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Abstract

Skeleton-based action recognition has recently received
considerable attention. Current approaches to skeleton-
based action recognition are typically formulated as one-
hot classification tasks and do not fully exploit the seman-
tic relations between actions. For example, “make victory
sign” and “thumb up” are two actions of hand gestures,
whose major difference lies in the movement of hands. This
information is agnostic from the categorical one-hot encod-
ing of action classes but could be unveiled from the ac-
tion description. Therefore, utilizing action description in
training could potentially benefit representation learning.
In this work, we propose a Generative Action-description
Prompts (GAP) approach for skeleton-based action recog-
nition. More specifically, we employ a pre-trained large-
scale language model as the knowledge engine to automati-
cally generate text descriptions for body parts movements of
actions, and propose a multi-modal training scheme by uti-
lizing the text encoder to generate feature vectors for differ-
ent body parts and supervise the skeleton encoder for action
representation learning. Experiments show that our pro-
posed GAP method achieves noticeable improvements over
various baseline models without extra computation cost at
inference. GAP achieves new state-of-the-arts on popu-
lar skeleton-based action recognition benchmarks, includ-
ing NTU RGB+D, NTU RGB+D 120 and NW-UCLA. The
source code is available at https://github.com/
MartinXM/GAP.

1. Introduction

Action recognition has been an active research topic due
to its wide range of applications in human-computer inter-
action, sports and health analysis, entertainment, etc. In re-
cent years, with the emergence of depth sensors, such as
Kinect [44] and RealSense [14], human body joints can be
easily acquired. The action recognition approach utilizing
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body joints, i.e., the so-called skeleton-based action recog-
nition, has drawn a lot of attentions due to its computation
efficiency and robustness to lighting conditions, viewpoint
variations and background noise.

Most of the previous methods in skeleton-based action
recognition focus on modeling the relation of human joints,
following a unimodal training scheme with a sequence of
skeleton coordinates as inputs [41, 15, 27, 9, 28, 4, 25, 40,
30, 36, 35, 22]. Inspired by the recent success of multi-
modal training with image and language [23, 1], we in-
vestigate an interesting question: whether action language
description could unveil the action relations and benefit
skeleton-based action recognition? Regrettably, due to the
absence of a large-scale dataset consisting of skeleton-text
pairs, constructing such a dataset would require significant
time and financial resources. Consequently, the training
scheme outlined in [23, 11, 39] cannot be directly applied to
skeleton-based action recognition. As a result, the develop-
ment of novel multi-modal training paradigms is necessary
to address this issue.

We propose to leverage the generative category-level hu-
man action description in the form of language prompts.
The language definition of an action contains rich prior
knowledge. For example, different actions focus on the
movement of different body parts: “make victory sign” and
“thumb up” describe the gesture of hands; “arm circles” and
“tennis bat swing” describe the movement of arms; “nod
head” and “shake head” are the motions of head; “jump up”
and “side kick” rely on movements of foot and leg. Some
actions describe the interaction of multiple body parts, e.g.,
“put on a hat” and “put on a shoe” involve actions of hand
and head, hand and foot, respectively. These prior knowl-
edge about actions could provide fine-grained guidance for
representation learning. In addition, to resolve the labori-
ous work to collect human action prompts, we resort to pre-
trained large language model (LLM), e.g. GPT-3 [1] for
efficient automatic prompts generation.

In specific, we develop a new training paradigm, which
employs generative action prompts for skeleton-based ac-
tion recognition. We take advantages of the GPT-3 [1] as
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Figure 1: Comparison of our proposed Generative Action-description Prompts (GAP) framework (dual encoder) with other
skeleton recognition methods (single encoder). Besides classification loss, our proposed method contains additional con-
trastive loss. Notice that text encoder is only used at the training stage and GPT-3 is applied for offline action description
generation. For every given action query, GPT-3 generates text description of actions with prompt templates, the action de-
scription is then employed for multi-modal training.

our knowledge engine to generate meaningful text descrip-
tions for actions. With elaborately designed text prompts,
detailed text descriptions for the whole action and each
body part can be produced. In Figure 1, we compare our
proposed frameworks (b) and (c) with traditional single en-
coder skeleton-based action recognition framework (a). In
our framework, a multi-modal training scheme is devel-
oped, which contains a skeleton encoder and a text encoder.
The skeleton encoder takes skeleton coordinates as inputs
and generates both part feature vectors and global feature
representations. The text encoder transforms global action
description or body part descriptions into text features for
the whole action or each body part. A multi-part contrastive
loss (single contrastive loss for (b)) is used to align the
text part features and skeleton part features, and the cross-
entropy loss is applied on the global features.

Our contributions are summarized as follow:

- As far as we known, this is the first work to use gen-
erative prompts for skeleton-based action recognition,
which applies a LLM as the knowledge engine and
elaborately employs text prompts to generate detailed
text descriptions of the whole action and body parts
movements for different actions automatically.

- We propose a new multi-modal training paradigm that
utilizes generative action prompts to guide skeleton-
based action recognition, which enhances the repre-
sentation by using knowledge about actions and human
body parts. It could improve the model performance
without bringing any computation cost at inference.

- With the proposed training paradigm, we achieve state-
of-the-art performance on several popular skeleton-
based action recognition benchmarks, including NTU
RGB+D, NTU RGB+D 120 and NW-UCLA.

2. Related work

2.1. Skeleton-based Action Recognition

In recent years, various methods have been proposed
for skeleton-based action recognition by designing effi-
cient and effective model architecture. RNNs were applied
to handle the sequence of human joints in [9, 28, 41].
HBRNN [9] employed an end-to-end hierarchical RNN to
model long-term contextual information of temporal skele-
ton sequences. VA-LSTM [41] designed a view adaptive
RNN, which enables the network to adapt to the most suit-
able observation viewpoints from end to end. Inspired
by the success of CNN in image tasks, CNN-based meth-
ods [42, 37] have been utilized to model joints relations.
A pure CNN architecture named Topology-aware CNN
(TA-CNN) is proposed in [37]. As human joints can be
naturally presented as graph nodes and joint connections
can be described by adjacent matrix, GCN-based meth-
ods [38, 4, 25, 2, 30] have drawn a lot of attentions. For
example, ST-GCN [38] applied spatial-temporal GCN to
model human joints relations in both spatial and tempo-
ral dimension. CTR-GCN [2] proposed a channel-wise
graph convolution for fine-grained relation modeling. Info-
GCN [6] adopt an information bottleneck in GCN. With
the recent popularity of vision transformer [8], transformer-
based methods [22, 26, 35] have also been investigated for
skeleton data. All the previous methods adopt a unimodal
training scheme. As far as we known, our work is the first
to apply a multi-modal training scheme for skeleton-based
action recognition.

2.2. Human Part Prior

Human part prior for skeleton-based action recognition
has been used by designing special model architectures in
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Figure 2: Overall framework of Generative Action-description Prompts (GAP) with multi-part contrastive loss. During
training, the skeleton encoder is trained with both cross-entropy loss and multi-part contrastive loss. We use GPT-3 generated
action description as input for text encoder to generate human part features. The part features are then aligned with skeleton
encoder part features with multi-part contrastive loss. During testing, only global feature from skeleton encoder is used for
classification, and text encoder is neglected.

previous works [32, 29, 35, 10]. PB-GCN [32] divided the
skeleton graph into four subgraphs and learned a recog-
nition model using a part-based graph convolutional net-
work. PA-ResGCN [29] calculated attention weights for
human body parts to improve the discriminative capability
of the features. PL-GCN [10] proposed a part-level graph
convolutional network to automatically learn the part par-
tition strategy. IIP-transformer [35] applied transformer to
learn inter-part and intra-part relations. Comparing to pre-
vious methods, we directly use part language description to
guide representation learning during training with a multi-
part contrastive loss. We do not design any complicated part
modeling module and thus do not introduce extra computa-
tion cost at inference.

2.3. Multi-modal Representation Learning

Multimodal representation learning methods, such as
CLIP [23] and ALIGN [11], have shown that vision-
language co-training can learn powerful representation for
downstream tasks such as zero-shot learning, image cap-
tioning, text-image retrieval, etc. UniCL [39] uses a uni-
fied contrastive learning method that regards image-label as
image-text-label data to learn the generic visual-semantic
space. However, these methods require a large-scale image-
text paired dataset for training. ActionCLIP [34] follows the
training scheme of CLIP for video action recognition. A
pre-trained CLIP model is used and transformer layers are
added for temporal modeling of video data. As for action
description, label names are directly used as text prompts
with prefix and suffix that do not contain much semantic
meanings, e.g.,“A video of [action name]”, “Human ac-
tion of [action name]”, etc. In contrast, we use a LLM

(GPT-3), as knowledge engine to generate descriptions of
human body movements in actions, which provide fine-
grained guidance for representation learning. In addition,
we employ multi-part contrastive loss on body parts to learn
a fine-grained skeleton representation. Prompt Learning
(PL) [46, 45, 12] approaches aim to tackle the challenges
posed by zero-shot and few-shot learning by through the
incorporation of learnable prompt vectors. While PL has
demonstrated promising results, the interpretability of the
learned prompt vectors remains a challenge. Recently, [20]
applies LLM for generating descriptions for zero-shot im-
age classification. STALE [21] applies parallel classifi-
cation and localization/classification architecture for zero-
shot action detection. MotionCLIP [31] is proposed to align
action latent space with CLIP latent space for 3D human ac-
tion generation. ActionGPT [13] uses LLM to generate de-
tailed action description for action generation. Our research
is conducted concurrently and independently. All these
methods require a text encoder during inference, whereas
our proposed framework only imposes overheads during the
training phase, without adding any computational or mem-
ory costs during testing.

3. Methods

In this section, we present in detail the proposed
Generative Action-description Prompts (GAP) framework.
GAP aims to enhance skeleton representation learning with
automatically generated action descriptions and it can be
embedded into the existing backbone networks. Therefore,
GAP can be coupled with various skeleton and language
encoders. In the following sections, we first overview the
GAP framework, then introduce the skeleton encoder, text



encoder and the main components of GAP in detail.

3.1. Generative Action Prompts Framework

The comprehensive framework of our GAP approach is
presented in Figure 2. It is composed of a skeleton encoder
Es and a text encoder Et, for generating skeleton features
and text features, respectively. The training loss can be pre-
sented as:

Ltotal = Lcls(Es(S)) + λLmulti
con (Es(S), Et(T )), (1)

where, Lcls is cross-entropy classification loss, Lmulti
con

is multi-part contrastive loss. Skeleton input S ∈
RB×3×N×T , B is the batch size, 3 is the coordinate num-
ber, N and T are joint number and sequence length, re-
spectively. λ is a learnable trade-off parameter. T is LLM
generated text descriptions.

During training, the Es is trained with cross-entropy loss
and multi-part contrastive loss with part text descriptions as
additional guidance. The global skeleton feature is gener-
ated by performing average pooling of all joint nodes and
the part skeleton features are generated by aggregating the
features of various groups of nodes using average pooling.
The skeleton part features are mapped by fully connected
layer (FC Layer) to keep the same feature dimension as
text features. The text part descriptions are generated by
LLM offline, and encoded by Et during training for pro-
ducing text part features. At the testing stage, we directly
use global features of skeleton encoder for action proba-
bility prediction. Therefore, our GAP framework does not
bring additional memory or computation cost at inference
comparing to previous skeleton encoder only method.

3.2. Skeleton Encoder

Graph Convolution Network (GCN) is prevailing for
skeleton action recognition due to its efficiency and strong
performance. Therefore, we adopt GCN as the backbone
network in our GAP framework. Our skeleton encoder con-
sists of multiple GC-MTC blocks, while each block con-
tains a graph convolution (GC) layer and a multiscale tem-
poral convolution (MTC) module.

Graph Convolution. The human skeleton can be repre-
sented as a graph G = {V, E}, where V is the set of human
joints with |V | = N , and E is the set of edges. Denote by
Hl ∈ RN×F the features of human joints at layer l with
feature dimension F . The graph convolution can be formu-
lated as follows:

Hl+1 = σ(D− 1
2AD− 1

2HlWl), (2)

where D ∈ RN×N is the degree matrix, A is the adjacency
matrix representing joints connections, Wl is the learnable
parameter of the l-th layer and σ is the activation function.

Multiscale Temporal Modeling. To model the action
at different temporal speed, we utilize the multiscale tem-
poral convolution module in [19, 2] for temporal model-
ing. The module comprises four distinct branches, each of
which incorporates a 1 × 1 convolution to decrease chan-
nel dimensionality. There are two temporal convolutions
branches with varing dilations (1 and 2) and one MaxPool
branch. The fourth branch only contains 1× 1 convolution.
The outputs of the four branches are concatenated to pro-
duce the final result.

Skeleton Classification. The skeleton-based action
recognition methods map human skeleton data to one-hot
encoding of action labels, which are trained with a cross-
entropy loss:

Lcls = −y log pθ(x), (3)

where y is the one-hot ground-truth action label, x is the
global skeleton feature and pθ(x) is the predicted probabil-
ity distribution.

3.3. Text Encoder

Considering the recent success of Transformer models in
NLP, we employ a pre-trained transformer-based language
model as our text encoder Et, such as BERT [7] or CLIP-
text-encoder [23]. The input is in the form of text and under-
goes a standard tokenization process. Subsequently, the fea-
tures are processed through a series of transformer blocks.
The final output is a feature vector that represents the text
description. For different human part, we use various part
descriptions as text encoder’s input.

3.4. Action Description Learning

Skeleton-language Contrastive Learning. Comparing
to the one-hot label supervision for skeleton classification,
skeleton-language contrastive learning employs the super-
vision from natural language. It has a dual-encoder de-
sign with a skeleton encoder Es and a text encoder Et,
which encode skeleton data and action descriptions, respec-
tively. The dual-encoders are jointly optimized by contrast-
ing skeleton-text pairs in two directions within the batch:

ps2ti (si) =
exp(sim(si, ti)/τ)∑B
j=1 exp(sim(si, tj)/τ)

,

pt2si (ti) =
exp(sim(ti, si)/τ)∑B
j=1 exp(sim(ti, sj)/τ)

,

(4)

where s, t are encoded features of skeleton and text,
sim(s, t) is the cosine similarity, τ is the temperature pa-
rameter and B is the batch size. Unlike image-text pairs in
CLIP, which are one-to-one mappings, in our setting, there
could be more than one positive matching and actions of
different categories forming negative pairs. Therefore, in-
stead of using cross-entropy loss, we use KL divergence as
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Figure 3: Different part partition strategies. (a) Two parts:
upper and lower body. (b) Four parts: head, hand-arm, hip,
leg-foot. (c) Six parts: head, arm, hand, hip, leg, foot.

Label name:
Prefix: “put on a shoe”, a video of action
Prefix: “put on a shoe”,  this is an action
Cloze: This is “put on a shoe”, a video of action
Suffix: Human action of “put on a shoe”
Suffix: Playing a kind of action, “put on a shoe”…

HAKE:
Put on a shoe: foot stand on, foot walk to, foot fall 
down, hand put on, foot tread on

Manual:
Put on a shoe: hand reach for, hand put on, hip sit 
on, leg bend down, foot wear

GPT-3 (Paragraph):
Put on a shoe: The man is putting on a shoe. He is bending
down and putting his foot into the shoe. He is then tying
the shoe. He is doing this quickly and efficiently.

GPT-3 (Synonym):
Put on a shoe: boot, lace up, slip on, step into, strap on, tie, 
tuck in, zip up, don, fasten

GPT-3 (Part description):
Put on a shoe: head tilts slightly forward; hand reaches
down and grasps shoe; arm extends down and forward; hip
remains stationary; leg bends at the knee, bringing foot
closer to the hand; foot inserts into shoe.

Figure 4: Text description generated by different methods.

the skeleton-text contrastive loss:

Lcon =
1

2
Es,t∼D[KL(ps2t(s), ys2t) +KL(pt2s(t), yt2s)],

(5)
where D is the entire dataset, ys2t and yt2s are ground-truth
similarity scores, which have a probability of 0 for negative
pairs and a probability of 1 for positive.

Multi-part Contrastive Learning. Considering the
prior of human body parts, skeleton can be divided into mul-
tiple groups. We illustrate this framework in Figure 1(c).
We apply contrastive loss on different parts features as well
as global feature, and propose a multi-part contrastive loss.
The part feature could be obtained with part pooling, where
joint features within the same group are aggregated to gen-
erate part representation. More specifically, we choose the
features before the final classification layer for part feature
pooling. In Figure 3, we show different part partition strate-
gies. For two parts partition, the whole body is divided into
upper and lower groups. For four parts partition, the body
is divided into four groups: head, hand-arm, hip, leg-foot.
For six parts partition, head, hand, arm, hip, leg, foot are
grouped separately. The loss function of multi-part con-
trastive loss can be represented as follows:

Lmulti
con =

1

K

K∑
k=1

Lk
con, (6)

where K is the total part number.

3.5. Action Description Generation

The action description T for text encoder plays a vital
role in GAP. Here, we explore several different description

Part Description
Q: Describing following body parts actions when “put on 
a shoe”: head, hand, arm, hip, leg, foot.
A: head tilts slightly forward; hand reaches down and
grasps shoe; arm extends down and forward; hip remains
stationary; leg bends at the knee, bringing foot closer to
the hand; foot inserts into shoe.

Synonym
Q: Suggest 10 synonyms for “put on a shoe”
A: boot, lace up, slip on, step into, strap on, tie, tuck in,
zip up, don, fasten

Paragraph
Q: Describe a person “put on a shoe” in details.
A: The man is putting on a shoe. He is bending down
and putting his foot into the shoe. He is then tying the
shoe. He is doing this quickly and efficiently.

Figure 5: Text description generated from different prompt
inputs by GPT-3.

generation methods. Figure 4 illustrates the text descrip-
tions of action “put on a shoe” by different methods.

Label Name. One straight-forward approach is to di-
rectly use the label name. Many methods [34] use this
kind of text descriptions with prefix and suffix such as
“Human action of [action]”, “[action], a video of ac-
tion”, etc. Though these prompts could boost the perfor-
mance for zero-shot and few-shot problems, in our case of
supervised learning, this approach does not bring signifi-
cant performance improvement (as shown in our ablation
studies) since these prompts do not contain discriminative
semantic information about actions.

HAKE Part State. The HAKE [17] dataset contains an-
notated part states of human-object interactions. For each
sample, six body part movements (head, hand, arm, hip,
leg, foot) are manually annotated, with 93 part states in to-
tal. In order to avoid laborious annotation for each sample,
we apply an automatic pipeline which contains two steps: 1)
generate text features for both label name and HAKE part
states with a pre-trained transformer text encoder; 2) gen-
erate text description by finding the K nearest neighbors of
action label name in HAKE part state feature space. Those
HAKE part states that are closest to the action label name
are selected for action description. We then use this gener-
ated part description for GAP.

Manual Description. We ask annotators to write down
the description of body part movements following the tem-
poral order of the action. The descriptions consist of the
predefined atomic movements. The annotators are asked to
focus on the most distinguished parts’ motions.

Large-language Model. We use the large-scale lan-
guage model (e.g., GPT-3) to generate text descriptions. We
design text prompts so that it can generate our desired ac-
tion descriptions. Text descriptions are generated in three



ways. a) paragraph: a full paragraph that can describe the
action in detail; b) synonym: we collect 10 synonyms of
action labels; c) part description: we collect descriptions
of different body parts for each action. The body partition
strategies follow Figure 3 in previous section. We take “put
on a shoe” as an example and present the prompts used for
generating different descriptions in Figure 5.

4. Experiments
4.1. Datasets

NTU RGB+D [24] is a widely used dataset for skeleton-
based human action recognition. It contains 56,880 skeletal
action sequences. There are two benchmarks for evaluation,
including Cross-Subject (X-Sub) and Cross-View (X-View)
settings. For X-Sub, the training and test sets come from
two disjoint sets, each having 20 subjects. For X-View, the
training set contains 37,920 samples captured by camera
views 2 and 3, and the test set includes 18,960 sequences
captured by camera view 1.

NTU RGB+D 120 [18] is an extension of NTU RGB+D
dataset with 57,367 additional skeleton sequences over 60
additional action classes. There are 120 action classes in
total. Two benchmark evaluations were suggested by the
authors, including Cross-Subject (X-Sub) and Cross-Setup
(X-Setup) settings.

NW-UCLA [33] dataset is recorded by three Kinect V1
sensors from different viewpoints. The skeleton contains
20 joints and 19 bone connections. It includes 1,494 video
sequences of 10 action categories.

4.2. Implementation Details

For NTU RGB+D and NTU RGB+D 120, each sample
is resized to 64 frames, and we adopt the code of [43, 6]
for data pre-processing. For NW-UCLA, we follow the
data pre-processing procedures in [5, 2, 6]. We use CTR-
GCN with single-scale temporal convolution for our abla-
tion study, considering its good balance between perfor-
mance and efficiency. For ablation study with ST-GCN
backbone, please refer to supplementary material. When
comparing with other methods, we adopt CTR-GCN with
multiscale temporal convolution since it produces the best
results. For text encoder, we use the pretrained text trans-
former model from CLIP or BERT and finetune its param-
eters during training. The temperature of contrastive loss is
set to 0.1. As for the non-deterministic of action descrip-
tions generated by GPT-3, we effectively employed gener-
ated results through sampling in the course of training. For
example, in the context of our synonyms scenario, we gen-
erate numerous synonyms and select them randomly for use
in training.

For NTU RGB+D and NTU RGB+D 120, we train the
model for a total number of 110 epochs with batch size 200.

We use a warm-up strategy for the first 5 epochs. The initial
learning rate is set to 0.1 and reduced by a factor of 10 at 90
and 100 epochs, the weight decay is set to 5e-4 following
the strategy in [6]. For NW-UCLA, the batchsize, epochs,
learning rate,weight decay, reduced step, warm-up epochs
are set to 64, 110, 0.2, 4e-4, [90,100], 5, respectively.

4.3. Ablation Study

In this section, we conduct experiments to evaluate the
influences of different components. The experiments are
conducted on NTU120 RGB+D with joint modality and X-
Sub setting. For more ablation studies please refer to sup-
plementary materials.

Partition Strategies. We test different body partition
strategies for GAP and the results are shown in Table 1a.
‘Global’ represents using a global description of actions
with a single contrastive loss, and it improves over the base-
line by 0.6%. Using more parts and multi-part contrastive
loss could steadily increase the performance, and it satu-
rates at 85.4% when using 4 parts.

Influences of Text Prompt. The text prompt design has
a large impact on the model performance. We show the in-
fluences of different text prompts in Table 1b. By directly
using label name (with prefix or suffix) as the text prompt in
GAP, the model only slightly outperforms (0.2%) the base-
line model without text encoder, as this does not bring extra
information for training. Utilizing a synonym list for label
name or a global description paragraph could largely im-
prove the performance (0.6%) over baseline, as it enriches
the semantic meanings of each action class. Using part de-
scription prompts leads to strong performance with 0.8%
improvement. The best performance is achieved by com-
bining synonym of label name and body part description
for prompts, resulting in 85.5% accuracy.

Influences of Text Encoder. In Table 1c, we show the
influences of text encoders. We found that both XFMR
(text encoder from CLIP [23]) and BERT all achieve good
performance, indicating that skeleton encoder could ben-
efit from text encoder with different pre-training sources
(image-language or pure language). We use XFMR-32 as
our default text encoder considering its good balance be-
tween efficiency and accuracy.

Effect of GAP on Different Skeleton Encoders. Our
proposed GAP is decoupled from the network architec-
ture and could be employed to improve different skeleton
encoders. In Table 1d, we show experimental results of
applying GAP to ST-GCN [38], CTR-baseline and CTR-
GCN [2]. GAP brings consistent improvements (0.6-1.2%)
without extra computation cost at inference, demonstrating
the effectiveness and generalization ability of GAP.

Comparison of Description Methods. We compare
several different methods of obtaining text prompts for
text encoders in Table 1e, including: Manual description;



(a) Partition strategies

Partition Strategy Acc(%)

None 84.6
Global 85.2
Upper, Lower 85.3
Head, Hand, Hip, Leg 85.4
Head, Hand, Arm, Hip, Leg, Foot 85.4

(b) Text prompt type

Prompt type Acc(%)

None 84.6
Label name 84.8(↑ 0.2)
Synonym/Paragraph 85.2(↑ 0.6)
Body parts 85.4(↑ 0.8)
Synonym+Body parts 85.5(↑ 0.9)

(c) Text encoders

Text encoder pretrain Acc(%)

XFMR-32 img/text 85.2
XFMR-16 img/text 85.1
XFMR-14 img/text 85.2

BERT text 85.2

(d) Effect of GAP on different skeleton encoders

Backbone Acc(%)
w./o. GAP w. GAP

ST-GCN [38] 82.6 83.8(↑ 1.2)
CTR-baseline 83.7 84.6(↑ 0.9)
CTR-GCN (single scale) 84.6 85.5(↑ 0.9)
CTR-GCN (multi scale) [2] 84.9 85.5(↑ 0.6)

(e) Description methods

Methods Acc(%)

Part CLS Baseline 84.2
Manual description 85.2
HAKE part state 85.3
GPT-3 generated 85.5

(f) Comparison with Prompt Learning

Methods Prompt TE Acc

Baseline Fixed Tuned 84.8

PL[46] Learned Fixed 85.1
Learned Tuned 85.2

GAP GeneratedTuned 85.5

Table 1: Ablation study of different components of GAP on NTU120, including partition strategy, text prompt type, text
encoder, skeleton encoder, prompt methods. The Acc represents action recognition accuracy, and TE represents text encoder.

HAKE part state; Generating text prompts with GPT-3. For
manual descriptions and HAKE results, we use them as
global description for GAP. Among these methods, GPT-
3 could provide very detailed description of human parts by
using an elaborately designed text prompt, and the gener-
ated part text description achieves the best performance. We
also implement a part pooling classification baseline for ref-
erence, which applies a classification head for every pooled
part feature. This baseline does not work well as the part
feature may not be sufficient to predict the action classes.

Comparing with prompt learning methods. In Ta-
ble 1f, we compare GAP with PL methods that make
prompts learnable parameters. PL outperforms baseline
with both Text Encoder (TE)’s parameter fixed or tuned.
GAP further outperforms PL by 0.3%, which indicates
the effectiveness generated prompts and the multi-part
paradigm.

Influences of λ Selection. To study the influences of
trade-off parameter λ in Eq. 1, we search the value of λ
in {1.0, 0.8, 0.5, 0.2} with 5-fold cross-validation. The per-
formance of models are 85.4%, 85.5%, 85.3% and 85.2%,
respectively. We found that λ = 0.8 achieves the best per-
formance; therefore, we utilize it as our default λ value and
employ it for all the experiments on different benchmarks.

4.4. Comparison with State-of-the-arts

We compare our method with previous state-of-the-arts
in Tables 2, 3 and 4. For fair comparison, we use the 4 en-
sembles strategy (Joint, Joint-Motion, Bone, Bone-Motion)
as it is adopted by most of the previous methods. The results
are means of 5 runs, the std is approximately 0.1. As shown
in Table 2, on NW-UCLA, GAP outperforms CTR-GCN by

Methods Mode NW-UCLA
Top-1 (%)

Ensemble TS-LSTM [15] 2 ensemble 89.2
2S-AGC-LSTM [27] 2 ensemble 93.3
4S-Shift-GCN [5] 4 ensemble 94.6
DC-GCN+ADG [4] 4 ensemble 95.3
TA-CNN [37] 4 ensemble 96.1
CTR-GCN [2] 4 ensemble 96.5
Info-GCN [6] 4 ensemble 96.6

Ours
Joint/Joint-M 94.0/93.5
Bone/Bone-M 95.3/91.2

4 ensemble 97.2

Table 2: Action classification performance on the NW-
UCLA dataset.

0.7%. It also outperforms the recent work Info-GCN [6]
by 0.6%, which uses self-attention layer and information
bottleneck. We argue that such improvement is significant
considering that the model performance on this dataset is al-
ready very high. On NTU RGB+D, GAP outperforms CTR-
GCN [2] by 0.5% on cross-subject and 0.2% on cross-view
settings, and it outperforms Info-GCN by 0.2% and 0.1% on
the two settings, respectively. On the largest dataset NTU
RGB+D 120, as shown in Table 4, our method surpasses
CTR-GCN by a large margin (1.0%) on cross-subject, and
0.5% on cross-set settings, respectively. Info-GCN also
achieves strong performance on this dataset, while GAP still
outperforms it by 0.5% and 0.4%, respectively. In summary,
GAP consistently outperforms the SOTA on NW-UCLA,
NTU RGB+D and NTU RGB+D 120 under different set-
tings, validating its effectiveness and robustness.



Methods Mode NTU-RGB+D
X-Sub(%)X-View(%)

VA-LSTM [41] 2 ensemble 79.4 87.6
HCN [16] 2 ensemble 86.5 91.1
2S-AGCN [25] 2 ensemble 88.5 95.1
SGN [43] 2 ensemble 89.0 94.5
2S-AGC-LSTM [27] 2 ensemble 89.2 95.0
ST-TR (Plizzari et al. 2021) 4 ensemble 89.9 96.1
TA-CNN [37] 4 ensemble 90.4 94.8
4S-Shift-GCN [5] 4 ensemble 90.7 96.5
DC-GCN+ADG [4] 4 ensemble 90.8 96.6
PA-ResGCN-B19 [29] 4 ensemble 90.9 96.0
Dynamic GCN [40] 4 ensemble 91.5 96.0
MS-G3D [19] 2 ensemble 91.5 96.2
DSTA [26] 4 ensemble 91.5 96.4
MST-GCN [3] 4 ensemble 91.5 96.6
EfficientGCN-B4 [30] 4 ensemble 91.7 95.7
CTR-GCN [2] 4 ensemble 92.4 96.8
Info-GCN [6] 4 ensemble 92.7 96.9

Ours
Joint/Joint-M 90.2/88.0 95.6/93.7
Bone/Bone-M 91.2/87.8 95.5/93.2

4 ensemble 92.9 97.0

Table 3: Action classification performance on the NTU
RGB+D dataset.

Methods Mode NTU-RGB+D 120
X-Sub(%) X-Set(%)

SGN [43] 2 ensemble 79.2 81.5
ST-TR (Plizzari et al. 2021) 4 ensemble 82.7 84.7
2S-AGCN [25] 2 ensemble 82.9 84.9
TA-CNN [37] 4 ensemble 85.4 86.8
4S-Shift-GCN [5] 4 ensemble 85.9 87.6
DC-GCN+ADG [4] 4 ensemble 86.5 88.1
DSTA [26] 4 ensemble 86.6 89.0
MS-G3D [19] 2 ensemble 86.9 88.4
PA-ResGCN-B19 [29] 4 ensemble 87.3 88.3
Dynamic GCN [40] 4 ensemble 87.3 88.6
MST-GCN [3] 4 ensemble 87.5 88.8
EfficientGCN-B4 [30] 4 ensemble 88.3 89.1
CTR-GCN [2] 4 ensemble 88.9 90.6
Info-GCN [6] 4 ensemble 89.4 90.7

Ours
Joint/Joint-M 85.5/82.3 87.0/83.9
Bone/Bone-M 87.5/82.4 88.7/84.4

4 ensemble 89.9 91.1

Table 4: Action classification performance on the NTU
RGB+D 120 dataset.

4.5. Discussions

To facilitate deeper discussions of the proposed GAP
method, we utilized a model trained with joint modality on
the NTU RGB+D 120 cross-subject mode dataset. In Fig-
ure 6, we present the action classes that exhibit over 4%
absolute accuracy differences on NTU120 with and with-
out GAP. A good case can be observed for actions such
as “writing”, “open a box,” “eat meal”, and “wield knife”,
which benefit significantly from GAP due to the language

model generating detailed descriptions of body part move-
ments for these actions. On the other hand, GAP performs
poorly for action classes such as “cutting paper”, “taking
a selfie”, “play magic cube”, and “play with phone/tablet”.
Our analysis revealed that the primary distinguishing factor
between these bad performing actions and good performing
ones is that the former are object-related, making it chal-
lenging to recognize them using skeleton data. Addition-
ally, the category bias present in the dataset may also con-
tribute to the observed performance variations of our pro-
posed method on object-related actions in NTU120 due to
the presence of other action categories within the dataset.
For instance, upon analyzing “cutting paper”, we found that
the primary distinguishing factor between it and “rubbing
two hands” (which is also present in NTU120) is the pres-
ence of an object being held, such as paper and scissors.
Conversely, although “opening a box” is also an object-
related action, there are no other object-related similar ac-
tions within the NTU120 dataset, such as “unfold clothes”.
For more discussions and visualization results, please re-
fer to the supplementary materials.

writing
open a box

eat meal
put on a shoe

wield knife

play with phone/tablet
play magic cube
taking a selfie
cutting paper

+11.03
+9.41

+5.45
+5.13
+5.03

-4.00
-5.24

-5.43
-7.68
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phone call +4.72
clapping +4.40

kicking sth. +4.35
staple book +4.03

hand waving +4.01
open bottle +4.01

Figure 6: Action classes with accuracy differences higher
than 4% between CTR-GCN and our method.

5. Conclusion
We developed a novel generative action-description

prompts (GAP) framework for skeleton-based action recog-
nition, which is the first work of its kind, as far as we
known, to use action knowledge prior for skeleton action
recognition. We employed large-scale language models as
knowledge engine to automatically generate detailed de-
scriptions of body parts without laborious manual annota-
tion. GAP utilized knowledge prompting to guide skeleton
encoder and enhance the learned representation with knowl-
edge about relations of actions and human body parts. The
extensive experiments demonstrated that GAP is a general
framework and it can be coupled with various backbone net-
works to enhance representation learning. GAP achieved
new state-of-the-arts on NTU RGB+D, NTU RGB+D 120
and NW-UCLA benchmarks.
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