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Abstract: Kernel methods and rough sets are two general pursuits in the domain of machine learning and intelligent 

systems. Kernel methods map data into a higher dimensional feature space, where the resulting structure of the 

classification task is linearly separable; while rough sets granulate the universe with the use of relations and employ 

the induced knowledge granules to approximate arbitrary concepts existing in the problem at hand. Although it seems 

there is no connection between these two methodologies, both kernel methods and rough sets explicitly or implicitly 

dwell on relation matrices to represent the structure of sample information. Based on this observation, we combine 

these methodologies by incorporating Gaussian kernel with fuzzy rough sets and propose a Gaussian kernel 

approximation based fuzzy rough set model. Fuzzy T-equivalence relations constitute the fundamentals of most fuzzy 

rough set models. It is proven that fuzzy relations with Gaussian kernel are reflexive, symmetric and transitive. 

Gaussian kernels are introduced to acquire fuzzy relations between samples described by fuzzy or numeric attributes 

in order to carry out fuzzy rough data analysis. Moreover, we discuss information entropy to evaluate the kernel 

matrix and calculate the uncertainty of the approximation. Several functions are constructed for evaluating the 

significance of features based on kernel approximation and fuzzy entropy. Algorithms for feature ranking and 

reduction based on the proposed functions are designed. Results of experimental analysis are included to quantify the 

effectiveness of the proposed methods 
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1.  Introduction  

In the recent years, we have witnessed two types of methodologies which are widely discussed in pattern recognition 

and machine learning domains: kernel methods and rough sets. The first one allows mapping data into a higher 

dimensional feature space in order to simplify classification tasks and made them linear (viz. solvable by linear 

classifiers [1]). In this way, a number of linear learning algorithms can be used to deal with nonlinear tasks, such as 

nonlinear SVM [2, 3], kernel perceptron [4], kernel discriminant analysis [5], nonlinear component analysis [6], 

kernel matching pursuit [7], etc. Rough sets, forming an important conceptual tool for granular computing [10, 50, 51] 

[8], offer a uniform induction framework in machine learning [9]. Using this methodology, we granulate the universe 

of discourse into a family of elemental concepts to describe the objects, and then use these elemental concepts to 

approximate arbitrary subsets of the universe. Feature evaluating, variable selection, attribute reduction [10, 56], rule 

extraction [11, 54, 60], ensemble learning [12] and uncertainty reasoning [13, 58, 59, 61, 62] are the main 



developments encountered in rough sets. 

Although these two learning methodologies have been widely studied, relatively little attention has been paid to 

explore relationships between them. In some literature, we can some hybrid structure which combine the advantages 

of these techniques where one reduces data with rough sets and then carry out the development of classifiers which 

operate on such reduced data [14, 53]. However, the linkages between these two methodologies are not discussed 

explicitly and rough sets based feature selection method can be replaced with any other feature selection algorithm. 

Asharaf et al. [15] defined a rough sphere having an inner radius R defining its lower approximation and an outer 

radius T>R defining its upper approximation. With these definitions a rough support vector clustering algorithm was 

developed. Following a similar idea, Lingras and Butz embedded rough set methodology into support vector 

machines for multi-class tasks [16]. Rough sets used here are employed to represent the lower and upper boundary of 

patterns. These studies attempted to incorporate the idea of rough sets into support vector based learning,. It seems 

that there are very limited developments in a hybrid, combined use of rough sets and kernel machines. However, if 

we observe these two learning schemes, we can note that kernel methods and rough sets based data analysis share 

some interesting commonalities. Let us recall the basic procedures of the two methods in pattern analysis. On one 

hand, a typical kernel learning algorithm consists of two functional modules: nonlinear mapping realized by kernel 

functions and pattern classification being completed with kernel machines [1]. Nonlinear mapping transfers the 

original data matrix into a kernel matrix (also called Gram matrix) which presents the structure and describes 

relationships between samples. Kernel matrix plays an important role in kernel learning algorithms as it contains all 

the information available in order to perform further learning. The learning algorithm relies on information about the 

training data available through the kernel matrix. On the other hand, there are also two modules in the rough set 

methodology: (a) granulation of data (samples) into a set of information granules according to the relation of objects 

and (b) approximate classification realized in the presence of such induced information granules. The rough set 

methodology helps extract a relation (relation matrix) dealing with samples and subsequently granulates the set of 

objects into a set of information granules according to the relation between objects. The objects in the granule are 

indistinguishable in terms of this relation. Then the information granules induced by the relation are used to 

approximate the classification of the universe. Obviously, relation and relation matrix form the fundamentals of rough 

set models. They play the same conceptual role in rough sets as kernel matrix in kernel machines. The types of rough 

set models are determined by the algorithms being used to extract the relationship between samples. For example, the 

generic rough set model considers into account an equivalence relation to partition the samples into disjoint 

equivalence classes [17]; neighborhood rough sets group the samples into different neighborhood information 



granules [18], fuzzy rough sets segment the universe with a fuzzy relation into a set of fuzzy granules and 

approximate fuzzy sets with these fuzzy granules [19-23, 55, 57, 58]. We can find a high level of similarity between 

kernel methods and rough set algorithms if we take the kernel matrix as a relation matrix or consider the relation 

matrix as a kernel one. In fact, one can show that the most relation matrices used in the existing rough set models 

satisfy the conditions of kernel functions. They are positive-semidefinite and symmetric. At the same time, kernel 

matrices are symmetric and some of them are reflective [24, 25]. This means that some of kernel matrices could be 

used as fuzzy relation matrices in fuzzy rough sets. Taking this into account, we can form a bridge between rough sets 

and kernel methods with the relation matrices.  

We can make use of kernel functions to extract fuzzy relations for rough sets based data analysis. Although 

different models of fuzzy rough sets were proposed and properties of these models were discussed in literatures 

[19-22], little attention was paid to extract fuzzy relations from data and integrate these relations into fuzzy rough sets. 

The models and theories about fuzzy rough sets available in the existing literature just give a one-sided view at fuzzy 

rough computation as most of the existing fuzzy rough set models are constructed based on the fuzzy granulated 

spaces induced by fuzzy T-equivalence relations. Nevertheless the issue of how to generate an effective fuzzy 

T-equivalence relation from data has not been systematically discussed so far. Subsequently, the effective solutions 

are not present in applications. Obviously the way to generate fuzzy relations from data substantially influences the 

performance of rough set-based intelligent data analysis. The absence of effective techniques in this regard constitutes 

an obstacle for pursuing applications of fuzzy rough sets. In this study, we will introduce Gaussian kernel functions to 

extract fuzzy similarity relations between samples for fuzzy rough set based data analysis. Then we construct fuzzy 

rough models based on Gaussian kernel induced by fuzzy relations. In this way, we effectively combine fuzzy rough 

sets with kernel methods. 

As most of the existing fuzzy rough set models are constructed based on the fuzzy granulated spaces induced by 

fuzzy T- equivalence relations, it is desirable that the extracted fuzzy relations are fuzzy T- equivalence relations. In 

this context, Moser showed that the kernel matrix computed with a reflexive kernel taking values from the unit 

interval is a fuzzy T- equivalence relation [24, 25]. Therefore such kernel functions can be considered to directly 

induce fuzzy T-equivalence relations from data. In [26], Hu et al. introduced Gaussian kernels to compute similarity 

between samples in fuzzy rough set based attribute reduction. The fact that Gaussian kernel matrix is a fuzzy 

T-equivalence relation was not emphasized and fully discussed at that time. Gaussian functions are reflexive and 

symmetric taking values in the unit interval. This emphasizes that Gaussian functions can be integrated with fuzzy 

rough sets to support extraction of fuzzy T-equivalence relations. However, to our best knowledge, no detailed 



analysis with this regard has been reported yet. In this study, we will construct a novel fuzzy rough set model with 

Gaussian kernel approximation, where sample spaces are granulated into fuzzy information granules in terms of 

fuzzy T-equivalence relations computed with Gaussian kernel. We discuss the uncertainty measures of Gaussian 

kernel approximation and adapt the proposed measures to evaluate the quality of the features. Some attribute ranking 

and reduction algorithms are proposed. The experimental analysis is covered to quantify the performance of the 

method. 

The paper is organized as follows. In Section 2, some basic notations about fuzzy rough sets are briefly reviewed. 

In Section 3, the fuzzy rough set model based on Gaussian kernel approximation is proposed. Uncertainty measures 

of Gaussian kernel approximation are discussed in Section 4. Section 5 shows the applications of Gaussian kernel 

approximation to feature evaluating and feature reduction. Numeric experiments are reported in Section 6. 

2. Rough sets and fuzzy rough sets: some preliminary knowledge 

Given an information system ),( AUIS  , where },...,{ 1 mxxU  is a nonempty finite set of objects and 

},...,,{ 21 naaaA   is a nonempty finite set of attributes to characterize the objects, we associate a binary 

relation )(BIND  with a subset of attributes AB  , called B indiscernibility relation, defined as 

}),()(:),{()( BayaxaUUyxBIND  . )(BIND  is an equivalence relation and })({)( aINDBIND Ba  . 

The equivalence relation partitions the objects into a family of disjoint subsets, called elemental concepts. By Bx][  

we denote the equivalence class induced by )(BIND  including x . }|]{[)(/ UxxBINDU B  . For arbitrary 

subset UX  , two sets of equivalence classes, called B lower and B upper approximations, are defined 

as }][:]{[ XxxXB BB   and }][:]{[  XxxXB BB  , respectively. X  is said definable if XBXB  ; 

otherwise X  is a rough set. As to rough set X , we call XBXBXBN )(  the boundary of X in ),( BU . 

Although a lot of applications of the classical rough set model are found, there it is a certain point that deserves 

more attention. That is, given the equivalence relations the above model is able to deal with symbolic-valued 

databases. This somewhat limits the applications of rough sets. Several generalizations of this model were proposed 

in [19, 22, 23]. Among these generalizations, the combination of rough sets and fuzzy sets called fuzzy rough sets 

offers a useful opportunity to deal with real-valued datasets where fuzzy similarity relations between samples are 

determined.  

The concept of fuzzy rough sets was first proposed by Dubois and Prade [19]. Given a fuzzy relation R  on U, 

R  is said to be a fuzzy equivalence relation if for Uzyx  ,, , we have 1) reflexivity: 1),( xxR ; 2) symmetry: 

),(),( xyRyxR   and 3) transitivity:   ),(),(),,(min zxRzyRyxR
y

 . More generally, we say R  is a fuzzy 



T equivalence relation if for Uzyx  ,, , R  satisfies reflexivity, symmetry and T transitivity: 

  ),(),(),,( zxRzyRyxRT   , where T  is some triangular norm. 

Let R  be a fuzzy equivalence relation on U and X  be a fuzzy subset of U. Then the lower and upper 

approximations of X were defined as [19] 















     ))(),,(min(sup)(

))(),,(1max(inf)(

min

max

yXyxRxXR

yXyxRxXR

Uy

Uy
. 

The pair of Min and max is the two aggregation operations used in these calculations. In fact, there are a number 

of t-norms and s-norms for fuzzy aggregation. To generalize the above definition of fuzzy rough sets, T-equivalence 

relations were introduced in [20]. Given a fuzzy T-equivalence relation on U where   is a residual implication 

induced with T, the fuzzy lower and fuzzy upper approximations of fuzzy subset X  were defined as 
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Furthermore, based on T-equivalence relations, residual implication   and its dual  , Mi and Zhang gave 

another definition of fuzzy rough sets as [28] 
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More generally, Yeung, Chen, et al. proposed a model of fuzzy rough sets with a pair of t-norm T  and 

t-conorms S  in [45].  
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Overall, there are three definitions of fuzzy lower approximation operators: maxR , R , SR  and three upper 

approximation operators: minR , TR  and R . However, maxR  and minR  are the special cases of SR  and TR , 

where maxS  and minT . Therefore, we arrive at two definitions of lower approximations and upper 

approximations, respectively. 

The above definitions of fuzzy rough sets were constructed making use of fuzzy equivalence relations or fuzzy 

T-equivalence relations. They are straightforward generalizations of the classical rough set model. All of them reduce 

to the original concept of rough sets when the underlying relation is a Boolean one and X is a subset of U.  

There are three essential problems to be addressed when employing a fuzzy rough set model to real-world 

applications: computing the fuzzy relation from data, aggregating multiple relations extracted from a set of features 



and defining the lower and upper approximations. The above work mainly focused on the definitions of lower and 

upper approximations. We will introduce Gaussian kernel function to compute the fuzzy equivalence relations 

between samples and discuss the aggregation of features. 

3. Gaussian kernel based fuzzy rough set model 

3.1 Approximating fuzzy sets with Gaussian kernel 

Gaussian functions constitute a widely used category of kernels in SVM and other fields such as RBF neural 

networks [52]. Good performance and computational effectiveness is usually obtained with Gaussian kernel to embed 

nonlinear problems in higher dimensional feature spaces. In this section we introduce Gaussian kernel for computing 

fuzzy T equivalence relations in fuzzy rough sets and thus approximate arbitrary fuzzy subsets with kernel induced 

fuzzy granules.  

Suppose U  is a finite set of samples. Uxi   is described by a vector n
inii Rxxx  ,...,, 21 , thus U  can 

be viewed as a subset of nR .  

The similarity between two samples is computed with Gaussian kernel function 

2 2( , ) exp( 2 )i j i jk x x x x    , where i jx x  is the Euclidean distance between samples ix  and jx . we have  

1) ]1  ,0[),( ji xxk ; 

2) ),(),( ijji xxkxxk  ; 

3) 1),( ii xxk . 

Therefore Gaussian kernel induces a fuzzy relation satisfying the properties of reflexivity and symmetry. We 

denote this fuzzy relation by n
GR . In [24, 25], it was shown that n

GR  also satisfies cosT transitive where 

}0,11max{),( 22
cos baabbaT   is a triangular norm. 

Theorem 1. [25] Any kernel ]1 ,0[: UUk  with  1),( xxk  is (at least) cosT transitive where 

)0  ,11max(),( 22
cos baabbaT  . 

Corollary 1. Fuzzy relation GR  computed with Gaussian kernel is a cosT equivalence relation. 

According to the definitions of R  and R , we should obtain the residual implication of cosT and its dual for 



computing lower and upper approximations of fuzzy sets related to n
GR . We derive the residual implication of cosT  

by the following lemma. 

Lemma 1. 
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Proof.  We have }),(:]1,0[sup{),( coscos
baTbaT   , so if ba  , then 1),(

cos
baT . 

Suppose ba  . We have   should satisfies baa  )1)(1( 22   which implies 

)1)(1( 22   aba . Let baf  )(1 , )1)(1()( 22
2   af , then )(1 f  strictly increases on ]1 ,0[ , 

and )(2 f strictly decreases in interval ]1 ,0[ . If )1)(1( 22 baab  , then )()( 21  ff  . So if 

)1)(1( 22 baab  , then )()( 21  ff  ; if )1)(1( 22 baab  , then )()( 21  ff  , this implies 

)1)(1(}),(:]1,0[sup{ 22
cos baabbaT   , which completes the proof. 

In what follows, we use a compact notation by denoting 
cosT  by  .  

Definition 1. Given an information system ),( AUIS   and )(UFX  , where )(UF  is the power set of fuzzy 

sets, the fuzzy lower and upper approximations of X  related to n
GR  are defined as 
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G

UyS
n
G
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2)  - Gaussian fuzzy lower approximation operator: ))(),,((inf)( yXyxRxXR n
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3) T - Gaussian fuzzy upper approximation operator: ))(),,((sup)( yXyxRTxXR n
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Uy
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n
G


 ; 

4)  - Gaussian fuzzy upper approximation operator: ))()),,(((sup)( yXyxRNxXR n
G

Uy

n
G 


 . 

In this work, we will focus on the definitions of XRn
G  and XR T

n
G . In a similar way, we can establish 

properties of the remaining operators. If no confusion occurs, we use a shorthand notation for 
n
GR  and T

n
GR  in the 

form  n
GR  and n

GR , respectively.  

Since n
GR  is a class of fuzzy T-equivalence relations, the properties of n

GR  and n
GR  are the same as those 

shown in [22]. Here we list some of them. 

Theorem 2 [22] Given an information system ),( AUIS   and )(UFX  , n
GR  and n

GR  satisfy the following 

properties: 
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By 1) we know XRn
G  and XRn

G  are a pair of fuzzy sets approximating X  as upper and lower bounds, 

respectively, and 4) indicates that a finer fuzzy relation can offer more precise approximations than the coarser one. 

These properties give a foundation for defining and developing attributes reduction in the following subsection. 

3.2 Approximating decision regions with Gaussian Kernel 

If the set of samples is assigned with a decision attribute D , we call the triple  DCU ,,  a decision system, where 

C  is the set of condition attributes and D is the decision.  

Each subset of C can be used to induce a fuzzy cosT equivalence relation over U by computing similarity with 

Gaussian kernel. We compute )
2

exp(),(
2

2

)(


kjij

ki
j

G

xx
xxR


  as the similarity of samples ix  and kx  with 

respect to attribute j . Then the information hidden in C can be equivalently expressed as 

},,,,,,{ )()()2()1( n
G

j
GGGG RRRRR  , where n  is the number of condition attributes. 

After computing the relation making use of a single attribute, we require aggregating them for providing 

information for decision. If there are multiple fuzzy relations, the aggregation operator of fuzzy relations usually 

employs the t norm treated as the min operator in the existing fuzzy rough sets. For example, given attribute a  

and b , the relations between samples ix  and kx  are ),( ki
a xxR  and ),( ki

b xxR , respectively. Then 

)),(),,(min(),(}{}{
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b
ki

a
ki

ba xxRxxRxxR  . In this work, we use the algebraic product, yxyxTP ),( , to carry 

out aggregation. This implies that the Gaussian kernel induced the individual fuzzy relations comes in the form 
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In what follows, we denote the fuzzy relation induced by attribute subset CP   by P
GR . 

Assume decision D divides the samples into subsets },,,{ 21 Iddd  .  Here we encounter the following 

relationship Ux , 1)( xdi  if idx ; otherwise, 0)( xdi . 

Now we approximate the decision regions with the fuzzy granules induced by Gaussian function. Take the ith 



class as an example,  
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The fuzzy lower and upper approximations of a decision in terms of a Gaussian kernel based fuzzy relation are 

computed as 
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To be more specific, we have 
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The above analysis shows that the membership of x to the lower approximation of x’s decision is determined by 

the closest sample with different decisions, while the membership of x to the lower approximation of other decisions 

is zero. However, the membership of x to the upper approximation of x’s decision is always 1, while the membership 

of x to the upper approximation of another decision depends on the closest sample from this class.  



Definition 2. Given a decision table  DCU ,, , GR  is T-equivalence relation on U computed with Gaussian 

kernel in feature space CB  . U is divided into },,,{ 21 Iddd   with the decision attribute. The fuzzy positive 

regions of D in term of B are defined as 
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i
B dRDPOS

1
)(


  .  

Positive region of D is a fuzzy set, the membership of a sample to the positive regions of decision reflects the 

degree of the sample necessarily belong to its decision class. The higher the membership is, the more certain the 

classification outcome is. 

3.3 Approximating quality and reducts 

Definition 3. Given a decision table  DCU ,, , GR  is T-equivalence relation on U computed with Gaussian 

kernel in feature space CB  . U is divided into },,,{ 21 Iddd   with the decision attribute. The fuzzy positive 

regions of D in term of B are given by as iG
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The coefficient of approximating quality reflects the approximation abilities of the granulated space induced by 

attribute subset B to characterize the decision. This coefficient is also called the dependency between the decision and 

condition attributes. We say that decision D is dependent on B with degree )(DB , denoting by DB  . We say 

that the decision system is consistent if 1)( DB . 

Theorem 3. Given a decision system  DCU ,, , CBB  21 ,  1R  and 2R  are two T-equivalence relations 

on U computed with Gaussian function ),( yxG  in 1B  and 2B , respectively. Then we have  

1) 21 RR  ;  

2) ii dRdR 21  ; 

3) ii dRdR 21  ; 

4) )()(
21

DPOSDPOS BB  ; 

5) )()(
21

DD BB   . 

Proof. Properties 4 (2)-(4) can be derived from the monotonicity of the lower and upper approximations [22]. Here 



we just show the proof of the first property. Assuming that  11 || NB  , 22 || NB  , as 21 BB  , we have 21 NN  . 

Without loss of generality, we take two arbitrary samples to compute the fuzzy relations with Gaussian kernel 

function. In the feature space 1B , we obtain  



1

1
1

22 )()(||||
N

i
iiB yaxayx , where )(xai  is the value of sample 

x in feature ia . In feature space 2B , 2
2

|||| Byx      
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21

1

1 2

1

2 )()()()(
N

Ni
ii

N

i
ii yaxayaxa . So  

22
12

|||||||| BB yxyx   and ),(),( 21 yxRyxR  . Then 21 RR  . 

Theorem 4. Given a decision system  DCU ,, , GR  is T-equivalence relation on U computed with Gaussian 

function in CB   and DR  is the equivalence relation induced by D. The decision system is consistent if and only 

if DG RR  , or for Uyx  , , 0),( yxRG  if idx  and idy . 

Proof. Without loss of generality, we discuss the proof using two arbitrary samples. Assume the decision system is 

consistent. Uyx  , , there are two cases, i.e.1) x  and y  belong to the same class; 2) x  and y  belong to 

different classes. As to case 1, 1),( yxRD , obviously, ),(),( yxRyxR DG  . As to case 2, 0),( yxRD . Since the 

system is consistent, we have 1)( D . We know  1)(0  xdR iG . So Ux , 1)( xdR iG  if idx . 

Assume that 0),( yxRG , then we have 1),(1),(1inf)(
22












yxRyuRxdR GG

du
i

n
G

i

. This is in conflict 

with the fact that the system is consistent. Thus 0),( yxRG , and ),(),( yxRyxR DG  . Now we assume that 

DG RR  , then Uyx  , , 0),( yxRG  if idx  and idy . 

1),(1),(1inf)(
22












yxRyuRxdR GG

du
i

n
G

i

, so 1)( D . The system is consistent.  

Theorem 4 shows that as the number of features increases, the approximation quality, the classification quality 

increases as well. These properties are consistent with our intuition that new features bring new information about 

granulation and classification. Correspondingly, the induced approximation space with more features becomes finer 

and can generate more precise approximations of decisions. As a result, the quality of approximating classification 

increases.  

The quality of approximating classification, also called dependency between the decision and condition 

attributes, reflects the average degree of the fact that the samples certainly belong to their classes. Ideally, all the 

samples should be classified without error. Namely, for idx  , 1)( xdR i . Accordingly, 1)( DB . However, 



as there is some level of uncertainty in real-world decision systems caused by noise or insufficient features to 

distinguish all the objects, the dependency level between condition and decision is usually less than 1. 

Like in the classical rough set model [8], we can define concepts such as redundancy, indispensability and 

reducts of decision systems based on fuzzy dependency. 

Definition 4. Given  DCU ,, , CBa  . If )()(
1

DD aBB   , we say a is redundant in B with respect to D; 

otherwise, we say a is indispensable in B to D.  

Definition 5. Given  DCU ,, , CB  . We say B  is a relative reduct to D if B satisfies the following 

conditions:  

1) sufficient condition: )()( DD CB   ; 

2) necessary condition: for Ba , a is indispensable in B to D. 

Definition 5 shows a reduct is a subset of attributes which not only produces the same dependency as the whole 

attributes but also has no superfluous one. Obviously such attribute subsets are desirable in feature selection. 

It is notable that given a data set there is usually more than one relative reduct. We can find a set of feature 

subsets { 1 2, , , kB B B } which all preserve the dependency of decision on condition attributes, which shows we can 

get multiple viewpoints to consider classification tasks. We name the intersection of all reducts i
i

Core B   as  the 

core features of the decision table in discourse.  

3.4 Connections between the proposed model and other models 

In this section, we discuss the connections of fuzzy rough sets, rough set, neighborhood rough sets and the famous 

Relief algorithm [36, 37, 38 39].  

The definition of the lower approximation in Gaussian kernel based fuzzy rough sets is a direct and intuitively 

appealing generalization of rough set and the neighborhood rough set [18]. As to rough sets themselves, only discrete 

variables can be analyzed. Given Uyx   , , we define a distance function in a discrete space: 
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iduiG . In fact, in rough sets, we also know that 



iG dRx . For the case where ii dx   if for Uxi  , 0||||  xxi , we have  
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Certainly, we also have iG dRx . The above analysis shows Gaussian kernel based fuzzy rough sets can 

degrade to Pawlak rough sets.  

Neighborhood rough sets realize an idea similar to the one captured by rough sets. Being different from rough 

sets, neighborhood rough sets use a general distance function, rather than discrete distance used in the previous 

construct [18]. In neighborhood rough sets, we consider that x belongs to the lower approximation of its class if the 

distance between x and its nearest sample with a different class is greater than  , which is a certain threshold 

specified in advance. Here neighborhood rough sets extend  rough sets by generalizing the distance function, while 

Gaussian kernel based fuzzy rough sets generalize neighborhood rough sets through extending the binary 

membership {0, 1} to a fuzzy membership function 2)),((1inf)( uxRxdR n
GduiG i

  . Assuming that idy  if 

 |||| yx  for Uy , then 
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2

2
exp1)( 
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


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


xdR iG . We introduce a cut operator and say that 

1)( xdR iG  if 
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



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


xdR iG ; otherwise, 0)( xdR iG . Then fuzzy rough sets degenerate to 

neighborhood rough sets. 

Furthermore, we have defined 
||

||
)( 1

U

dR
D

iG

I

i
B




 , where   


i dx iGiG

I

i i
xdRdR )(||

1
 . We also get 

2)),((1inf)( uxRxdR GduiG i
  . As we know, ),( uxRG  reflects the similarity degree, thus 2)),((1 uxRG  

can be considered as a general distance function.  Then dependency )(DB   is the sum of distances between each 

sample and its nearest sample with different classes.  

It is an interesting conclusion stating that dependency of D to B is the sum of distances between each sample and 

its nearest sample with a different class in feature space B. Let’s review the well-known feature evaluation algorithm 

called Relief [36, 37, 38 39]. In Relief, one finds ix ’s nearest sample from the same class, called the nearest hit iH , 

and the nearest sample from other classes, called the nearest miss iM , then computes the distances |||| ii Hx  and 

|||| ii Mx   and afterwards uses ||||||||
1

iii

m

i
i HxMx 



 to evaluate the quality of a feature, where m is the 



number of the samples in training set or a subset of samples randomly drawn from the training set. 

We see fuzzy rough sets and algorithm Relief share a common idea that the feature space where samples are far 

from other classes should produce a great weight. The greater the inter-class distance is, the greater the weight should 

be. 

4. Uncertainty measures of fuzzy rough sets 

Uncertainty measures in approximation space are important in rough approximation. They can be used to evaluate the 

quality of a set of condition attributes, and then be incorporated with a feature selection algorithm [26, 29, 30]. 

Moreover, these measures can also be used in inducing a fuzzy decision tree [31]. Duntsch and Gediga [32] 

systematically discussed the measurement of uncertainty in predicting based on  rough sets. Qian et al. [33] pointed 

out that the measure of approximation accuracy cannot produce an elaborate characterization of the uncertainty of 

approximation and introduced three new measures. Here we will introduce and adapt the fuzzy entropy discussed in 

[23, 26, 34, 35] to compute the uncertainty present in the Gaussian kernel approximation.  

Given a decision system  DCU ,, , the fuzzy cosT equivalence relation matrix induced by Ca j   is 

denoted by  
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
  quantifies the similarity degree between 

samples ix  and jx  when being considered in terms of attribute j . Then with each sample Uxi  , we associate a 

fuzzy information granule of the following form 
m

miii
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r
xFIG  

2

2

1

1)( . The family of fuzzy information 

granules, called fuzzy elemental concepts, form a fuzzy covering of the universe, denoted by 

}),({/ UxxFIGRU  . The fuzzy cardinality of )( ixFIG  is computed in the form 



m

l
lii rxFIG

1

|)(| .  

Definition 6. Given a decision system  DCU ,, , GR  is a fuzzy relation induced with Gaussian kernel and 

attribute CB  . We call   , GRU  a fuzzy approximation space. The uncertainty of the approximation space is 

expressed in the form 







||

1 ||

|)(|
log

||

1
)()(
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i

i
G U

xFIG

U
RHBH . 

It is easy to note that 0)(||log  BHU  Furthermore 0)( BH if and only if Uyx  , , 1),( yxR . 

0)( BH  which means that each pair of samples is not distinguishable and the granularity of the system is the 

greatest and the system is the coarsest in this case. ||log)( UBH   if and only if yx  , 0),( yxR . In this 

case, all the samples are distinguishable and the fuzzy approximation space is the finest one.  

| ( ) |

| |
iFIG x

U
 can be considered as the local probability estimated with samples around ix . In this case, Gaussian 

functions are viewed as a window function. So ( )H B  can also be understood as differential entropy in the 

viewpoint of probability estimation with window functions. If we interpret Gaussian functions as fuzzy 

neighborhoods of samples, then the measure is fuzzy information entropy.  

Theorem 5. Given a decision system  DCU ,, , Caa ji , , )(i
GR  and )( j

GR  are two fuzzy similarity relation 

matrices induced by ia  and ja  with Gaussian kernel. We have )()( )()( j
G

i
G RHRH   if )()( j

G
i

G RR  , where 

)()( j
G

i
G RR   means that )()( , j

kl
i

kl rr : )()( j
kl

i
kl rr  . 

Proof.  )(xFIGi  and )(xFIG j  stand for the fuzzy information granules generated with )(i
GR  and )( j

GR , 

respectively. If )()( j
G

i
G RR  , for Ux , we have |)(||)(| xFIGxFIG ji   because )()( , j
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Therefore,  Ux , 
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Corollary 2. (Type-1 monotonicity, parameter monotonicity) Given a decision system  DCU ,, , Ca , the 

similarity relation matrices )1(
GR  and )2(

GR  between samples are computed as )
2

exp(
2
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  and 

)
2

exp(
2
2

2



yx 
  in terms of attribute a. )()( )2()1(

GG RHRH   if 21    and 0)( GRH when  . 

Proof. Given arbitrary samples x and y, it is clear that )
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Kernel parameter  plays a role of controlling the granularity of approximation. The fuzzy information granules 

induced at a greater value of  are greater than those induced with lower value  . If  , Uyx  , , the 

similarity between them is intended to be 1. This means that all objects are indistinguishable in the context of 

infinitely high granularity. From this viewpoint, fuzzy entropy reflects the refinement or granularity of fuzzy sets 

induced by the corresponding kernel matrix.  

Corollary 3. (Type-2 monotonicity, attribute monotonicity) Given a decision system  DCU ,, , CBB ', , 

'BB  , GR  and '
GR  are two fuzzy similarity relation matrices induced by B and 'B  with Gaussian kernel. We 

have )()( '
GG RHRH  . 

Proof. Assume that BBB 1' . )1(
GR  and )2(

GR  are the kernel matrices induced by 'B  and 1B , respectively. 

Then the kernel matrix induced by B  is computed in the form )2()1(
GG RR  , where the element in )2()1(

GG RR   is 

),(),( )2()1(
kiGkiG xxRxxR  . Since 1),( and 1),( )2()1(  kiGkiG xxRxxR , thus we have (1) (2)( , ) ( , )G i k G i kR x x R x x  

(1) ( , )G i kR x x . In the sequel '
GG RR   and )()( '

GG RHRH  . 

Corollary 3 states that the kernel matrix and the corresponding information granules induced by the relation 

matrix could be further refined once new features have been added. 

Definition 7. Given a decision system  DCU ,, , CBB 21  , , kernel matrices )1(
GR  and )2(

GR  are induced by 

1B  and 2B . The joint entropy of attributes 1B  and 2B  is expressed as 

)()( )2()1(
21 GG RRHBBH  . 

It is worth noting that the definition of joint entropy is different with that presented in [23, 35]. In [23, 35], the 

operator of composition of fuzzy relations is  realized using the “min”operation ; in our study we have confined to 

the algebraic product.  

Given Corollary 3 and Definition 7, we have )()( 121 BHBBH   and )()( 221 BHBBH  . 

Definition 8. Given a decision system  DCU ,, , CB  , B generates a fuzzy similarity relation computed with 

Gaussian kernel, while D induces a Boolean equivalence relation on U. Then the conditional entropy of D to B is 

defined as 

)()()|( BHDBHBDH   . 



Conditional entropy )|( BDH  reflects the uncertainty of D if B is given. In virtue of Corollary 3 and 

Definition 7, one can show 0)|( BDH  .  

Theorem 6. Given  DCU ,, , )(C
GR  and )(DR  are induced by C  and D . 0)|( CDH  if  DCU ,,  is 

consistent. 

Proof. If  DCU ,,  is consistent, we have )()( D
G

C
G RR  . For ji xx , , )()( D

ij
C

ij rr  . Assumed that 0)( D
ijr , we 

have 0)( C
ijr , so 0)()()(  C

ij
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ij rrr ; otherwise, 1)( D
ijr , )()()( C
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ij rrr  . Therefore, if )()( D
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have )()()( C
G
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C
G RRR  , 0)()()|( )()()(  C

G
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G
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G RHRRHCDH . 

Theorem 7. Given a decision system  DCU ,, , CBB 21  ,  , kernel matrices )1(
GR  and )2(

GR  are induced by 

1B  and 2B . If )2()1(
GG RR  , we have )|()|( 21 BDHBDH  . 

Proof. It is straightforward.  

Corollary 4. If 21 BB  , we have )|()|( 21 BDHBDH  . 

Corollary 4 shows that addition of any new attribute will not lead to the increase of conditional entropy. Here we 

see again that new attributes introduce additional information supporting classification. The proposed entropy 

measures determine the uncertainty degree in relations and granulation induced by the relations. There are two factors 

influencing the granularity of the collection of fuzzy granules induced by attributes and Gaussian kernel. With the 

same attributes, a greater value of kernel parameter   induced a coarser granulation. This conclusion is consistent 

with our previous observations. If  takes greater values, the similarity degrees between any pair of samples become 

larger. In this case, an arbitrary sample can be difficult to distinguish from others. As a result, lower values of entropy 

are obtained. Furthermore, given the value of  (viz. the level of granularity of analyzing the classification problem), 

the entropy gets larger when more attributes become available. The increase in the values of entropy can be used to 

evaluate the usefulness of attributes in the classification problem. 

5. Attribute evaluation and reduction with Gaussian kernel rough sets 

One of the most important applications of rough set theory is to evaluate the classification power of attributes in a 

decision system by computing the dependency between condition attributes and the resulting decision. The 



dependency function is used as a sort of heuristics in constructing efficient greedy attribute reduction algorithms [10, 

11, 12]. In [29], Shen et al. generalized the function of dependency to the case of fuzzy sets and proposed a fuzzy 

dependency function.  

 In the generic model of rough sets, dependency is defined as ||/|)(|)( UDPOSD BB  , where 

i
I
iB dBDPOS 1)(   , DUdi / . Dependency is the percentage of samples in the positive region, which is defined 

as the set of samples unquestionably belonging to one of the decision classes.   

As to the Gaussian kernel based rough sets, it has been mentioned in Subsection 3.2 that for Iid i ,...,2,1,  , if 

idx , 0)( xdR i
n
G  and if idx , )(xdR i

n
G  2)),((1inf yxR n

Gdy t
  . This facts indicates that the value of 

)(xdR i
n
G  is determined by the minimal value of 2)),((1 yxR n

G , idy . A sample’s membership belonging to 

its class’s lower approximation depends on its nearest sample with distinct classes according to 

2)),((1inf)( yxRxdR n
GdyiG t

  .  

Given idx , )(xdR iG , the membership of sample x  to the fuzzy lower approximation of its class id  

reflects the degree at which x  certainly belongs to its decision, while )(xdR iG   is the degree at which x  

possibly belongs to its decision. In feature selection, we naturally wish that we can find a feature subspace CB   

where each sample belongs to its decision with the greatest certainty; meanwhile, there is not a redundant attribute in 

B.  The total certainty of samples belonging to its decision can be measured with the fuzzy dependency )(DB . 

Formally, the computation of fuzzy dependency is described as follows. 

Algorithm 1. Dependency with Gaussian kernel approximation (DGKA) 

Input: sample set },,,{ 21 mxxxU  , feature set B , decision D and  parameter   

Output: dependency   of D to B  

1. ( ) 0B D   

2.  for  i=1 to m  
3.   find the nearest sample iM  of ix  with a different class  

4.   

2
2|| ||

( ) ( ) 1 exp i i
B B

x M
D D 



  
     

   
 

5.   end  
6.  output ( )B D .  

This algorithm is easy to implement and its time complexity is the same as of Relief. To evaluate n features with 

m samples, the time complexity is )log( mnmO  [37]. Similar to Relief, algorithm 1 can just be used to evaluate the 



significance of features and rank them. Irrelevant features will receive low dependency values and could be removed 

from the data. However, it was pointed out that features ranking can not remove the redundant features because two 

features producing great dependency values may be redundant. Redundant features exist in a lot of databases [40, 41]. 

Attribute reduction need eliminate not only the irrelevant, but also the redundant variables from the data. 

It is impractical to find the optimal subset of features from 12 n  candidates through exhaustive search, where 

n is the number of features. Greedy search guided by some heuristics is usually more efficient than the plain 

brute-force exhaustive search. In a forward greedy search, one starts with an empty set of attributes, and keeps adding 

features to the subset of selected attributes one by one. Each selected attribute maximizes the increment of 

dependence of the current subset; this implies the relevant but redundant attributes will not be included because it can 

not bring much new information about classification if the attribute is redundant. Formally, a forward search 

algorithm for feature selection based on Gaussian kernel approximation is written as follows. 

Algorithm 2: Feature selection based on Gaussian kernel approximations (FS-GKA) 

Input： sample set },,,{ 21 mxxxU  , feature set C , decision D and stopping threshold   

Output:  reduct red  
1. red ， 0  ; 

2. while Cred   
3.   for each ( )ia C red   

4.         compute { }ii a red    

5.  end  
6.   find the maximal i  and the corresponding attribute ia ; 

7.   if  ( )i red D      

8.     ired red a  , red i  ; 

9.   else  
10.          exist while； 
11.   end if 
12. end while 
13. return red 

The time complexity of algorithm 2 is )log( 2 mmnO , where n and m are the numbers of features and samples, 

respectively. 

Besides dependency, conditional information entropy introduced in Section 4 can also be used to evaluate 

features. As we explain in Definition 8 and Theorem 8 that conditional entropy )|( BDH  is the uncertainty of D if 

condition attributes B are given, conditional entropy reflects the relevance between condition attributes and decision. 

We thus define the significance of attribute subset B in the following form 

)()()()|()(),( BDHBHDHBDHDHDBSIG  . 

It is easy to observe that ),( DBSIG becomes a symmetric uncertainty measure. In fact this is mutual 

information of B and D defined in Shannon’s information theory if B and D generate Boolean equivalence relations 



[23]. As it is well-known, mutual information is widely applied in evaluating features and constructing decision trees 

[40, 42, 43], but the classical definition of mutual information can just be used to deal with discrete features. But 

),( DBSIG  defined here can be used to deal with numerical and fuzzy information. If we substitute mutual 

information for dependency in algorithm 2, a new feature selection algorithm based on fuzzy mutual information is 

derived.  

Besides, it is worth noting that the proposed measures of dependency and mutual information can be 

incorporated with other search strategies used in other feature selection algorithms, such as ABB (Automatic Branch 

and Bound), SetCover, probabilistic search [44], and GP (Genetic programming) [45]. In this study, we are not going 

to compare and discuss the influence of search strategies on the results of feature selection. Here we focus on the 

comparison of the proposed method when dealing with different evaluation measures. 

6. Experimental Studies 

There are two objectives when carrying out a series of numerical experiments. First, when using Gaussian kernel to 

compute similarity relations between samples, we specify the parameter   in Gaussian kernel. This parameter 

controls the granularity of the granulation space induced by the Gaussian functions. Considering its functionality, this 

parameter exhibits a significant impact on the effectiveness associated with the corresponding fuzzy rough sets. 

However, just like in Gaussian kernel support vector machines [46], no theoretical results have been obtained for 

specifying kernel parameters. The optimal value of the kernel parameter is dependent on the nature of the specific 

application. In this section, we report on a suite of experiments which helped us determine a range of “optimal” 

values of the kernel parameter. Second, as the main application of rough sets and fuzzy rough sets comes with 

attribute evaluation and reduction, we offer a comprehensive experimental evidence with this regard.  

Some datasets used here come from the UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/); 

refer to Table 1.  Numerical attributes are linearly normalized as follows )/()( minmaxmin xxxx   (with xmin and 

xmax being the bounds of the given attribute) before reduction and classification. In experiments, learning algorithms 

such as CART, linear SVM and RBF SVM are used. The experiments were run in a 10-fold cross validation mode. 

The parameters of the linear SVM and RBF SVM are taken as the default values (the use of the Matlab toolkit 

osu_svm3.00). 



Table 1 Data description 

ID Data samples features  class 

1 credit 690 15 2 

2 heart 270 13 2 

3 hepatitis 155 19 2 

4 horse 368 22 2 

5 iono 351 34 2 

6 sonar 208 60 2 

7 wdbc 569 31 2 

8 wpbc 198 33 2 

9 wine 178 13 3 

10 iris 150 4 3 

In computing the membership grades of samples belonging to the low approximation of decision with Gaussian 

kernel, one should specify kernel parameter  . We experiment with a number of values of  over different datasets, 

and compute the dependency of decision to each single feature. At the same time, we compute classification 

accuracies obtained for single features with linear SVM and RBF SVM. Finally, we determine the correlation 

coefficients between classification accuracies and dependencies. High values of correlation coefficient are reflective 

of the associated classification capabilities of the corresponding features. So the value domain of  generating a 

great correlation coefficient is used in computing similarity. The underlying reason is that we hope this dependency 

becomes a sound estimate of classification abilities of the respective attributes. The values of   were taken from the 

set {0.001, 0.005, 0.01, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28, 0.30} when dealing 

with iris, sonar, wdbc and wine datasets, respectively.  

The obtained values of the correlation coefficients vs. kernel parameters are presented in Figure 1. There is a 

uniform trend of variation of correlation coefficients vs. parameters, namely, the correlation goes up firstly achieves 

some peak, and afterwards decreases. This behaviour points at the optimal interval for the valurs of the kernel 

parameter. In what follows, we consider the range ]06.0  ,04.0[  in the evaluation of a single feature. We specify 

]12.0  ,1.0[  when selecting features making use of algorithm 2. We learn that 0.04-0.06 is a sound interval for 

evaluating single features (refer to figure 1), however, we have found that the algorithm converges too early to find 

enough features in experiments if   takes value in interval [0.04, 0.06]. Given this we have extended the range of 

the valurs and considered  to be in the range of 0.1 and 0.15, ]15.0  ,1.0[ . 
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Fig. 1. Variation of correlation coefficients vs. kernel parameter. 

Now we compare the effectiveness of fuzzy rough sets in evaluating feature quality. Sometimes one needs to 

compute the dependency of decision D for a single feature and find the relevance between input and output. One may 

anticipate that the evaluating function can reflect the classification performance in feature selection and feature 

ranking. We compute the significance of single features with four evaluation functions: dependency in Gaussian 

kernel approximation (Gaussian); fuzzy entropy in Gaussian kernel approximation (Entropy); dependency in 

neighborhood rough sets (NRS) [18] and ReliefF [37]. At the same time, we reported the classification accuracies of 

the corresponding features based on the use of the linear SVM and RBF SVM. 

Two data sets wdbc and wine are used in experiments. There are 30 numerical features in wdbc and 13 

numerical features in the wine dataset. The results are given in Figures 3 and 4, respectively. As to the wdbc data, 

features 1, 3, 4, 7, 8, 21, 23, 24, 28 produce higher values of  all evaluating functions, as shown in figure 2 (1); at the 

same time, we can also find that these features produce higher values of classification accuracy (again shown in 

figure 2 (2)). As to the wine data, features 1, 6, 7, 10, 11, 12, 13 are better than others in terms of the four evaluating 

functions, corresponding the classification accuracies of features 1, 6, 7, 10, 11, 12, 13 are also higher than for other 



features. These results show that all the four evaluating functions can produce good estimates of classification ability 

of the features. There exist some differences between the evaluating functions in the two experimental results. We can 

find that the ordering of the feature is different if we rank the features considering individual evaluating functions. 

For example, for the wine data, the descending order of features induced by the fuzzy information entropy is 7, 12, 13, 

1, 10, 6, 11, 2, 4, 9, 8, 5, 3; while the order induced by the ReliefF evaluation function is 7, 12, 13, 6, 10, 1, 9, 11, 8, 5, 

4, 3, 2. Features 7, 12 and 13 are the three best features with respect to entropy and ReliefF. However, feature 1 ranks 

the fourth with respect to entropy, while it ranks the sixth as to ReliefF. Greedy search algorithms are sensitive to this 

little difference. Finally the little difference may leads to completely different feature subsets in Greedy algorithms. 
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(1) Significance of a single feature computed with different evaluating functions 
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(2) Classification accuracies obtained for single features when using linear SVM and RBF SVM 

Fig.2 Significance and accuracy of single feature (wdbc)  
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(2) Classification accuracies of single feature computed with linear SVM and RBF SVM 

Fig.3 Significance and accuracy of single features (wine) 

In ranking based feature selection, the first “k” best features are selected, where k is specified based on available 

domain knowledge. One can also add the best features one by one, and determine the classification performance of 

the current features in each round until the classification performance does not improve significantly when adding 

more features. Here we compare the four evaluation measures when working with the second strategy. Datasets of 

iono, sonar, wdbc and wine are used in experiments. We employ linear SVM and RBF SVM to validate the selected 

features. Figure 4-Figure 7 present the variation of classification performance over the number of selected features. 

The results show that classification accuracy increases with the number of selected features. The improvement is 

significant at the beginning of the selection process. Afterwards, the classification accuracy does not improve 

significantly once a certain number of features have been selected. Considering the cost of classification, we can 



delete the features which do not exhibit any significant influence on the quality of classification. Still we can find that 

fuzzy entropy and dependency in Gaussian kernel approximation are competent with neighborhood rough sets and 

ReliefF. Entropy and dependency sometimes are better than the other two algorithms. 
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Fig. 4. Variation of accuracies vs. number of selected features (iono) 
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 (1) Linear SVM                                      (2) RBF SVM 

Fig. 5. Variation of accuracies vs. number of selected features (sonar) 
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Fig. 6. Variation of accuracies vs. number of selected features (wdbc) 
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Fig. 7. Variation of accuracies vs. number of selected features (wine) 

The above results show the proposed fuzzy rough sets and fuzzy entropy can be used to evaluate single attributes. 

Now we show the effectiveness in attribute reduction. As mentioned above that feature ranking can not delete the 

redundant information from data, while ReliefF was design to compute the weights of features and ranking them with 

the weights. We here compare Gaussian kernel based fuzzy rough sets and fuzzy entropy with Pawlak rough sets [8], 

where the entropy based discretization algorithm is introduced for transform the numerical features into discrete ones 

[63], neighborhood rough sets [18], Triangle similarity based fuzzy rough sets (shortly triangle) [30] and correlation 

based algorithm [43] in feature selection or attribute reduction.  

The selected features with different algorithms are presented in Tables 2, 3 and 4, respectively. Regarding 

Gaussian kernel approximation, entropy, rough set and neighborhood rough sets, the orders of the features presented 

in the tables are the orders that the features are kept being added to the feature space. These orders reflect the relative 

significance of features in terms of the corresponding measures. 

 

Table 2. Subsets of features selected with Gaussian kernel approximation and fuzzy entropy 

Data Gaussian kernel approximation fuzzy entropy 

credit 2,6,3,9,14 9,10 

heart 8,1,4,10,3,12,13,7,2,5 13,12,3,11  

hepatitis 18,14,15,1,11,17,9 18,17,15,11  

horse 15,5,17,20 17,20,8,10,13,6 

iono 3,31,24,16,5,9,34 5,6,8,25,28,24,34,7,3 

sonar 44,11,27,21 11,17,37,48,27,22,29,12,33,36  

wdbc 23,28,22,12,25,19,10,9,7,2,26,21,8,29  28,21,22,25,29,2,8,10,12 

wpbc 1,12,7,23,32,22,6    13,32,33,24,6,23,20,21,26,12,1,2,28,10 

wine 13,10,7,1,5,2 7,1,10,13,5,2 

 



Table 3. Subsets of features selected with Pawlak rough sets and neighborhood rough sets 

Data Pawlak rough set NRS 

credit 4,7,9,15,1,3,11,6,14,8,2 15,8,6,9,2,3 

heart -- 10,12,13,3,1,4,5,8,7 

hepatitis 2,18,8,10,4,5,17,19,13,15,3,12 2,17,1,18,14,15,11 

horse 15,3 5,20,17,10,8,13,1,11 

iono 5,3,6,34,17,14,22,4 1,5,19,32,24,20,7,8,3 

sonar -- 1,45,39,36,28,21,7 

wdbc 24,8,22,26,13,5,14 23,28,2,29,5,16,25,9,22,10,12,11 

wpbc 23,29,24,1,8,6,20,11 1,19,6,23,24,30,13 

wine 10,13,7,2 13,10,7,5,11,1 

Table 4. Subsets of features selected with triangle similarity based fuzzy rough sets and CFS 

Data Triangle CFS 

credit 5,7, 6, 9,10,12,13, 4 5,6,8,9,11,14,15 

heart 10, 8, 1, 3,13,12, 7,11 3,7,8,9,10,12,13 

hepatitis 2 1,2,6,11,14,17,18 

horse 5, 4,18,19 1,3,5,7,15,17,20,21 

iono 1 1,3,4,5,6,7,8,14,18,21,27,28,29,34 

sonar 44,35,20,29,25,54,12 4,5,9,10,11,12,13,21,28,36,44,45,46,47,48,49,51,52,54 

wdbc 23,28,22,12 2,7,8,14,19,21,23,24,25,27,28 

wpbc 1, 7,12,23 1,33 

wine 13,10, 7, 1, 5 1,2,3,4,5,6,7,10,11,12,13 

Table 5. Number of features  

Data Raw data Gaussian  entropy  RS NRS Triangle CFS 

credit 15 5 2 11 6 8 7 

heart 13 10 4 0 9 8 7 

hepatitis 19 7 4 12 7 1 7 

horse 22 4 6 2 8 4 8 

iono 34 9 9 8 9 1 14 

sonar 60 4 10 0 7 7 19 

wdbc 31 14 9 7 12 4 11 

wpbc 33 7 14 8 7 4 2 

wine 13 6 6 5 6 5 11 

Some interesting results can be derived from the selected attributes. First, whatever attribute selection techniques 

have been used, most of the attributes in all datasets can be deleted. The reduction rate is high to 90% for some 

datasets, such as sonar and wpbc. Second, different algorithms produce distinct subsets of attributes. It is interesting 

that no two algorithms get the same subset of features for any database in the experiments except Gaussian fuzzy 

rough sets and fuzzy entropy for data wine. Even though, the orders of the selected features are different for this 

database. The best single feature is 13 in terms of Gaussian fuzzy rough sets, while feature 7 is the best one with 



respect to fuzzy entropy. This difference comes from the definitions of feature significance. The feature which is the 

best with respect to fuzzy information entropy is not necessarily good in terms of fuzzy dependency. The difference 

in the feature subsets also shows there are multiple subsets of features which have good classification power for a 

given classification task. Third, it is remarkable that Pawlak rough sets do not obtain any feature for data heart and 

sonar. As to forward greedy search algorithms, the algorithm will stop at the first round and output nothing if the 

significance of any single feature is zero. Sometimes no classification sample is consistent with respect to a single 

feature, thus the dependency defined in Pawlak rough sets is zero. This problem usually occurs in practice when 

conducting attribute reduction with Pawlak rough sets.  

The great difference between these selected features may result from two factors. One is the difference between 

the qualities of features computed with different evaluation functions. As we know, we consider the ranking of 

features in feature selection, sometimes, a little difference in feature qualities may lead to completely different 

ranking. The other is the search strategy we used in these algorithms. We use greedy search procedure to find optimal 

features in terms of these evaluation functions. However, we know greedy search usually cannot get the optimal 

solutions to tasks. Furthermore, we may get completely different solutions if the first features selected with different 

algorithms are different. Although the selected features are different, they may all be effective for classification 

learning. 

Another question is whether these selected features are effective for classification learning. Although we 

evaluate the features with different functions and the selected features get high scores in terms of these functions, the 

classification performance of the selected features have to be tested. We build classification models with the selected 

features and test their classification performance based on 10-fold cross validation. The average value and standard 

deviation are used to measure the classification performance.  

We compare the raw data, Gaussian kernel based fuzzy rough sets, fuzzy information, Pawlak rough sets and 

neighborhood rough sets , triangle similarity based fuzzy rough sets and CFS in Tables 6, 7 and 8, where learning 

algorithms CART, linear SVM and RBF SVM are introduced to evaluate the selected features.  



Table 6 Classification accuracies based on CART (%) 

Data Raw data Gaussian  entropy  RS NRS Triangle CFS 

credit 82.73±14.86 82.28±14.79 85.48±18.5 82.88±14.34 82.28±14.79 83.90±16.90 80.12±14.08 

heart 74.07±6.30 75.93±6.36 82.59±5.53 -- 75.93±7.66 75.93±7.86 77.04±6.94 

hepatitis 91.00±5.45 90.33±3.31 91.00±3.16 91.00±4.46 90.33±4.57 79.50±1.58 93.00±7.11 

horse 95.92±2.30 96.47±1.30 89.92±4.53 93.49±5.12 88.87±5.57 71.15±6.83 95.93±1.90 

iono 87.55±6.93 96.00±5.19 89.87±7.48 93.18±3.61 90.06±5.19 74.99±8.66 88.66±7.10 

sonar 72.07±13.94 69.17±6.49 71.60±8.38 -- 69.67±13.23 70.19±11.41 70.69±14.09 

wdbc 90.50±4.55 91.93±4.31 91.58±3.62 94.20±3.43 94.02±4.19 94.20±16.6 92.79±4.81 

wpbc 70.63±7.54 67.00±12.36 72.24±6.25 70.47±13.65 70.71±8.41 69.63±3.60 72.66±10.62 

wine 89.86±6.35 92.08±4.81 91.53±4.83 92.08±4.81 91.53±6.09 92.08±4.81 89.86±6.35 

 

Table 7 Classification accuracies based on linear SVM (%)  

Data Raw data Gaussian  entropy  RS NRS Triangle CFS 

credit 85.48±18.5 85.48±18.5 85.48±18.51 85.48±18.51 85.48±18.5 85.48±18.51 85.48±18.51 

heart 83.33±5.31 82.60±8.20 83.33±6.36 -- 83.33±6.59 82.59±5.53 84.81±5.91 

hepatitis 86.17±7.70 88.83±5.67 88.83±5.67 85.00±7.24 90.33±6.37 79.50±1.58 90.17±6.59 

horse 92.96±4.43 89.68±4.78 90.22±4.13 63.04±1.26 90.49±4.98 63.04±1.26 91.03±4.96 

iono 87.57±6.45 88.3191 % 85.26±6.10 83.30±5.97 87.26±6.06 74.99±8.66 86.38±5.35 

sonar 77.86±7.05 76.41±8.54 77.90±7.13 -- 70.21±7.68 71.19±7.76 78.38±5.58 

wdbc 97.73±2.43 97.55±2.05 97.02±2.03 95.09±2.83 96.67±2.39 95.96±2.02 96.32±1.92 

wpbc 77.37±7.73 76.32±3.04 76.84±4.61 76.32±3.04 76.32±3.04 76.32±3.04 76.32±3.04 

wine 98.89±2.34 98.33±2.68 98.33±2.68 95.00±4.10 97.78±3.88 96.67±3.88 98.89±2.34 

Table 8 Classification accuracies based on RBF SVM (%) 

Data Raw data Gaussian  entropy  RS NRS Triangle CFS 

credit 81.44±7.18 85.63±18.5 85.48±18.51 81.00±16.25 85.63±18.48 82.88±9.73 85.05±17.79 

heart 81.11±7.50 85.93±6.25 85.56±6.16 -- 80.74±4.88 78.89±6.06 80.74±6.72 

hepatitis 83.50±5.35 90.83±6.54 88.67±7.06 84.17±8.21 90.83±7.25 90.33±5.54 89.67±5.54 

horse 72.30±3.63 91.82±3.63 91.82±3.93 63.04±1.26 88.86±2.99 82.59±5.40 91.59±5.13 

iono 93.79±5.08 93.50±4.59 94.88±4.47 91.54±5.53 93.76±5.00 92.62±374 95.19±4.43 

sonar 85.10±9.49 79.76±8.30 83.71±8.10 -- 79.33±6.33 82.29±7.03 79.81±6.01 

wdbc 98.08±2.25 97.73±2.03 97.37±2.37 95.61±2.37 96.67±2.09 96.49±2.61 96.84±1.80 

wpbc 80.37±5.33 77.34±4.66 80.37±5.83 77.37±5.14 78.37±5.06 78.87±4.94 76.32±3.04 

wine 98.89±2.34 98.33±2.68 98.33±2.68 97.22±2.93 98.89±2.34 97.15±3.99 98.89±2.34 

Comparing the performance of raw data and fuzzy rough set based reducts, we can find although most of 

features have been removed in the reduct, most of the classification accuracies derived from the reduced data sets do 

not decrease, but increase. It shows there are redundant and irrelevant attributes in the raw data.  

Comparing fuzzy rough sets, fuzzy entropy with rough sets, no matter which classification algorithms are used, 

fuzzy rough sets and fuzzy entropy are almost consistently better than Pawlak rough sets. Pawlak Rough sets finds 



nothing for data sets heart and sonar, however, both fuzzy rough sets and fuzzy entropy output subsets of features of 

moderate size. At the same time, in the data sets of horse, iono, wdbc, wine, etc, fuzzy rough sets or fuzzy entropy are 

much better than rough sets. 

As a whole, neighborhood rough sets outperform Pawlak rough sets with respect to linear SVM and RBF SVM, 

however, are worse than fuzzy rough sets or fuzzy entropy. As to CART and linear SVM learning algorithms, fuzzy 

rough sets or fuzzy entropy are better than or equivalent to neighborhood rough sets for eight of the nine databases, 

while as to RBF SVM, fuzzy rough sets or fuzzy entropy are better than neighborhood rough sets for all the 

databases. 

Triangle functions are used to compute the fuzzy similarity between samples in [30]. Based on this function, 

Jensen and Shen proposed a number of measures to compute the importance of attributes without discretization. From 

Tables 5, 6, 7 and 8, we can see that their algorithm return two few attributes to keep the classification performance. 

The yielded features produce worse performance than the original data sets and other subsets. The reduction of 

performance results from the computation of similarity, which leads to early stopping of the algorithms. The features 

derived by Gaussian based fuzzy rough sets and fuzzy entropy get the higher classification accuracies in most of the 

datasets. Especially, for the linear SVM and RBF SVM, the proposed algorithm performs much better than the 

triangle similarity based technique. 

7. Conclusion 

Kernel methods and rough sets are two classes of commonly encountered learning methodologies in machine 

learning and pattern recognition. They have different application domains and it seems that there are no tangible links 

between these two methodologies. We stressed that there are some commonalities as these two approaches rely on the 

same format of representation of samples and relationships between them: exhibiting the same format of data, that is 

kernel matrices used in kernel methods and relation matrices considered in rough sets.  

 Here we incorporate Gaussian kernel with fuzzy rough sets and construct a Gaussian kernel approximation 

based fuzzy rough set model. In this model, we introduce Gaussian function to compute the similarities between 

samples and generate fuzzy information granules for each sample. Afterwards, these fuzzy granules are used to 

approximate the decision classes. Besides we introduce fuzzy entropy to measure the uncertainty in kernel 

approximation. Some theorems about granularity, approximation quality, kernel parameter and features have been 

provided. Based on the dependency and mutual information defined in Gaussian kernel approximation, we proposed 

two feature evaluation indexes and selection algorithms. When compared with rough sets, neighborhood rough sets, 

Relief and CFS, we showed that the proposed methods come with a better performance.   



It is interesting that we find that the dependency function in Gaussian kernel approximation shares the similar 

idea with the Relief algorithm. It gives a new viewpoint for understanding and extending the existing rough set 

techniques. The future work could move along two directions. First, we will continue to construct different rough set 

models with various kernel functions and discuss the common properties of this kind of kernel based rough set 

models. Second, the existing feature selection algorithms based on rough sets sometimes might not be robust enough 

for real-world applications; we may contemplate introducing improvements similar to those discussed in the ReliefF 

series [37, 38, 39, 49]. 
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