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Abstract successful in a variety of computer vision tasks, such as ob-
jectrecognition?5], image retrieval §] and texture classifi-
Recently, plugging trainable structural layers into deep cation [5]. However, these methods handle feature learning,
convolutional neural networks (CNNs) as image represen-image modeling and loss function (e.g., classifier) in sep-
tations has made promising progress. However, there hasarate stages. Recent researches have shown it is meaning-
been little work on inserting parametric probability dis- ful and helpful to plug modeling methods into deep CNN
tributions, which can effectively model feature statistic architectures as structural layers in an end-to-end manner
into deep CNNs in an end-to-end manner. This paper pro-[14, 24, 1, 37]. Compared with §, 6], the end-to-end ap-
poses a Global Gaussian distribution embedding network proaches can jointly leverage the power of learning feature
(G’DeNet) to take a step towards addressing this prob- representing images and training classifier<2f].
lem. The core of @eNet is a novel trainable layer of a To represent images, the probability distributions are
global Gaussian as an image representation plugged into widely used as they generally have capability to model
deep CNNs for end-to-end learning. The challenge is that abundant statistics of features, producing fixed size repre
the proposed layer involves Gaussian distributions whose sentations regardless of varying feature siz&% B2, 33,
space is not a linear space, which makes its forward and 40]. Unfortunately, there has been little work attempting
backward propagations be non-intuitive and non-triviad. T to plug trainable probability distribution modeling lager
tackle this issue, we employ a Gaussian embedding stratinto deep CNNs. Olivaet al. [29] make an effort to pro-
egy which respects the structures of both Riemannian manpose a deep mean maps (DMMs) method, which can plug a
ifold and smooth group of Gaussians. Based on this strat- family of non-parametric distributions into deep CNNs. By
egy, we construct the proposed global Gaussian embeddingexploiting the mean of random Fourier featurés][to ap-
layer and decompose it into two sub-layers: the matrix par- proximate the mean map embeddings of distributidiri§, [
tition sub-layer decoupling the mean vector and covariance the DMMs layer is decomposed into common operations of
matrix entangled in the embedding matrix, and the square- convolution, pixel-wise cosine and average pooling so that
rooted, symmetric positive definite matrix sub-layer. is th  forward and backward propagations can be easily accom-
way, we can derive the partial derivatives associated with plished. It is reported that the DMMs layer improves the
the proposed structural layer and thus allow backpropaga- existing CNNs on several real-world datasets. However, the
tion of gradients. Experimental results on large scaleoegi  DMMs method does not consider special characteristics of
classification and fine-grained recognition tasks show that individual distributions, for example, exponential diistr-
G?DeNet is superior to its counterparts, capable of achiev- tions have specific geometric structures.
ing state-of-the-art performance. Although the DMMs method has been studied, combin-
ing parametric probability distributions modeling intoege
. CNNs still is an open problem. In this paper, we take a step
1. Introduction forward towards addressing this problem. Specifically, as
Modeling activations of convolutional layers or fully- in [28 33, 4(], we use global Gaussians as image repre-
connected layers of pre-trained deep convolutional neuralSéntations and propose a global Gaussian embedding layer
networks (CNNs) as image representations has been very0 combine them in deep CNN architectures. In contrast to
*P. Li, to whom correspondence should be addressed, was rsegppo DMMs [2-9]' we eXp”C-itly Fake advantage of the- geometry
by Na.ltiohal Natural Science Foundation of China (No. 61«82)0 L. of Gaussians by considering their parameters (i.e., themea
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Figure 1. Overview of the proposed Global Gaussian digiohiembedding network (EDeNet). The core of &DeNet is a novel layer
of global Gaussians as image representations, insertexdtlaé last convolutional layer in a deep CNN in an end-to+madiner. By first
identifying a Gaussian as the square root of an SPD matrigcban Lie group theory, we decompose the layer into two syéréaand
develop a method to compute partial derivatives using magiiations and SVD. For detailed mathematical notatioefer to Sectior8.

our method more challenging since we need to consider the2. Related Work

Riemannian structure of Gaussians as well as its forward

and backward propagations in the deep CNNs.

lonescuet al. [14] establish the theory and practice of

To include Gaussian representation as a layer in thedlobal, structured matrix backpropagation in an end-td-en
deep CNNSs, we first exploit a Gaussian embedding strategytraining framework. In particular, they propose theorems
based on Lie group theory, where a Gaussian distribution©n variations of SVD or eigenvalue decomposition (EIG)
is uniquely transformed to a square-rooted symmetric pos-and instantiate the Deep® model for region classifica-
itive definite (SPD) matrix. To make our global Gaussian tion. At the heart of DeepP is a trainable GP layer
embedding layer trainable, we decompose it into two con- Plugged into the deep CNN architecture performing second-
secutive sub-layers: the matrix partition sub-layer arel th order pooling of convolutional features. The® layer
square-rooted SPD matrix sub-layer. The first sub-layer de-in DeepQP leads to second-order, non-central moments
couples the mean vector and covariance matrix entangled invhich are SPD matrices and whose geometry is handled us-
the embedding matrix so that it can be explicitly written as a iNg Log-Euclidean metrics’], resulting in backpropagation
function of features, while the second one is to compute the©f logarithm of SPD matrices. The structural matrix back-
square root of an SPD matrix through the singular value de-Propagation theory1/] motivates the backpropagation of
composition (SVD). Then, we develop a method to compute OUr proposed method on Gaussian manifold. However, dif-
the partial derivatives associated with the two sub-layersferent from Deep@P, we attempt to insert a trainable Gaus-
based on the theory of matrix variations. In this way, we can sian distribution layer, where the geometry of Gaussians
perform forward and backward propagations through the is quite different from the geometry involved in DeeffO
global Gaussian embedding layer. For convenience, hereSpecifically, we introduce a Gaussian embedding strategy
after, the proposed network is called Global Gaussian dis-Pased on Lie group theory, which uniquely maps a Gaussian
tribution embedding network ({®eNet), whose overview
is illustrated in Figurel. At the core of GDeNet is a train-
able layer of a global Gaussian as an image representatiortion 4.1, we show that our €eNet outperforms Deep®
inserted after the last convolutional layer in the deep CNNs by @ margin while preserving a comparable complexity.

The contributions of this paper lie in three folds: (1) we
propose a novel trainable structural layer, which can plug bilinear pooling layer after the last convolutional layar i
global Gaussian distributions into deep CNNs for powerful CNN architectures. This layer computes the outer products
image representation. To our best knowledge, this is thte firs of features from two CNN models, and then performs sum-
attempt to plug a parametric probability distribution into pooling and normalization. When the two CNN models are
CNN architectures in an end-to-end form. (2) Technically, different, BCNN captures correlations of different sowsrce
to make possible the forward and backward propagationsof features. If the two CNN models are identical, the
on Gaussian manifold, we exploit a Gaussian embeddingouter products plus sum-pooling leads to second-order, non
strategy based on Lie group theory and develop a structuracentral moments, as in DeepB®, differently, BCNN per-
backpropagation method. (3) The experiments are extenforms power normalization followed by,-normalization
sively conducted on large scale MS-COC@¥][and chal-
lenging fine-grained benchmarksd 27, 20], demonstrat-

ing superiority of the proposed method.

to a square-rooted SPD matrix. Note that the second-order
moments can be seen as Gaussians of zero-mean. In Sec-

The bilinear CNN (BCNN) 4] model inserts a trainable

for the resulting SPD matrices rather than matrix logarithm
used in Deep@P. In contrast to BCNN, our purpose is
to propose image representations by parametric, Gaussian



distributions for end-to-end learning while respectingith  a Lie group structure, i.e., it is not only a Riemannian man-
structures of manifold and Lie group, which is distinct from ifold but is a smooth group. This paper exploits the em-
BCNN in theory and implementation of both the forward bedding method in7] to identify a Gaussian as a square-
and backward propagations. In addition, comparisons inrooted SPD matrix. Let/' 7" (d+1) be the set of all positive
Section4.2 show that the proposed®GeNet is superiorto  definite upper triangular matrices of orde# 1 which is a

BCNN in exactly the same experimental settings. Lie group, and2~! = LL” be the Cholesky decomposi-
The other related works include NetVLAD][and Fish- tion of the inverse ok, whereL is a lower triangular matrix

erNet [37]. They both concerninsertion into the CNN archi- of orderd with positive diagonals. Through

tectures of a trainable layer consisting of features emgpdi 3

and pooling to form an orderless image representation. The SN (1, X)) =H, 3 2 [OT ﬂ , 1)

NetVLAD accomplishes the trainable layer of the general-
ized vector of locally aggregated descriptors (VLADY]. a GaussianV(u, X) is uniquely mapped to the matrix
The FisherNet proposes a method to implement the FisherH,, ; € UT+(d + 1), whereJ = L~7. However, the
vector (FV) [37] in an end-to-end learning manner. Regard- embedding form1) does not suit for backpropagation due
ing implementation, both of the two methods decompose to the Cholesky decomposition and matrix inverse.

(after appropriate modifications or simplifications) the in The matrixH,, 5 can be further mapped to a unique
serted layers into typical operations of convolution, soft SPD matrix based on matrix polar decomposition and Lie
max and pooling so that off-the-shelf implementation of group isomorphism. Le¥,, ; = S,, 5Q,..5 be the left po-
layers can be conveniently used. Different from them, in our |ar decomposition ofl,, y, whereS,, ;y and Q,, y be an
G?DeNet, the trainable layer is concerned with the Gaus- (d + 1) x (d + 1) SPD matrix and an orthogonal matrix of

sian distribution which involves structural backpropagat  determinant one, respectively. The mapping can be written
on manifold, and the commodity operations in the classical gs

CNN cannot be simply used.

S+ up” p*
o | $(Hpuy) = S = [ i ﬂ @
3. Global Gaussian Distribution Embedding K
Network andQ,,  is the closest orthogonal matrix k,, j, i.e.,
In this section, we will introduce our global Gaussian Qui=_min |H,s—-R|r,
ReO(d+1)

distribution embedding network. To make Gaussian be in-
tegrated into CNN architectures, we first map a GaussianwhereF” indicates the Frobenius norm aédd+1) denotes
to a square rooted SPD matrix. Then, we propose a novelhe set of(d + 1) x (d + 1) orthogonal matrices. Through
global Gaussian embedding layer. Finally, we develop athe above consecutive mappings, our introduced Gaussian
structural backpropagation method for our global Gaussianembedding can be represented as follows:
embedding layer. L
_[E+pp” p]?

3.1. Gaussian Embedding (W0 )N, 3)) = [ pT | @

In this paper, we use global Gaussians as image represen- Most works study Gaussian embedding based on the
tations. Suppose we have a sef\of/-dimensional features  structure of Riemannian manifold of Gaussians. Nakayama

X = [x1,...,xny]T € RV*4 whereT indicates matrix et al. [28] embed Gaussians in a flat manifold by taking
transpose. The Gaussian distribution of these features camn affine coordinate system. 16]] Gaussian is mapped
be estimated as follows: to a unique positive definite lower triangular affine trans-
form (PDLTAT) matrix whose space forms an affine group.
p(x) = 1 p ( _ l(x _ u)Tgfl(x _ M)% The methods in Calvet al. [4] and Lovri'c et al. [2€] re-

—— X
(2m)3 |33 2 spectively embed the space of Gaussian in the Siegel group
and the Riemannian symmetric space, identifying a Gaus-
wherep = + Zf\il x; and¥ = & Zfil(xi — p)(x; — sian as a unique SPD matrix. Note that, different from the
p)T are respectively mean vector and covariance matrix, aforementioned methods which only consider the Rieman-
and| - | indicates matrix determinant. The Gaussian distri- nian manifold structure o (d), our introduced embedding
bution M/ (i, X2) is determined by parameteusand . method 8) makes use of the Lie group structure, i.e., the
We denote by (d) the space ofi—variate Gaussians. It geometric structure of Riemannian manifold and the alge-
has long been knowrf] that this space is a Riemannian braic structure of smooth group. The Gaussian embedding
manifold having geometric structure. A recent woek] strategy 8) is not only suitable for backpropagation but also

has made advance, showing tGatl) can be endowed with  produces better performances as compared in Settba



3.2. Global Gaussian Embedding Layer

Next, we will construct our global Gaussian embedding
layer according to the embedding forr®)( To facilitate
implementation of this layer, we decompose it into two sub-

partition sub-layer4) with square-rooted SPD matrix sub-
layer ), we can accomplish the Gaussian embedding
(3). Next, we will show backpropagation for the proposed
global Gaussian embedding layer.

layers: matrix partition sub-layer and square rooted SPD 3.3. Backpropagation for Global Gaussian Embed-

matrix sub-layer, as illustrated in Figute

3.2.1 Matrix Partition Sub-layer

T
We denoteY = f[\/[pL (X) = %+ é{'/‘
the mean vectop and covariance matriX are entangled.
The purpose of this sub-layer is to decoufeand explic-
itly write it as the function of input featureX. We first
note that there exists the identi®y = +X7X — puT.
After some elementary manipulations, we have

‘f] . Obviously

Y =fuprr(X) 4)
1 T T 2 T T
= yAX'XAT + & (AX"1b")  +B.
In the above equatiolA = OIT wherel is thed x d

identity matrix and0 is d—dimensional zero vectoh =
[0,...,0,1]is (d+1)—dimensional vector with all elements
being zero except the last one which is equal to dnes,
N —dimensional vector with all elements being one, and fi-
nally B = [(; v
0 1
notationP .y, = %(P + PT) denotes the symmetrization
of P. After such manipulations, the derivative ¥f with
respect taX is straightforward.

} whereO is d x d zero matrix. The

3.2.2 Square-rooted SPD Matrix Sub-layer

The purpose of this sub-layer is to compute the square roo

of SPD matrixY, i.e.,Z = frsrr(Y) £ Y53, Itis well-

known that an SPD matrix is diagonalizable by SVD and the
diagonal elements are positive real numbers. Specifically,iS

Y has SVD

Y = UAU7, (5)

where A = diag(A1, -+, Aa41) is the diagonal ma-
trix of the eigenvalues\; in decreasing order anti =
[uy ugq41] is an orthogonal matrix whose columns
consist of normalized eigenvectars corresponding to the
eigenvalues\;. As such the square root & can be com-
puted conveniently as follows:

Z = fosni(Y) = UA2U7, (6)
whereA? = diag(A7,- -+, A7) is computed as element-
wise square root of the eigenvalues.

Combining matrix

ding Layer

To implement backpropagation for global Gaussian em-
bedding layer, we need to compﬁé@, wheref(Z) de-
notes a sub-network of {®eNet whose input and output
areZ and loss function, respectively. In this pap@ﬁ%
can be achieved by two steps. In the first step, we compute
21Z) For brevity, we usg instead off (Z) in the follow-

ing.
Compute g—{[ Note thafY is an SPD matrix, and its SVD
can be written a¥ = UAU7”. The chain rule of this step
is given by
of _of af
aY.deaU.dUJraA.dA, (7)
whereU : V = tr(UTV) denotes the trace df”'V, and
dU denotes the variation . By taking variation ofY we
havedY = dUAU? + UdAUT + UAJUT. Note thatU
is orthogonal, and after some manipulations, we can derive

dU = 2U(K" o (A"UTdYU),,,),

dA = (UTdYU)giag, (8)

where (-)a4iag indicates matrix diagonalizationy is the
Hadamard product, anl is a square matrix with its ele-
mentK,; = 1/(A\7 — \?) if i # j andK;; = 0 otherwise.
Substituting Eq.§) into Eq. (7), we achieve

7y = V(A0 (U55)),,.,+ (55).,) 0"
©)

Lrhe derivation of Eq.g) is first given in [L4, Prop. 1] and

readers may refer to.f] for more details.
We proceed to comput&l and 2£. Here the chain rule
give by
of of of
— :dZ = —= :dU + —— : dA.
oz au " T aA
We substitute the variatiodZ = 2(dUA‘%UT)Sym +

%UA*%dAUT into the above equation and can derive

ﬁﬂ(ﬁ of _ 1
ou ~ “\oz "N T 2

(10)

1 _1 7 O0f
2 2 T_
)SmeA AT2U aZU. (11)

Compute g—){ In the second step, we compute the par-
tial derivative associated with the matrix partition salyer.
The chain rule involved is

of of

— :dX = —:dY.

0X aY (12)



Method Gaussian Embedding 4. EXpefimentS

Nakayameet al. [2€] z = [vee(S+unT).u” " In this section, we conduct two parts of experiments to
Calvoetal [4] or Lovric etal [26] Z = [va;uT 'f] evaluate our method: large-scale regio_n cIa_tssifica’Fion on
H o MS-COCO 2014 datase?f] and challenging fine-grained
[4, 26] + Log-Euclidean f] Z = log [ZTT” ‘1‘] recognition on Birds-200-20113§], FGVC-Aircraft [27]
 [stpnT ]2 and FGVC-Carsi(. We also verify the effects of different
ours Z= [ uT 1] training methods and Gaussian embedding strategies on the

_ _ ) ) proposed method. We implement ouf@Net by using
Tabl_e 1 Comparison of dnfferent Gaps&an embgddlng method the MatConvNet packagé&§], and run the programs on a
vec indicates the vectorization operation of a matrix. PC equipped with a single NVIDIA Titan X GPU and 64G
RAM. As suggested inl[4], we use SVD rather than EIG
for computing square-rooted SPD matrix because SVD is
numerically more stable, and implement the global Gaus-
sian embedding layer on CPU in double precision due to
of 2 . ([ Of limited support of current GPU library for SVD or EIG, and
oX N (XA +1b )(a_Y)symA (13)  |ess accurate gradients of the structured layer induced by
the single precision. For numerical stability, we add a $mal
In summary, for the proposed global Gaussian embed-positive number le-3 throughout the paper to the diagonal
ding layer, the forward propagation can be performed via entries of covariance matrices. More implementation de-
Egs. @) and @), while the backpropagation can be achieved tails are described in the following subsections.
by Eqg. (L3), Eqg. ©) and Eg. (1). Our layer can be plugged
into various CNN architectures (e.g., AlexNeil] and  4.1. Region Classification on MS-COCO
VGG-VD-Net [34]) in an end-to-end manner. In practice,
we insert our layer after the last convolutional layer (with
ReLU operation).

We take the variation oY with respect taX and substitute
it into Eq. (12). After some arrangements, we achieve

The MS-COCO dataset used for region classification
task includes more than 890k segmented instances from 80
classes, divided into about 600k training instances an# 290
3.4. @DeNet Based Other Embedding Methods validation ones. In this part of experiments, we mainly com-

pare our GDeNet with its counterpart Deep® [14]. For

Finally, we introduce three other embedding methods fajr comparison, we exploit identical experimental sefsin
which can be used in our®eNet methodology. The com-  with [14] and use the code released by the autfipvehere
parison of embedding forms of different Gaussian embed-we replace the global £» layer with the proposed global

ding methods are listed in Table Gaussian embedding layer.
The backpropagation rule fof ] is given by We implement GDeNet which indicates the proposed
- layer is directly connected to a softmax layer, arfd&Net-
of _ i(ZX(mat <ﬂ> ) +1 (ﬁ) ) FC indicating the proposed layer connects to two fully-
oX N 0z ) |2/ sym 0z connected layers followed by a softmax layer, as in

d2+41:d2+d
’ (1+4) AlexNet. Both of the two networks are initialized with
wherey.; denotes the vector formed by entries. ., in AlexNet model pre-trained on ImageNet datasgt [We
vectory andmat(y) denotes reshaping of vectgrto a also implement &DeNet-FC with random initialization
square matrix which has the same number of elementsin (training from scratch), which is called’GeNet-FC (S).
The partial derivative associated with 6] is We compare them with the corresponding counterparts
which use the global €P layer. As in DeepgP, the
of _ 2 (XAT + 1bT) (ﬁ) A. (15) croppedimages are resized to have the largest sides of 200
X N 0Z) sym pixels, and translation jittering and random, horizontakfl
ping are used. We perform training using stochastic gra-
dient descent with a momentum of 0.9 and a batch size of
100. The GDeNet, GDeNet-FC and @DeNet-FC (S) are
trained with 15, 20 and 50 epoches where learning rates are
set as ones in Deep®. The classification errors of various
methods on the validation set are reported for comparison.

The derivation of backpropagation formulas féy 2€] plus

Log-Euclidean framework] is similar to those described

in Section3.3. The partial derivativegZ and 2% are the

same as Eq.10) and Eq. 9), respectively, bugL and 9&
take different forms as follows:

b B B b The convergence curve of the proposetDENet-FC is
a—é - 2(0_;) Ulog(A), a_zj; - A*1UT8—£U.
sym 16 The code is available athttp://www. maths.|th. se/
(16) mat enat i kl t h/ per sonal / smi nchi s/ code/


http://www.maths.lth.se/matematiklth/personal/sminchis/code/
http://www.maths.lth.se/matematiklth/personal/sminchis/code/

10 045 Specifically, we compare with BCNN [D,D] where the two
1001 0.4 @ CNN models involved are identical (i.e., VGG-VD16) and
. 035 most of the best results are achieved. Note that in this case
g s the bilinear pooling method shares the same CNN model,
E;m“ I and leads to the second-order, non-central moment of con-
O o2 02 volutional features. For fair comparison, we adopt exactly
s 02 the same experimental settings with BCNN wherever possi-
10 015 ble, e.g., two-stage training manner, hyper-parametata, d
1004 o1 processing and SVM training and téstTo implement our

% O TRining epden 2° method, we replace the bilinear layer with the proposed

global Gaussian embedding layer.

0 _5 10 15 2
Training epoch

Figure 2. Convergence curve of oufBeNet-FC on MS-COCO.
4.2.1 Birds-200-2011

DeepQP | DeepGP-FC | DeepGP-FC
AlexNetFC | 11y S04 [14 . , . . .
B 553 236 58.9 %53 The Birds-200-201199 is a challenging dataset, including
DMMs-FC | G’DeNet | G°DeNet-FC | G2DeNet-FC 11,788 images from 200 bird species. The fixed training
1 ©Ours) | _(5) Ours) (Ours) and test split is provided to evaluate different methods. On

this dataset, the part annotations (Parts) and the bounding
Table 2. Classification error$%) on the MS-COCO benchmark.  boxes (BBox) usually are considered to develop recognition
The results for all the methods indicated by ‘AlexNet-FC' or methods in training or test. Following the protocols used in
‘DeepC;Pare duplicated fromi[4]. BCNN, we evaluate our @DeNet in two cases, i.e., training
and testing GDeNet with or without bounding boxes.

i din Figure. Wi hi he | lassificat The results of different methods are listed in TaBle
llustrated in Figure2. We achieve the owestc_:_ass_l ication We first compare our @8DeNet with FC-CNN, FV-CNN
error21.5% at epoch 20. We note that classification error and BCNN in the same experimental settings. The FC-
9 . .
of G DeNet?F.C tends to descend _after the fm_al epoch, andCNN extracts the outputs of the penultimate fully connected
S0 more .tralnmg epoc;hes may bring further improvement. layer as image representations. The FV-CNiNderforms
Thg ggmw_]g r:md testtime ﬁf@eNett-_FCi arg%lr))(gjl\tﬁthlggrs encoding and pooling of features from the last convolu-
a|: “_“'”_:J es per epocl ' _resp_er(]: B/e y: BEC et tional layer with Fisher vector (FV)3[/] method, achieving
shares simrar time clomp exity with Deep f d in Tah promising results on many image recognition tasks. The
ThC(')Asz;rsoECresu tfl %n. I\/(Ijs—COC(ﬁ a;e Iste '3 ZI E BCNN obtains state-of-the-art performance by pooling of
e AlexNet- met. od indicates the fine-tuned AlexNet , ;o products of the outputs from the last convolutional
where th? last layer is replaced by 80-way S(_)ftma>_< layer. layer (with the ReLU operation) of two CNN model34].
We also implement the DMMs ‘.“e”_‘o‘” by mser_tmg These representations are fed to one-vs-all SVM classifiers
a DMMs layer of 4,096 frequencies into AlexNet with the ¢, training and test. In the case of no bounding boxes,
same settings as®eNet-FC, which is called DMMs-FC. | = ©poNet outperforms FC-CNN, FV-CNN and BCNN

Alccordlrég][;coNTab'I:%Z, Wﬁ have r’:hebfollowmgf dIS_COUfSE_’3 by 16.7%, 12.4% and3.1%, respectively. When bounding
(1) our eNet-FC achieves the best results, Improving ., oq 4re used, the performance of all methods can be im-

bpth DeepQP-FC anfj DMMs-FC methods by a large mar- proved and GDeNet is still better than FC-CNN, FV-CNN
gin (3.7%_and 3.1%); .(2) GQDeNe_t always outp(_arforms_ and BCNN by11.2%, 10.1% and2.5%, respectively. The
DeepQP In same settmgs ynder different scenarios, which significant improvements over the three methods show the
we attribute t_o the superiority of the proposed global Gaus- superiority of our global Gaussian embedding layer.
sian emb_eddlng Iaye_r over theRlayer; (3) our@Del\_let- We also compare with six recently proposed methods,
FC al_so IS far superior to Ale>§l_\let-|_:C,_ de_monstratlng aP~ \which, to our best knowledge, reported the previous best re-
propriate insertion ofa probabm_ty d|str|but|or_1 asangma g ts without exploiting extra training data RAID-G [40]
representation into deep CNNs is very beneficial. presented a robust infinite dimensional Gaussian descrip-
4.2. Fine-grained Recognition tor t_)ased on pretrained VGQ-VD19 model (no finetuning),

_ _ getting82.1% in accuracy without parts and BBoxes. PG-
~ The second part of experiments is conducted on threeAlignment [16] generated parts for bird images by using
fine-grained image benchmarks, on which the recognition co-segmentation and alignment in an unsupervised manner.
task is challenging due to large intra-class variation and

. . . L, 2 i
small inter-class differences. We malnly compare with We usg the_source code released by the author4)f available at
https://bitbucket.org/tsungyu/ bcnn- package.

2
BC_NN_ [24], one of the c_ounterparts of our _GeNet, 30ne very recent work reported an accuracp®f3% by using large scale
which is a state-of-the-art fine-grained recognition mdtho  additional annotation bird images from the wels]|



https://bitbucket.org/tsungyu/bcnn-package

Train Test

Methods SBox | Pars | BBox | Pais Pre-trained CNN modelg Accuracy(%)
PG-Alignment [.g] v v VGG-VD19 82.8
RAID-G [40] VGG-VD19 82.1
ST-CNN [16] Inception+BN 84.1
PD+FC+SWFV-CNN {2] VGG-VD16 84.5
SPDA-CNN+ensemble/[l] v v v VGG-VD16 + AlexNet 85.1
PN-CNN [3] v v v v AlexNet 85.4
FC-CNN [D] (w/ ft) VGG-VD16 70.4
FC-CNN [D] (w/ ft) v v VGG-VD16 76.4
FV-CNN [D] (w/ ft) [6] VGG-VD16 74.7
FV-CNN [D] (W/ ft) [6] v v VGG-VD16 77.5
BCNN [D,D] (W/ ft) [24] VGG-VD16 84.0
BCNN [D,D] (w/ ft) [24] v v VGG-VD16 84.8
BCNN [D,M] (wW/ ft) [ 24] v v VGG-VD16 + VGG-M 85.1
GZDeNet (Ours) VGG-VD16 87.1
G2DeNet (Ours) v v VGG-VD16 87.6

Table 3. Classification accuracies of different method wéirious experimental protocols on Birds-200-2011 dataBBox’ and ‘Parts’
indicate bounding boxes and parts, respectively. The tesfiFC-CNN, FV-CNN and BCNN are duplicated from4]. The results of
other methods are respectively from original papers.

Combining bounding boxes and fine-tuned VGG-VD19 Methods euracy Vo)
model, PG-Alignment achieveg2.8% in accuracy. ST- FC-CNN (VGG-VD16) 741 70.8
CNN [16] introduced a trainable Spatial Transformer (ST) E\éﬁmlvggf/gfel)%ﬁ] o o
module for overcoming lack of spatial invariance of exist- BCNN (VGG-VD16 + VGG-M) [14] 83.9 91.3
ing CNN architectures. The fine-tuned ST-CNN based on G”DeNet (Ours, w/o BBox) 89.0 92.5
the Inception architecture with batch normalizatiof][ob- Other Methods 875’ ‘79[[153,] ggig [é:;]]

tained84.1% in accuracy. Zhangt al. [47] proposed a part
detector (PD) while considering filter responses, and repre Table 4. Classification accuracies of various methods on GGV
sented the bag of parts using spatially weighted (SW) FV- Aircraft and FGVC-Cars benchmarks.

CNN and FC-CNN. They reported an accuracy of 84.5%.

The semantic part detection and abstra;tion CNN (SI_DE_)A— 4.2.2 FGVC-Aircraft

CNN) [41] developed an end-to-end architecture containing _ _

two sub-networks which performed semantic parts detec-The FGVC-aircraft datase?[] is a part of the FGComp
tion and recognition in a unified framework. SPDA-CNN 2013 challenge, which consists of 10,000 images across 100
achieved an accuracy 86.1% with an ensemble of VGG-  aircraft classes. Comparison with birds dataset, the-inter
VD16 model and AlexNet. Bransoet al. [3] proposed a  class variation of airplanes is more subtle, and in the irmage
pose normalized deep convolutional neural network (PN- the airplanes fill up larger regions but with more clear back-
CNN) to locate and normalize image patches, while em- ground. We exploit the fixed train/test split provided by the

ploying a deep CNN to extract features for patch represen-dataset developers, and compare with FC-CNN, FV-CNN,
tation. By using both part annotations and bounding boxes,BCNN with VGG-VD16 model, and several other methods.
PN-CNN achieve®5.4% in accuracy. The results of different methods are listed in Talle
(middle column). We can see that ouf@eNet is better
Our G’DeNet achieves the best results among all re- than its counterpart BCNN b¥.9%, and outperforms FV-
ported methods. Compared with ST-CNN, outD@Net  CNN and FC-CNN byl1.4% and14.9%, respectively. As
produces orderless representations which does not explicye employ the same CNN model (i.e., VGG-VD16) with
itly consider the spatial invariance, but outperforming ST FCc.CNN, FV-CNN and BCNN, we attribute the improve-
CNN which performs the spatial transformations of fea- ments to the proposed global Gaussian embedding layer.

tures. The methodslf, 42, 41, 3] all exploit part detec-  Finally, we note that our @eNet outperforms the previ-
tors or ground truth part annotations, which often can sig- ous methodsd, 10] by a large margin.

nificantly improve recognition accuracies for fine-grained

recognition task. Even without bounding boxes and part

detector, our @DeNet achieved.7% ~ 5.0% gains over 4.2.3 FGVC-Cars

them. The competitive results show that oliD&Net is a The FGVC-Cars datase?(]] is also presented as a part
very discriminative and robust image representation.-Inte of the FGComp 2013 challenge, containing 16,185 images
gration of part annotation with our“®eNet may further ~ from 196 car categories. Following the commonly used set-
improve the performance, which will be our future work.  tings, we adopt the provided roughly 50-50 split by divid-



81.2

ing the data into 8,144 training images and 8,041 test im- VD16-NoTr
ages. We also compare with FC-CNN, FV-CNN, BCNN

and the other two state-of-the-art methods. The results

are reported in Tablé (right-most column). It can be

seen that our @DeNet outperforms BCNN by.9% when

VD16-FT

)
@
o

VGG-VD16 is used. Combining VGG-VD16 and VGG-M, GzDeNet_ a1
BCNN improves but GDeNet still hasl.2% gains. Mean- [
while, G?DeNet performs better than recently reported re- o 81 82 8 84 85 86 87 8 8

Accuracy (%)

sult [43], and is comparable to the previous best resli [

where the bounding boxes are employed. Figure 3. Effects of different training methods of@eNet using

4.3. Ablation Experiments and Analysis VGG-VD16 on Birds-200-2011 dataset.
Finally, we employ Birds-200-2011 dataset without
BBox to analyze the effects of different training methods
and Gaussian embedding strategies D&\et. Here, the
experimental settings are the same as those in Settion

can be further subject to matrix logarith],[which, how-
ever, produces unsatisfactory results. From the persgecti

of computing, I, 26] keep the eigenvalues F*%“T ﬂ

as they are, while4, 2€] + Log-Euclidean P] and%urs per-
4.3.1 Training Methods form nonlinear scaling of the eigenvalues by logarithm and
square root, respectively. We conjuncture that the noafine
Firstly, we conduct experiments using three kinds of train- scaling can be seen as a kind of eigenvalues normalization,
ing methods based on VGG-VD16 model for our proposed and the square root may be more favorable than the loga-
network. The first oneD16-NoT) combines global Gaus-  rithm in such scenarios. The above analysis may account
sian embedding layer with the VGG-VD16 model pre- for why different embedding strategies perform differgntl
trained on ImageNet dataset in a non-end-to-end mannerbut this issue needs further study in the future.
which can be seen as’@eNet without any training. For the

second, we fine-tune VGG-VD16 model on birds dataset, '\N"elih"d T Acgé(;%)
. . . . m A .
t_hen combine global Gaussian embe_ddlng layer with the CZIviy:tafa[él?or Tovric etal 2 311
fine-tuned VGG-VD16. This method is call&D16-FT, Calvoet al. [4] or Lovric et al. + Log-Euclidean] 83.8
which can be seen as trainingBeNet in a non-end-to-end Ours 87.1

manner. The last one is o@DeNet We initialize it with
VGG-VD16 model pre-trained on ImageNet dataset, then
train our GDeNet in an end-to-end manner. The results of
different training methods are illustrated in Figuge Our
G?DeNet outperforms VD16-NoTr and VD16-FT 5y9% 5. Conclusion

and3.6%, respectively. It shows that plugging the global

Gaussian embedding layer into the deep CNN trained end-  This paper proposed to plug a trainable layer of a global
to-end is much better than those with no training and train- Gaussian distribution as an image representation into deep

ing separately, and it also demonstrates the effectivesfess CNN architectures in an end-to-end learning fashion. It can
our structural backpropagation method. capture discriminative first- and second-order image char-

acteristics while appropriately utilize the structuresgef
ometry and smooth group of Gaussians. The competitive
performance on large-scale region classification and chal-
To show the advantage of our Gaussian embedding stratienging fine-grained recognition tasks demonstrate the ef-
egy in GDeNet, we compare with the three other kinds of fectiveness of our proposed method. As far as we know,
Gaussian embedding methods as described in SeBtibon  we are among the first who explicitly combined paramet-
The results of different Gaussian embedding methods areric statistical modeling with deep CNNs in an end-to-end
listed in Table5. From it we can see that our introduced manner. This may motivate interests and efforts in plugging
embedding method achieves the best performance, outperether parametric distributions into CNNs, e.g., geneealiz
forming the competing methods By ~ 3.6%. The per- Gaussian distribution3[]]. The proposed global Gaussian
formance gains of our embedding method ov&i] [and embedding layer is modular and is of no parameter to learn,
[4, 26] may be ascribed to the fact that ours appropriately readily applicable to AlexNet or VGG-Net, and combining
uses the Lie group structure of Gaussians, while the lat-this layer with other CNN models (e.g., Inceptidit] and

ter two only consider the manifold structure. The embed- ResNet [ 7)) is our future research. We will also study other
ding matrix in {, 26] is symmetric positive definite, and applications of the proposed method, e.g., image retrieval

Table 5. Comparison of different Gaussian embedding metfayd
the GDeNet methodology on Birds-200-2011 dataset.

4.3.2 Gaussian Embedding
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