus we can set 

1a kλ=  and 2b kλ= , where k is a scale factor. Since we have estimated the target area A, 

there is ( )( )1 2ab k k Aπ π λ λ= = . Then it can be easily derived that 

( )1 2/k A πλ λ=  (20) 

( ) ( )1 2 2 1/ /a A b Aλ πλ λ πλ= =     (21) 

Now the covariance matrix becomes  

T2
11 12 11 12

2
21 22 21 22

0
0

u u u ua
Cov

u u u ub
⎡ ⎤⎡ ⎤ ⎡ ⎤

= × ×⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

 (22) 

The adjustment of covariance matrix Cov in Eq. (22) is a key step of the proposed algorithm. 

It should be noted that the EM-like algorithm by Zivkovic and Kröse [11] estimates iteratively 

the covariance matrix for each frame based on the mean shift tracking algorithm. Unlike the 

EM-like algorithm, our algorithm combines the area of target, i.e., A, with the covariance 

matrix to estimate the width, height and orientation of the target. 

   In Section 4.1, we listed the estimated width, height and orientation of the synthetic ellipse 

sequence in Figure 1 together with the relative estimation error by using the proposed 

SOAMST algorithm. It can be seen that the estimation accuracy is very satisfying. 
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3.5 Determining the Candidate Region in Next Frame 

Once the location, scale and orientation of the target are estimated in the current frame, we 

need to determine the location of the target candidate region in the next frame. With Eq. (22), 

we define the following covariance matrix to represent the size of the target candidate region 

in the next frame  

( )
( )

2
T

2 2

0

0

a d
Cov U U

b d

⎡ ⎤+ Δ
⎢ ⎥= × ×
⎢ ⎥+ Δ⎣ ⎦

 (23) 

where dΔ  is the increment of the target candidate region in the next frame. The position of 

the initial target candidate region is defined by the following ellipse region 

1 T
1 2 1(x y ) (x y ) 1Cov −− × × − ≤  (24) 

 

3.6 Implementation of the SOAMST Algorithm 

Based on the above analyses in sub-sections 3.1 ~ 3.5, the scale and orientation of the target 

can be estimated and then a scale and orientation adaptive mean shift tracking algorithm, i.e. 

the SOAMST algorithm, can be developed. The implementation of the whole algorithm is 

summarized as follows. 

 

Algorithm of Scale and Orientation Adaptive Mean Shift Tracking (SOAMST) 

1) Initialization: calculate the target model q̂  and initialize the position y0 of the target 

candidate model in the previous frame. 

2) Initialize the iteration number 0k ← . 

3) Calculate the target candidate model 0p̂(y )  in the current frame.  

4) Calculate the weight vector { } 1i i n
w

=
 using Eq. (8). 

5) Calculate the new position y1 of the target candidate model using Eq. (10). 

6) Let 01 yyd −← , 0 1y y← . Set the error threshold ε  (default 0.1) and the 

maximum Iteration number N (default 15). 
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If ( d<ε  or k N≥ )    Stop and go to step 7; 

Otherwise           1k k← +  and go to step 3. 

7) Estimate the width, height and orientation from the target candidate model using Eq. 

(22). 

8) Estimate the initial target candidate model for next frame using Eq. (24). 

 

4. Experimental Results 

This section evaluates the proposed SOAMST algorithm in comparison with the original 

mean shift algorithm, i.e., mean shift tracking with a fixed scale, the adaptive scale algorithm 

[9] and the EM-shift algorithm4 [11, 25]. The adaptive scale algorithm and the EM-shift 

algorithm are two representative schemes to address the scale and orientation changes of the 

targets under the mean shift framework. Because the weight image estimated by CAMSHIFT 

is not reliable, it is prone to errors in estimating the scale and orientation of the object. So 

CAMSHIFT is not used in the experiments. 

We selected RGB color space as the feature space and it was quantized into 16×16×16 

bins for a fair comparison between different algorithms. It should be noted that other color 

space such as the HSV color space can also be used in SOAMST. One synthetic video 

sequence and three real video sequences are used in the experiments. The MATLAB source 

codes and all the experimental results of this paper can be downloaded in the website 

http://www.comp.polyu.edu.hk/~cslzhang/SOAMST.htm. 

 

4.1 Experiments on a Synthetic Sequence 

We first use a synthetic ellipse sequence to verify the efficiency of the proposed SOAMST 

algorithm. As shown in Figure 2-(d), the window size of the initial target (blue ellipse) is 

                                                 
4 We thank Dr. Zivkovic for sharing the code in [25]. 
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59×89. We select kΔ =10 in the proposed SOAMST algorithm so that the window size of the 

initial target candidate region (red ellipse in Figure 2-(b)) is 79×109 in frame 1. For other 

frames in the SOAMST results, the external ellipses represent the target candidate regions, 

which are used to estimate the real targets, i.e., the inner ellipses. The experimental results 

show that the proposed SOAMST algorithm could reliably track the ellipse with scale and 

orientation changes. Meanwhile, the experimental results by the fixed-scale mean shift is not 

good because of significant scale and orientation changes of the object. The adaptive scale 

algorithm does not estimate the target orientation change and has bad tracking results. The 

EM-shift algorithm fails to correctly estimate the scale and orientation of the synthetic ellipse, 

although the target in this sequence is very simple. 

 

   
(a) The fixed-scale mean shift tracking algorithm 

 

   
(b) Adaptive scale algorithm 

 

   
(c) The EM-shift algorithm 

 

   
(d) The proposed SOAMST algorithm

 
Fig. 2: Tracking results of the synthetic ellipse sequence by different tracking algorithms. The red ellipses 
represent the target candidate region while the blue ellipse represents the estimated target region. The 
frames 1, 20, 30, 40, 50, 70 are displayed. 
 

Table 2 lists the estimated width, height and orientation of the ellipse in this sequence by 
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using the SOAMST scheme. The orientation is calculated as the angle between the major axis 

and x-axis. The first frame of the sequence was used to define the target model and the rest 

frames were used for testing. It can be seen that the proposed SOAMST method achieves 

good estimation accuracy of the scale and orientation of the target. 

 

Table 2. The estimation result and accuracy of the width, height and orientation of the ellipse by the 
proposed SOAMST method. 
 

Frame 
no. 

Semi-major length a Semi-minor length b Orientation 
Real 

length 
Estimated 

length 
Error 
(%) 

Real 
length 

Estimated 
length 

Error 
(%) 

Real 
angle 

Estimated 
angle 

Error 
(%) 

20 45 46.13 2.51 29 29.81 2.79 95 95.26 0.27 
30 39 41.25 5.77 18 18.62 3.44 145 145.03 0.02 
40 26 27.03 3.97 16 16.58 3.63 15 14.68 2.13 
50 24 24.72 3 16 16.41 2.56 65 63.38 2.49 
60 36 37.93 5.36 16 16.57 3.56 115 114.7 0.26 
70 44 45.12 2.55 26 26.58 2.23 165 165.01 0.01 

Average error over 71 frames 3.50  2.81  1.47 
 

 

4.2 Experiments on Real Video Sequences 

The proposed SOAMST algorithm is then tested by using three real video sequences. The first 

video is a palm sequence (Figure 3) where the object has clearly scale and orientation changes. 

Neither the fixed-scale mean shift algorithm nor the adaptive scale algorithm achieves good 

tracking results. On the other hand, we see that both EM-shift and SOAMST track the palm 

well in the sequence. However, when the palm is moving fast, such as in frames 27 and 94, 

the estimated target scale and orientation by EM-shift are not as accurate as those by the 

SOAMST algorithm. 

The second video is a car sequence where the scale of the object (a white car) increases 

gradually as shown in Figure 4. The experimental results show that the proposed SOAMST 

algorithm estimates more accurately the scale changes than the adaptive scale and the 

EM-shift algorithms. 
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(a) The fixed-scale mean shift tracking algorithm 

    
(b) Adaptive scale algorithm 

    
(a) The EM-Shift algorithm 

    
(b) The proposed SOAMST algorithm 

 
Fig. 3: Tracking results of the palm sequence by different tracking algorithms. The frames 10, 27, 94, and 
140 are displayed. 
 

    
(a) Adaptive scale algorithm 

    
(b) The EM-Shift algorithm 

    
(c) The proposed SOAMST algorithm 

 
Fig. 4: Tracking results of the car sequence by different tracking algorithms. The frames 15, 40, 60 and 75 
are displayed. 
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The last experiment is on a more complex sequence of walking man. The object exhibits 

large scale changes with partial occlusion. To save space we only show the results by 

EM-shift and SOAMST here. As can be seen in Figure 5, both EM-shift and SOAMST 

algorithm can track the target over the whole sequence. However, the SOAMST scheme 

works much better in estimating the scale and orientation of the target, especially when 

occlusion occurs. 

 

    
 (a) The EM-shift algorithm 

 

    
 (b) The proposed SOAMST algorithm 

 
Fig. 5: Tracking results of the walking man sequence with occlusion by the EM-shift and SOAMST 
algorithms. The frames 10, 60, 110 and 150 are displayed. 
 

Table 3. The average number of iterations by different methods on the four sequences. 
 

Methods Fixed-scale 
mean shift 

Adaptive 
scale EM-shift SOAMST 

Synthetic ellipse 2.34 13.62 6.27 2.59 
Palm sequence 3.92 14.43 6.52 4.28 
Car sequence 3.82 11.25 6.34 3.34 

Walking-man sequence 3.97 12.84 6.35 3.69 
 

Table 3 lists the average numbers of iterations by different schemes on the four video 

sequences. The average number of iterations of the proposed SOAMST is approximately 

equal to that of the original mean shift algorithm with fixed scale. The iteration number of the 

adaptive scale algorithm is the highest because it runs mean shift algorithm three times. The 

main factors which affect the convergence speed of the EM-shift and the SOAMST algorithms 

are the computation of the covariance matrix. EM-shift estimates it in each iteration while 
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SOAMST only estimates it once for each frame. So SOAMST is faster than EM-shift. 

To better evaluate the competing methods, in Table 4 we list the mean localization errors 

(MLE) and the true area ratios (TAR) by the three trackers on the three real video sequences, 

palm, car and walking man. The TAR is defined as the ratio of the overlapped area between 

the tracking result and ground truth to the area of ground truth. The MLE and TAR are closely 

related to scale and orientation estimation of the target being tracked. Table 4 shows that the 

proposed SOAMST method achieves the best performance among the three tracking methods. 

 

Table 4. The MLE and TAR values by the competing tracking methods. 
 

Method 
Adaptive scale EM-shift SOAMST 

MLE TAR MLE TAR MLE TAR 

Palm 7.72 64.41% 10.58 86.80% 3.36 96.05% 
Car 8.64 72.07% 7.09 95.36% 4.41 92.14% 

Walking man 13.40 46.10% 11.63 65.43% 8.57 87.11% 
 

In general, the proposed SOAMST algorithm, which is motivated by the CAMSHIFT 

algorithm [6], extends the mean shift algorithm when the target has large scale and orientation 

variations. It inherits the simplicity and effectiveness of the original mean shift algorithm 

while being adaptive to the scale and orientation changes of the target. 

 

5. Conclusions 

By analyzing the moment features of the weight image of the target candidate region and the 

Bhattacharyya coefficients, we developed a scale and orientation adaptive mean shift tracking 

(SOAMST) algorithm. It can well solve the problem of how to estimate robustly the scale and 

orientation changes of the target under the mean shift tracking framework. The weight of a 

pixel in the candidate region represents its probability of belonging to the target, while the 

zeroth order moment of the weights image can represent the weighted area of the candidate 
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region. By using the zeroth order moment and the Bhattacharyya coefficient between the target 

model and the candidate model, a simple and effective method to estimate the target area was 

proposed. Then a new approach, which is based on the area of the target and the corrected 

second order center moments, was proposed to adaptively estimate the width, height and 

orientation changes of the target. The proposed SOAMST method inherits the merits of mean 

shift tracking, such as simplicity, efficiency and robustness. Extensive experiments were 

performed and the results showed that SOAMST can reliably track the objects with scale and 

orientation changes, which is difficult to achieve by other state-of-the-art schemes. In the 

future research, we will focus on how to detect and use the true shape of the target, instead of 

an ellipse or a rectangle model, for a more robust tracking. 
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