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Abstract. Biometric based personal authentication is an effective method for automatically recognizing, 

with a high confidence, a person’s identity. By observing that the texture pattern produced by bending the 

finger knuckle is highly distinctive, in this paper we present a new biometric authentication system using 

finger-knuckle-print (FKP) imaging. A specific data acquisition device is constructed to capture the FKP 

images, and then an efficient FKP recognition algorithm is presented to process the acquired data in real 

time. The local convex direction map of the FKP image is extracted, based on which a local coordinate 

system is established to align the images and a region of interest is cropped for feature extraction. For 

matching two FKPs, a feature extraction scheme which combines orientation and magnitude information 

extracted by Gabor filtering is proposed. An FKP database, which consists of 7,920 images from 660 

different fingers, is established to verify the efficacy of the proposed system and promising results are 

obtained. Compared with the other existing finger-back surface based biometric systems, the proposed FKP 

system achieves much higher recognition rate and it works in real time. It provides a practical solution to 

finger-back surface based biometric systems and has great potentials for commercial applications.  
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1. Introduction 

Personal authentication is a common concern to both industries and academia due to its numerous 

applications such as physical access control, computer security, banking and law enforcement, etc. 

Biometrics, which refers to the unique physiological or behavioral characteristics of human beings, can be 

used to distinguish between individuals and hence can serve as an ideal solution to this problem. With the 

rapid development of computer techniques, in the past three decades researchers have exhaustively 

investigated the use of a number of biometric characteristics, including fingerprint [1-3], face [4-5], iris 

[6-7], retina [8-9], palmprint [10-16], hand geometry [17-19], hand vein [20-21], finger surface [22-27], 

inner-knuckle-print [28-29], voice [30], ear [31], gait [32] and signature [33-34], etc. Although many 

biometric techniques are still under the stage of research and development, some biometric systems have 

been used in a large scale; for example, the Hong Kong government has been using the fingerprint 

recognition system as the automated passenger clearance system (e-channel) since 2004 [35]. 

Among various kinds of biometric identifiers, hand-based biometrics has been attracting considerable 

attention over recent years. Fingerprint [1-3], palmprint [10-16], hand geometry [17-19], hand vein [20-21], 

and inner-knuckle-print [28-29] have been proposed and well investigated in the literature. The popularity 

of hand-based biometrics should be attributed to its high user acceptance. In fact, the image pattern in the 

finger knuckle surface is highly unique and thus can serve as a distinctive biometric identifier. Woodard 

and Flynn [22-23] are among the first scholars who exploit the use of finger knuckle surface in biometric 

systems. They set up a 3-D finger back surface database with the Minolta 900/910 sensor. For feature 

extraction, they used the curvature based shape index to represent the finger back surface. Woodard’s work 

makes a good effort to validate the uniqueness of outer finger surface as a biometric characteristic. 

However, their work did not provide a practical solution to establishing an efficient system using the outer 

finger surface features. The cost, size and weight of the Minolta 900/910 sensor limit the use of it in a 

practical biometric system, and the time-consuming 3-D data acquisition and processing limit its use in 

real-time applications. In addition, they did not fully exploit the finger knuckle texture information in 

feature extraction.  

Later, Kumar and Ravikanth [24-25] proposed another approach to personal authentication by using 
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2-D finger-back surface imaging. They developed a system to capture hand-back images and then extracted 

the finger knuckle areas by some preprocessing steps. The subspace analysis methods such as PCA, LDA 

and ICA were combined to do feature extraction and matching. With Kumar’s design, the acquisition 

device is doomed to have a large size because nearly the whole hand back area has to be captured, despite 

the fact that the finger knuckle area only occupies a small portion of the acquired image. Furthermore, 

subspace analysis methods may be effective for face recognition but they may not be able to effectively 

extract the distinctive line and junction features from the finger knuckle surface. In Kumar’s later work 

[26-27], they used the robust line orientation code proposed in [16] to extract the orientation of the 

finger-back surface images. 

In this paper, a new hand-based biometric technique, namely finger-knuckle-print (FKP), is developed 

for online personal authentication. FKP refers to the image pattern of the outer surface around the 

phalangeal joint of one’s finger, which is formed by bending slightly the finger knuckle. A specially 

designed acquisition device is constructed to collect FKP images. Unlike the systems in [22] and [25] 

which first capture the image of the whole hand and then extract the finger or finger knuckle surface areas, 

the proposed system captures the image around the finger knuckle area of a finger directly, which largely 

simplifies the following preprocessing steps. Meanwhile, with such a design the size of the imaging system 

can be greatly reduced, which improves much its applicability. Since the finger knuckle will be slightly 

bent when being imaged in the proposed system, the inherent finger knuckle print patterns can be clearly 

captured and hence the unique features of FKP can be better exploited.  

After an FKP image is captured, a region of interest (ROI) needs to be cropped from the original image 

for the following feature extraction. An efficient FKP ROI extraction algorithm is proposed based on the 

intrinsic characteristics of FKP images. For matching two FKP ROI images, we propose a new feature 

extraction scheme which combines orientation and magnitude information extracted by Gabor filters. 

Experimental results show that it outperforms the other state-of-the-arts coding based feature extraction 

methods, such as CompCode [12], OrdinalCode [14], RLOC [16, 26-27] and BOCV [10], in FKP 

recognition. To evaluate the performance of the proposed technique, an FKP database was established using 

our prototype system, which consists of 7,920 images from 660 different fingers. Experimental results 

demonstrated that the proposed FKP based authentication system can verify the personal identity in real 
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time with a high recognition rate. Compared with the other existing finger knuckle surface based biometric 

systems [22-25], the proposed one performs much better in terms of both the recognition accuracy and the 

speed.  

The rest of this paper is organized as follows. Section 2 introduces the design and structure of the FKP 

image acquisition device. Section 3 describes the FKP image preprocessing and the ROI extraction method. 

Section 4 investigates the FKP feature extraction method and the related matching scheme. Section 5 

reports the experimental results. Finally, conclusions are presented in Section 6. 

 

2. The Finger-Knuckle-Print (FKP) Recognition System 
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Fig. 1: Structure of the proposed FKP-based personal authentication system. The whole system is composed of a 
data acquisition module and a data processing module. 

 

The schematic diagram of our FKP based personal authentication system is shown in Fig. 1. The system is 

composed of a data acquisition module and a data processing module. The data acquisition module is 

composed of a finger bracket, a ring LED light source, a lens, a CCD camera and a frame grabber. The 

captured FKP image is inputted to the data processing module, which comprises three basic steps: ROI 

(region of interest) extraction, feature extraction and coding, and matching. Fig. 2 shows the outlook of our 

FKP image acquisition device whose overall size is 160mm×125mm×100mm. 
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(a) (b) 

 
Fig. 2: (a) The outlook of the developed FKP image acquisition device; (b) The device is being used to collect FKP 
samples. 

 

   A critical issue in data acquisition is to make the data collection environment as stable and consistent as 

possible so that variations among images collected from the same finger can be reduced to the minimum. In 

general, a stable image acquisition process can effectively reduce the complexity of the data processing 

algorithms and improve the image recognition accuracy. Meanwhile, we want to put as little constraint as 

possible on the users in order for high user friendliness of the system. With the above considerations, a 

semi-closed data collection environment is designed in our system. The LED light source and the CCD 

camera are enclosed in a box so that the illumination is nearly constant. One difficult problem is how to 

make the gesture of the finger be nearly constant so that the captured FKP images from the same finger are 

consistent. In our system, the finger bracket is designed for this purpose.  

   Refer to Fig. 1, a basal block and a triangular block are used to fix the position of the finger joint. In 

data acquisition, the user can easily put his/her finger on the basal block with the middle phalanx and the 

proximal phalanx touching the two slopes of the triangular block. Such a design aims at reducing the spatial 

position variations of the finger in different capturing sessions. The triangular block is also used to 

constrain the angle between the proximal phalanx and the middle phalanx to a certain magnitude so that 

line features of the finger knuckle surface can be clearly imaged.  
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(a) (b) 

  
(c) (d) 

 
Fig. 3: Sample FKP images acquired by the developed system. (a) and (b) are from one finger while (c) and (d) are 
from another finger. Images from the same finger are taken at two different sessions with an interval of 56 days. 

 
   After the image is captured, it is sent to the data processing module for preprocessing, feature extraction 

and matching (refer to Sections 3 and 4 for details). The size of the acquired FKP images is 768×576 under 

a resolution about 400 dpi. Fig. 3 shows four sample images acquired by the developed device. Two images 

in the first row are from one finger and images in the second row are from another finger. Example images 

for the same finger were captured at two different collection sessions with an interval of 56 days. We see 

that by using the developed system, images from the same finger but collected at different times are very 

similar to each other. Meanwhile, images from different fingers are very different, which implies that FKP 

has the potential for personal identification. 

 

3. ROI (Region of Interest) Extraction 

FKP images collected from different fingers are very different. On the other hand, for the same finger, 

images collected at different collection sessions will also vary because of the variation of spatial locations 

of the finger. Therefore, it is necessary and critical to align FKP images by adaptively constructing a local 

coordinate system for each image. With such a coordinate system, an ROI can be cropped from the original 
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image in order for reliable feature extraction and matching. In this section, we will propose an algorithm for 

the local coordinate system determination and ROI sub-image extraction. 
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Fig. 4: Illustration for the ROI extraction process. (a) ID image which is obtained by a down-sampling operation 
after a Gaussian smoothing; (b) X-axis of the coordinate system, which is the line Y = Y0, fitted from the bottom 
boundary of the finger; (c) IS image extracted from ID; (d) IE image obtained by applying a Canny edge detector on 
IS; (e) ICD image obtained by applying the convex direction coding scheme to IE; (f) plot of ( )conMag x  for a 
typical FKP image; (g) line '

0X x= , where ( )'
0 arg min ( )

x
x conMag x= ; (h) ROI coordinate system, where the rectangle 

indicates the area of the ROI sub-image that will be extracted. 
 

Because the finger is always put flatly on the basal block when the FKP image is captured, the bottom 

boundary of the finger is stable in every image and can be taken as the X-axis of the ROI coordinate system. 
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However, the Y-axis is much more difficult to determine. Intuitively, we want to locate the Y-axis in the 

center of the phalangeal joint so that most of the useful features in the FKP image can be preserved within 

the ROI. It can be observed that line features on the two sides of the phalangeal joint have different convex 

directions. Taking this fact as a hint, we propose to code line pixels based on their convex directions and 

then make use of the convex direction codes to determine the Y-axis. Fig. 4 illustrates the main steps of the 

coordinate system determination and the ROI extraction. In the following, we describe these steps in detail. 

 

Step 1: image down-sampling 

The size of the captured FKP image is 768×576 under a resolution of 400dpi. Based on our experiments, it 

is not necessary to use such a high resolution for feature extraction and matching. Therefore, we apply a 

Gaussian smoothing operation to the original image, and then down-sample the smoothed image to about 

150 dpi (see Section 5.2 for the discussion of resolution selection). The down-sampling operation has two 

advantages. First it can significantly reduce the computational cost by reducing the data amount. Second, 

the Gaussian smoothing will suppress the noise in the original image, which can benefit the following 

feature extraction and matching steps. We denote by ID the down-sampled image and Fig. 4-a shows such 

an image. 

 

Step 2: determine the X-axis of the coordinate system  

Refer to Fig. 4-b, the bottom boundary of the finger can be easily extracted by a Canny edge detector. 

Actually, this bottom boundary is nearly consistent to all FKP images because all the fingers are put flatly 

on the basal block in data acquisition. By fitting this boundary as a straight line, the X-axis of the local 

coordinate system is determined.  

 

Step 3: crop a sub-image IS from ID  

Useful information which can be used for personal identification only resides in a portion of the whole FKP 

image. Therefore, we first crop a sub-image IS from the original image for the convenience of later 

processing. The left and right boundaries of IS are two fixed values evaluated empirically. The top and 

bottom boundaries are estimated according to the boundary of real fingers. Fig. 4-c shows an example IS 
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image. This roughly cropped sub-image will be used to calculate the Y-axis so that an accurate ROI image 

can be cropped.  

 

Step 4: Canny edge detection 

By applying Canny edge detector to IS, the corresponding edge map IE can be obtained. See Fig. 4-d for an 

example.  

 

Step 5: convex direction coding for IE 
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Fig. 5: (a) Ideal model for FKP “curves”; (b) Convex direction coding scheme. 
 

Based on the local convexity characteristics of the edge map IE, we can code IE to get the convex direction 

coding map ICD. At this step, each pixel on IE will be given a code to represent the local convex direction of 

this pixel. The underlying principle of this coding scheme is as follows. Based on the observation of FKP 

images, we abstract an ideal model for “curves” on an FKP image as shown in Fig. 5-a. In this model, an 

FKP “curve” is either convex leftward or convex rightward. We code the pixels on convex leftward curves 

as “1”, the pixels on convex rightward curves as “-1”, and the other pixels not on any curves as “0”. Fig. 

5-b illustrates the coding scheme. In our system, we regard the edges obtained in step 4 as “curves” and this 

convex direction coding is performed on IE. The pseudo code of this algorithm is given in Table 1: 

 

Table 1. Algorithm Convex_Direction_Coding (IE) 
 
Input:   IE ( m n×  binary edge map computed in step 4) 
Output:  ICD ( m n×  convex direction code map) 
 
Begin module 
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2
E

mid
height of Iy   

= ; 

for each ( , )EI i j  do 
    if ( , )EI i j  = 0 // it is a background pixel 
     ( , ) 0CDI i j = ; 
    else if ( 1, 1) 1 ( 1, 1) 1E EI i j and I i j+ − =   + + =  // it is a bifurcation pixel 
     ( , ) 0CDI i j = ; 
    else if ( ( 1, 1) 1 ) ( ( 1, 1) 1 )E mid E midI i j and i y or I i j and i y+ − =   <=   + + =   >   

( , ) 1CDI i j = ; 
    else if ( ( 1, 1) 1 ) ( ( 1, 1) 1 )E mid E midI i j and i y or I i j and i y+ + =   <=   + − =   >  

( , ) 1CDI i j = − ; 
       end if 
end for 
 
End module 
 

After convex direction coding, each ICD point is assigned a value 0, 1 or -1. Fig. 4-e shows an ICD map 

in false color image format. White pixels on it are the ones with convexity value “1”; black pixels are the 

ones with value “-1”; and gray pixels are of value “0”.  

 

Step 6: determine the Y-axis of the coordinate system 

Consider the ideal FKP curve model set up at step 5. For an FKP image, “curves” on the left part of 

phalangeal joint are mostly convex leftward and those on the right part are mostly convex rightward. 

Meanwhile, “curves” in a small area around the phalangeal joint do not have obvious convex directions. 

Based on this observation, at a horizontal position x (x represents the column) of an FKP image, we define 

the “convexity magnitude” as: 

( ) CD
W

conMag x abs I⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (1) 

where W is a window that is symmetrical about the axis X = x and W is of size d×h with h being the height 

of IS. d is experimentally chosen as 35 in this paper. The “convexity magnitude” is proposed to measure 

how strong the dominant convex direction is in a local area on the FKP image. The characteristic of the 

FKP image suggests that ( )conMag x  will reach a minimum around the center of the phalangeal joint and 

this position can be used to set the Y-axis of the coordinate system. Let  

( )'
0 arg min ( )

x
x conMag x=  (2) 

Then '
0X x=  can be set as the Y-axis. Fig. 4-f plots the curve ( )conMag x  of an FKP image and Fig. 4-g 
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shows the vertical line '
0X x= , which is the Y-axis of the ROI system. 

 

Step 7: crop the ROI image 

Now that we have fixed the X-axis and Y-axis, the local coordinate system can then be determined. Refer to 

Fig. 4-h, with the constructed coordinate system, the ROI sub-image IROI can be extracted from ID with a 

fixed size, which is empirically set as 110×220 in our system.  

 

Fig. 6 shows some examples of the extracted ROI images. We can see that the proposed coordinate system 

construction and ROI extraction method can effectively align the different FKP images and normalize the 

area for feature extraction. Such operations reduce greatly the variations caused by the various poses of the 

finger in data collection.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 6: Sample ROI images extracted by the proposed method. These four images are ROI images for the sample 
images shown in Fig. 3, respectively. 
 
 

4. FKP Feature Extraction and Matching 

The Gabor filtering technique can simultaneously extract the spatial-frequency information from the 

original signal [36]. Since 1980s, it has been widely used as an effective tool to fulfill the feature extraction 

job in face, iris, fingerprint and palmprint systems. In [37], Loris and Alessandra described a Gabor feature 

selection technique. The Gabor filter can produce three types of features – magnitude, phase, and 
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orientation, which can be used separately or jointly in different systems [38]. In this paper, we propose a 

method combining the orientation and magnitude features for FKP recognition. Experimental results in 

Section 5 verifies that the proposed scheme performs better in FKP recognition than the other coding-based 

methods, such as BOCV [10], CompCode [12], OrdinalCode [14] and RLOC [16, 26-27]. 

The Gabor function has several slightly different forms in the literature and here we adopt the one 

proposed by Lee [39]: 

2 2
' 2 ' 2

'2 (4 )
8 2( , , , )

2

x y i xG x y e e e
ω κ

ωκωω θ
πκ

− + −⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (3) 

where x' = (x-x0)cosθ + (y-y0)sinθ, y' = -(x-x0)sinθ + (y-y0)cosθ, (x0, y0)is the center of the function, ω is the 

radial frequency in radians per unit length and θ is the orientation of the Gabor functions in radians. κ is 

defined by 2 12ln 2
2 1

δ

δκ
⎛ ⎞+

= ⎜ ⎟−⎝ ⎠
, where δ is the half-amplitude bandwidth of the frequency response. ω can be 

determined by ω = κ / σ, where σ is the standard deviation of the Gaussian envelop. 

Using Gabor filtering, next we propose an improved competitive coding (ImCompCode) method to 

exploit the orientation information, and then we propose a magnitude coding (MagCode) method to exploit 

magnitude information. Finally, we fuse these two kinds of features in FKP matching.   

 

4.1. Improved competitive coding (ImCompCode) for orientation feature extraction 

At each pixel IROI(x,y), we extract the orientation information and represent it as an “orientation code”. This 

process is similar to the CompCode scheme in [12].  

   With a bank of Gabor filters, the orientation feature at each pixel IROI(x,y) can be extracted. In our 

system, we only use the real part of the Gabor filter to perform this job. Mathematically, this orientation 

coding process can be represented as: 

{ }( , ) arg min ( , ) * ( , , )ROI R j
j

oriCode x y I x y G x y θ=  (4) 

where symbol * represents the convolution operation, GR represents the real part of the Gabor function G, θj 

= jπ / J, j = {0,…, J - 1} , and J represents the number of different orientations.  
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Here we improve the original CompCode scheme. Often on an FKP image, there are some pixels lying 

on relatively “plane” areas, i.e. these pixels do not reside on any lines and consequently do not have a 

dominate orientation. Accordingly, the J Gabor filter responses at such pixels do not have much variation. If 

we still assign an orientation code to it, this code may not be stable and will be sensitive to noise, making 

the performance of feature representation and matching decreased. Therefore, those “plane” pixels should 

be removed from orientation coding. We define the “orientation magnitude” at a pixel as:   

( )
( ) ( )( )
max( ) min( )

( , )
max max( ) , min( )

abs R R
oriMag x y

abs R abs R
−

=  (5) 

where R = {Rj = IROI(x, y) * GR(x, y, θj)},  j = {0,…, J - 1} are the Gabor filtering responses at this pixel. 

The “orientation magnitude” oriMag(x, y) can measure how likely the pixel (x, y) has a dominant 

orientation. If it is smaller than a threshold, we reckon that this pixel has no dominant orientation and the 

corresponding competitive code is assigned as J.  

Based on our experimental results, using 6 Gabor filters of different orientations is enough. This is in 

accordance with the conclusion made by Lee in [39] that the simple neural cells are sensitive to specific 

orientations with approximate bandwidths of π / 6. Thus, we choose 6 orientations, θj = jπ / 6, j = {0,…, 5} 

for the competition. The pseudo code for our ImCompCode scheme is summarized in Table 2 and Fig. 7 

(a)~(d) are ImCompCode maps for FKP ROI images shown in Fig. 6. 

 

Table 2. Algorithm ImCompCode ( ROII ) 
 
Input:  ROII  ( m n×  ROI sub-image) 
Output: ImCompCode  ( m n×  integer matrix) 
 
Begin module 
for each ( , )ROII x y  do 

{ }( , ) * ( , , )j ROI R jR R I x y G x y θ= = , where / 6, {0,1,...5}j j jθ π= =  

( )
( ) ( )( )
max( ) min( )

max max( ) , min( )
abs R R

oriMag
abs R abs R

−
=  

if oriMag T<  // this pixel does not have a dominant orientation 
  ( , ) 6ImCompCode x y = ; 

else  
{ }( , ) arg min j

j
ImCompCode x y R=  

      end if 
end for 
End module 
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  (a)     (b)  (c) (d) 

 
  (e)     (f)  (g) (h) 

 
Fig. 7: (a) ~ (d) and (e) ~ (h) are ImCompCode maps and MagCode maps for the FKP ROI images shown in Fig. 6, 
respectively. 
 
 

4.2. Magnitude coding (MagCode) for magnitude feature extraction 

Besides orientation information, we also want to exploit magnitude information from Gabor filter responses. 

The magnitude of the Gabor filter response at IROI(x, y) is:  

( ) ( )2 2
( , ) * ( , , , ) ( , ) * ( , , , )ROI R j ROI I jI x y G x y I x y G x yω θ ω θ+  (6) 

where GR and GI represent the real part and the imaginary part of the Gabor function G respectively. 

However, in order to reduce the computational cost, when generating the magnitude code map, we want to 

make use of the temporary results generated from the “orientation coding” process. Thus, we still only use 

the real part of the Gabor filter and define the magnitude at IROI(x, y) as: 

( )( )( , ) max ( , ) * ( , , )ROI R jj
mag x y abs I x y G x y θ=  (7) 

Then a localized quantization is applied to mag(x, y) to get the magnitude code. This process can be 

expressed as: 

( )( , ) ( , ) lmax lminmagCode x y ceil mag x y lmin
N

⎛ ⎞−⎛ ⎞= − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (8) 

where N is the number of quantization levels, ( )
( , )
min ( , )

mx y W
lmin mag x y

∈
= , and ( )

( , )
max ( , )

mx y W
lmax mag x y

∈
= . Wm is a 

w×w window centered at (x, y). The resulting magnitude code is an integer within 1~ N. w and N can be 

tuned by experiments on a sub-dataset and they are experimentally set as 31 and 8 in this paper, respectively. 

Fig. 7 (e) ~ (h) show magnitude code maps for FKP ROI images presented in Fig. 6. 
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4.3. FKP matching  

Suppose we are comparing two FKP ROI images, P and Q. Let Po and Qo be the two orientation code maps; 

and let Pm and Qm be the two magnitude code maps. At first, we will calculate the matching distance 

between Po and Qo and the matching distance between Pm and Qm respectively, and then fuse the two 

matching distances together as the final matching distance between P and Q. 

 When calculating the matching distance between Po and Qo, we adopt the angular distance proposed in 

[12], which is defined as: 

( )
1 1

( , ), ( , )
( , )

( / 2)

Rows Cols

o o
y x

G P x y Q x y
angD P Q

J S
= ==

⋅

∑ ∑
 (9) 

where S is the area of the code map, and 

( )
( )( )
( )( )

1, ( , ) 6 ( , ) 6
1, ( , ) 6 ( , ) 6

( , ), ( , ) 0, ( , ) ( , )

min ( , ) ( , ), ( , ) ( , ) 6 , ( , ) ( , ) ( , ) 6

min ( , ) ( , ), ( , ) ( , ) 6 , ( ,

o o

o o

o o o o

o o o o o o o

o o o o o

P x y and Q x y
P x y and Q x y

G P x y Q x y P x y Q x y

P x y Q x y Q x y P x y if P x y Q x y and P x y

Q x y P x y P x y Q x y if P x

=   ≠

≠   =

= =

− − −   >   ≠

− − −   ) ( , ) ( , ) 6o oy Q x y and Q x y

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪ <   ≠⎩

 (10) 

The matching distance between Pm and Qm is defined as: 

( )
1 1

( , ) ( , )
( , )

( 1)

Rows Cols

m m
y x

abs P x y Q x y
magD P Q

N S
= =

−
=

− ⋅

∑ ∑
 (11) 

Then, the final matching distance between P and Q can be fused from angD and magD as: 

( , ) (1 ) ( , ) ( , )dist P Q angD P Q magD P Qλ λ= − ⋅ + ⋅  (12) 

where λ  is used to control the contribution of magD to dist and it is experimentally set as 0.15 in our 

system. 

Taking into account the possible translations in the extracted ROI sub-image (with respect to the one 

extracted in the enrolment), multiple matches are performed by translating one set of features in horizontal 

and vertical directions. And in such case, S is the area of the overlapping parts of the two code maps. The 

minimum of the resulting matching distances is considered to be the final distance. The ranges of the 

horizontal translation and the vertical translation are empirically set as -8 to 8 and -4 to 4 in this paper, 

respectively. 
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5. Experimental Results 

5.1. Database establishment 

In order to evaluate the proposed FKP-based personal authentication system, a database was established 

using the developed FKP image acquisition device (refer to Fig.1 and Fig. 2). FKP images were collected 

from 165 volunteers, including 125 males and 40 females. Among them, 143 subjects were 20~30 years old 

and the others were 30~50 years old. The database will be available in the website of Biometrics Research 

Center, The Hong Kong Polytechnic University (http://www.comp.polyu.edu.hk/~biometrics/). 

We collected samples in two separate sessions. In each session, the subject was asked to provide 6 

images for each of the left index finger, the left middle finger, the right index finger and the right middle 

finger. Therefore, 48 images from 4 fingers were collected from each subject. In total, the database contains 

7,920 images from 660 different fingers. The average time interval between the first and the second 

sessions was about 25 days. The maximum and minimum time intervals were 96 days and 14 days 

respectively. In all of the following experiments, we took images collected at the first session as the gallery 

set and images collected at the second session as the probe set. To obtain statistical results, each test image 

in the probe set was matched with all the training images in the gallery set. If the test image and the training 

image were from the same finger, the matching between them was counted as a genuine matching; 

otherwise it was counted as an imposter matching.  

 

5.2. Selection of the image resolution 

The resolution of original FKP images acquired in our system is about 400 dpi, which may not be optimal 

in terms of the accuracy and efficiency of FKP verification. In fact, many factors, such as the storage space, 

the computational cost, the employed feature extraction and matching method, and the recognition accuracy, 

should be considered in selecting a suitable resolution of the FKP images for a more efficient biometric 

system. To this end, we conducted a series of experiments to select the “optimal” resolution and set the 

selection criterion as: the minimum resolution with which a satisfying verification performance could be 
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obtained. The experiments were performed on a sub-dataset of the whole FKP database. In this sub-dataset, 

there were 120 classes, including 1,440 images. With respect to the feature extraction method, the 

CompCode was used [12]. We smoothed the original images by using a Gaussian kernel and then 

down-sampled the images to five lower resolutions: 200 dpi, 170 dpi, 150 dpi, 120 dpi and 100 dpi. The 

experimental results are summarized in Table 3.  

 

Table 3. EERs obtained under different resolutions 

resolution EER (%) 
200 dpi 1.73 
170 dpi 1.41 
150 dpi 1.36 
120 dpi 1.71 
100 dpi 1.92 

  

Based on the results listed in Table 3, it can be seen that 150 dpi is a good choice. It leads to the lowest 

EER, while the resolution is much smaller than the original one (400 dpi). This will reduce the 

computational cost and speed up the feature extraction and matching processes significantly. Therefore, in 

all of the following experiments, we used the FKP images with a resolution 150 dpi. 

  

5.3. FKP verification 

Verification aims to answer the question of “whether the person is the one he/she claims to be”. In order to 

show and explain the performance of the proposed system clearly, 3 experiments were conducted. In each 

experiment, we evaluated and compared the performance of five coding based feature extraction methods: 

CompCode [12], OrdinalCode [14], RLOC [16], BOCV [10] and the proposed ImCompCode&MagCode. 

The CompCode has been introduced in Section 4.1. In OrdinalCode, differences between Gaussians from 

two orthogonal directions were used to extract the orientation fields. The scales of the 2D Gaussian function 

along two orthogonal directions in OrdinalCode were set as 2.2 and 5.5 in our implementation. The RLOC 

method is based on the modified finite Radon transform. It was originally proposed for palmprint 

recognition [16], and was later adopted for feature extraction of the finger-back -surface images [26-27]. In 

our implementation of RLOC, the “line width” was set as 2 and the kernel size was 14×14. BOCV [10] is a 
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recently proposed method for palmprint recognition which tends to represent multiple orientations for a 

local region. The threshold for the binarization used in BOCV was set as 0 in this paper. Gabor filters used 

in CompCode, BOCV and the proposed ImCompCode&MagCode were all of the form (3), and the 

parameters were set as: δ = 3.3 and σ = 5.3.  

 

5.2.1. Experiment 1. In the first experiment, all classes of FKPs were involved. Each image in the probe set 

was matched against all the images in the gallery set. Therefore, in this experiment there were 660 (165×4) 

classes and 3,960 (660×6) images in the gallery set and the probe set each. The numbers of genuine 

matchings and imposter matchings are 23,760 and 15,657,840, respectively. By adjusting the matching 

threshold, a ROC (Receiver Operating Characteristic) curve, which is a plot of Genuine Accept Rate (GAR) 

against False Accept Rate (FAR) for all possible thresholds, can be created. The ROC curve can reflect the 

overall performance of a biometric system. Fig. 8-a shows ROC curves generated by the five different FKP 

recognition schemes and Table 4 lists the corresponding EERs, from which we can see that the proposed 

ImCompCode&MagCode scheme performs the best among the five methods evaluated in terms of EER. 

Distance distributions of genuine matchings and imposter matchings obtained by the proposed scheme are 

plotted in Fig. 8-b. 
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Fig. 8: (a) ROC curves obtained by the five recognition methods in experiment 1. (b) Distance distributions of 
genuine matchings and imposter matchings with the proposed scheme in experiment 1.  
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Table 4. EERs obtained by different methods in experiment 1 

Method EER (%) 
CompCode 1.72 

OrdinalCode 3.83 
RLOC 1.93 
BOCV 1.82 

ImCompCode&MagCode 1.48 
 

5.2.2. Experiment 2. As mentioned in Section 5.1, our database contains FKPs from four types of fingers, 

left index fingers, left middle fingers, right index fingers and right middle fingers. The aim of this 

experiment is to evaluate the performance of the proposed FKP-based personal authentication system on 

each type of fingers separately. For each type of FKPs, the gallery and the probe each contains 165 classes 

and 990 (165×6) sample images, and the numbers of genuine matchings and imposter matchings are 5,940 

and 974,160 respectively. Similarly, five FKP recognition schemes were evaluated. ROC curves for 

different finger types and by different recognition schemes are shown in Fig. 9. Experimental results in 

terms of EER are summarized in Table 5 for comparison. 

The experimental results indicate that in general the right middle and index fingers perform better than 

their left counterparts in terms of EER. This is probably because that the majority of people who provided 

FKP samples in our database are right-handed. They would feel more convenience to use our image 

acquisition device with their right hand than with the left one, which consequently leads to a result that the 

variations of finger poses of right hand fingers are less severe than left hand fingers. Remarkable variations 

of finger poses would cause severe affine transforms and deformations between two FKP images of the 

same finger, which lead to more challenge to FKP recognition. 

 

 
Table 5. EERs (%) by different schemes in experiment 2 

finger type CompCode OrdinalCode RLOC BOCV ImCompCode&Magcode 
left index 2.06 2.69 2.20 2.45 1.73 

left middle 1.96 4.07 2.27 2.42 1.78 
right index 1.82 3.66 2.07 2.43 1.44 

right middle 1.87 4.15 2.32 2.30 1.64 
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Fig.9: ROC curves for FKPs from (a) left index fingers, (b) left middle fingers, (c) right index fingers, and (d) 
right middle fingers. 

  

5.2.3. Experiment 3. The goal of this experiment is to investigate the system’s performance when we fuse 

information from 2 or more fingers of a person. In fact, in such a case the system works as a kind of 

multi-modal system with a single biometric trait but multiple units [40]. Suppose that we want to fuse 

information from the right index FKP and the right middle FKP. Each template in the enrolment database 

will be composed by a right index FKP tri and a right middle FKP trm. When matching, a client’s right index 

FKP cri and right middle FKP crm will be matched to tri and trm respectively to get two matching distances, 

dri and drm. Then dri and drm will be fused according to some fusion rules to obtain the final matching 

distance, by which the client’s identity can be identified. 

 With respect to fusion rules, in this paper we simply examined the SUM rule and the MIN rule as they 

are easily to be implemented and can well reflect the system’s performance. The SUM rule is defined as: 

sum id d= ∑  (13)

and the MIN rule is defined as: 
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( )min id min d=  (14)

where di is the matching distance of the client’s ith finger. 

 We tested several different fusion schemes of fingers with the two fusion rules. Results are presented in 

Table 6, from which it can be easily observed that by integrating information from more fingers the 

recognition performance of the system could be largely improved. We can also find that the SUM rule 

works better than the MIN rule in our system. 

 

Table 6. EERs (%) obtained in experiment 3 

CompCode OrdinalCode RLOC BOCV ImCompCode 
&MagCode fingers in 

fusion S-rule M-rule S-rule M-rule S-rule M-rule S-rule M-rule S-rule M-rule 
left index 

left middle 0.33 0.67 0.64 0.72 0.26 0.68 0.41 0.45 0.20 0.63 

right index 
right middle 0.32 0.39 0.71 0.79 0.34 0.37 0.36 0.47 0.26 0.36 

left index 
right index 0.36 0.67 0.84 0.76 0.42 0.91 0.63 0.63 0.26 0.64 

left middle 
right middle 0.29 0.33 0.90 0.87 0.33 0.30 0.43 0.42 0.27 0.30 

All the four 0 0.03 0.02 0.05 0 0.16 0.01 0.09 0 0.02 
 

5.4. Speed 

The FKP recognition software is implemented using Visual C#.Net 2005 on a Dell Inspiron 530s PC 

embedded Intel E6550 processor and 2GB of RAM. Computation time for the key processes are listed in 

Table 7. The execution time for data preprocessing and ROI extraction is 198ms. The time for 

ImCompCode&MagCode-based feature extraction and matching is 105ms and 1.6ms, respectively. Thus, 

the total execution time for one verification operation is less than 0.5s in our prototype system, which is 

fast enough for real-time applications. We believe that with the optimization of the implementation, the 

system’s efficiency could be much further improved. 

Table 7. Computation time for key processes 

Method Time (msec) 
ROI extraction 198 

Feature extraction 105 
Matching 1.6 
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5.5. Discussion 

FKP is a new member in the biometrics family compared with other biometric identifiers. As mentioned in 

the section of Introduction, Woodard and Flynn [22-23] did some salient work to validate the uniqueness of 

features from finger-back surfaces by using 3D imaging, and Kumar [24-25] integrated 2D finger knuckle 

surface information with the finger shape information in their system. However, such a system is doomed 

to have a relatively large size because they need to collect the image of the whole hand. Complex 

preprocessing steps are also needed to extract the finger knuckle area which only occupies a small portion 

of the whole acquired image. In our system, we make use of a triangular block to control the finger 

freedom. This gadget does not sacrifice the user convenience and it is easy to use. Such a design brings the 

following merits: 1) the acquisition device could be easily made to a small size; 2) image around the finger 

knuckle area is captured directly, which largely simplifies the following data preprocessing steps; and 3) 

since the finger knuckle is slightly bent when being captured, the distinctive FKP texture patterns can be 

clearly imaged, which makes the proposed FKP system have high accuracy. 

Advantages of the proposed system could be reflected by experimental results on FKP verification. For 

comparison, experimental results in [22] and [25] are extracted from the original papers and listed in Table 

8 and partial experimental results by our system are also presented. The scale of the dataset used in our 

experiment is much larger than the ones mentioned in [22] and [25]. Woodard’s result [22] and Kumar’s 

result [25] were obtained by fusing information from three and four fingers, respectively. It can be clearly 

seen that the proposed system performs much better even if we incorporate information from fewer fingers. 

Particularly, if four fingers are used, our system could achieve an EER of 0.  

 
Table 8. Comparison of experimental results 

method gallery 
classes 

gallery 
samples 

probe 
classes 

probe 
samples Finger types for fusion EER (%) 

[22] 132 660 177 531 r-index, r-middle, r-ring 5.5 
[25] 105 420 105 210 index, middle, ring, little 1.39 
Ours 165 990 165 990 r-index, r-middle 0.26 
Ours 165 990 165 990 r-index, r-middle, l-index, l-middle 0 
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 It should be noted that although we use a triangular block to control the finger freedom in FKP image 

acquisition, there are still variations for the same finger at different collection sessions. Sometimes such 

variations can result in severe affine transforms or even non-elastic deformations among intra-class FKPs. 

And as a result, feature maps of such FKPs can have large matching distances. Fig. 10 shows a typical 

example. The two FKP images in Fig. 10 are from the same finger but are recognized as different classes in 

our system. In fact, high intra-class matching distances (higher than 0.41) are mainly resulted from such 

kind of geometric deformations. For example, in experiment 1, all the 43 genuine matchings with matching 

distances higher than 0.41 could be attributed to such cases.  Hence, how to reduce the effects of affine 

transforms and deformations will be a direction of our future work. 

 

  
(a) (b) 

  
(c) (d) 

 
Fig. 10: (a) and (b) are two intra-class FKP images captured by our system. (c) and (d) are their ROI sub-images. 
There is an obvious pose variation between the two FKPs and they are recognized as different classes in our 
system. 
 

6. Conclusions 

This paper presents a new approach to online personal authentication using finger-knuckle-print (FKP), 

which has distinctive line features. A cost-effective FKP system, including a novel image acquisition device 

and the associated data processing algorithms, is developed. A region of interest (ROI) extraction algorithm 

is proposed to align and extract the FKP sub-image for feature extraction. For efficient FKP matching, a 
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feature extraction scheme is proposed to exploit both orientation and magnitude information extracted by 

Gabor filters. To evaluate the performance of the proposed system, an FKP database is established, 

consisting of 7,920 images from 660 different fingers. Extensive experiments are conducted and promising 

results demonstrate the efficiency and effectiveness of the proposed technique. Compared with other 

existing finger back surface based systems, the proposed one has merits of high accuracy, high speed, small 

size and cost-effective. It has a great potential to be future improved and employed in real commercial 

applications. In the future, we will focus on how to deal with affine or even non-elastic deformations 

between FKP images from the same finger to further improve the system’s performance. 
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