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Measures of relevance between features play an important role in classification and regression analysis.
Mutual information has been proved an effective measure for decision tree construction and feature
selection. However, there is a limitation in computing relevance between numerical features with mutual
information due to problems of estimating probability density functions in high-dimensional spaces. In
this work, we generalize Shannon’s information entropy to neighborhood information entropy and pro-
pose a measure of neighborhood mutual information. It is shown that the new measure is a natural
extension of classical mutual information which reduces to the classical one if features are discrete; thus
the new measure can also be used to compute the relevance between discrete variables. In addition, the
new measure introduces a parameter delta to control the granularity in analyzing data. With numeric
experiments, we show that neighborhood mutual information produces the nearly same outputs as
mutual information. However, unlike mutual information, no discretization is required in computing rel-
evance when used the proposed algorithm. We combine the proposed measure with four classes of eval-
uating strategies used for feature selection. Finally, the proposed algorithms are tested on several
benchmark data sets. The results show that neighborhood mutual information based algorithms yield
better performance than some classical ones.

� 2011 Published by Elsevier Ltd.
1. Introduction Pearson’s correlation coefficient, which reflects the linear correla-
Evaluating relevance between features (attributes, variables) is
an important task in pattern recognition and machine learning. In
decision tree construction, indexes such as Gini, towing, deviance
and mutual information were introduced to compute the relevance
between inputs and output, thus guilding the algorithms to select
an informative feature to split samples (Breiman, 1993; Quinlan,
1986, 1993). In filter based feature selection techniques, a number
of relevance indexes were introduced to compute the goodness of
features for predicting decisions (Guyon & Elisseeff, 2003; Hall,
2000; Liu & Yu, 2005). In discretization, a relevance index can be
used to evaluate the effectiveness of a set of cuts by computing
the effectiveness of a set of cuts by computing the relevance be-
tween the discretized features and decision (Fayyad & Irani,
1992, 1993; Liu, Hussain, & Dash, 2002). Relevance is also widely
used in dependency analysis, feature weighting and distance learn-
ing (Düntsch & Gediga, 1997; Wettschereck, Aha, & Mohri, 1997).

In the last decades, a great number of indexes have been intro-
duced or developed for computing relevance between features.
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tion degrees of two random numerical variables, was introduced
in Hall (2000). Obviously, there is some limitation in using this
coefficient. First, correlation coefficient can just reflect the linear
dependency between variables, while relations between variables
are usually nonlinear in practice. Second, correlation coefficient
cannot measure the relevance between a set of variables and an-
other variable. In feature selection, we are usually confronted the
task to compute the relation between a candidate feature and a
subset of selected features. Furthermore, this coefficient may be
not effective in computing the dependency between discrete vari-
ables. In order to address these problems, a number of new mea-
sures were introduced, such as mutual information (Battiti,
1994), dependency (Hu & Cercone, 1995; Pawlak & Rauszer,
1985) and fuzzy dependency in the rough set theory (Hu, Xie, &
Yu, 2007), consistency in feature subset selection (Dash & Liu,
2003), Chi2 for feature selection and discretization (Liu & Setiono,
1997), Relief and ReliefF to estimate attributes (Sikonja &
Kononenko, 2003). Dependency is the ratio of consistent samples
which have the same decision if their values of inputs are the same
over the whole set of training data. Fuzzy dependency generalizes
this definition to the fuzzy condition. Consistency, proposed by
Dash and Liu (2003), can be viewed as the ration of samples which
can be correctly classified according to the majority decision.
crete and continuous features based on neighborhood mutual information.
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Among these measures, mutual information (MI) is the most
widely used one in computing relevance. In ID3 and C4.5, MI is
used to find good features for splitting samples (Quinlan, 1986,
1993). In feature selection, MI is employed to measure the quality
of candidate features (Battiti, 1994; Fleuret, 2004; Hall, 1999; Hu,
Yu, Xie, & Liu, 2006, Hu, Yu, & Xie, 2006; Huang, Cai, & Xu, 2008;
Kwak & Choi, 2002, 2002; Liu, Krishnan, & Mondry, 2005; Peng,
Long, & Ding, 2005; Qu, Hariri, & Yousif, 2005; Wang, Bell, &
Murtagh, 1999; Yu & Liu, 2004). Given two random variables A
and B, the MI is defined as

MIðA;BÞ ¼
X
a2A

X
b2B

pða; bÞ log
pða; bÞ

pðaÞpðbÞ :

Thus, MI can be considered as a statistics which reflects the degree
of linear or nonlinear dependency between A and B. Generally
speaking, one may desire that the selected features are highly
dependent on the decision variable, but are independent between
them. This condition makes the selected features maximally rele-
vant and minimally redundant.

In order to compute mutual information, we should know the
probability distributions of variables and their joint distribution.
However, these distributions are not known in practice. Given a
set of samples, we have to estimate the probability distributions
and joint distributions of features. If features are discrete, histogram
can be used to estimate the probabilities. The probabilities are
computed as the relative frequency of samples with the correspond-
ing feature values. If there are continuous variables, two techniques
were developed. One is to estimate probabilities based on the
technique of Parzen Window (Kwak & Choi, 2002; Wang et al.,
1999). The other is to partition the domains of variables into several
subsets with a discretization algorithm. From the theoretical per-
spective, the first solution is feasible. Whereas, it is usually difficult
to obtain accurate estimates for multivariate density as samples in
high-dimensional space is sparsely distributed. The computational
cost is also very high (Liu et al., 2005; Peng et al., 2005). Considering
the limit of Parzen Window, techniques of discretization are usually
integrated with mutual information in feature selection and
decision tree construction (C4.5 implicitly discretizes numerical
variables into multiple intervals) (Hall, 1999; Liu et al., 2002; Qu
et al., 2005; Yu & Liu, 2004). Discretization, as an enabling technique
for inductive learning, is useful for rule extraction and concept
learning (Liu et al., 2002). However, it is superfluous for C4.5, neural
network and SVM. Moreover, discretization is not applicable to
regression analysis, where relevance between continuous variables
is desirable. In these cases an information measure for computing
relevance between continuous features become useful.

In Hu, Yu, Liu, and Wu (2008), the authors considered that in
human reasoning the assumptions of classification consistency
are different in discrete and continuous feature spaces. In discrete
spaces, the objects with the same feature values should be as-
signed with the same decision class; otherwise, we think the deci-
sion is not consistent. In the meanwhile, since the probability of
two samples with the completely same feature values is very small
in continuous spaces, we think the objects with the most similar
feature values should belong to a decision class; otherwise, the
decision is not consistent. The assumption of similarity in continu-
ous spaces extends the one of equivalence in discrete spaces. Based
on this assumption, Hu and his coworkers extended equivalence
relation based dependency function to neighborhood relation
based one, where neighborhood, computed with distance, is looked
as the subset of samples which have the similar feature values with
the centroid. Then by checking the purity of the neighborhood, we
can determine whether the centroid sample is consistent or not.
However, neighborhood dependency just reflects whether the
sample is consistent, it is not able to record the degree of consis-
tency of this sample; this makes the measure not so effective as
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mutual information in terms of stability and robustness. In this pa-
per, we integrate the concept of neighborhood into Shannon’s
information theory, and propose a new information measure,
called neighborhood entropy. Then, we derive the concepts of joint
neighborhood entropy, neighborhood conditional entropy and
neighborhood mutual information for computing the relevance be-
tween continuous variables and discrete decision features. Given
this generalization, mutual information can be directly used to
evaluate and select continuous features.

Our study is focused on three problems. First, we introduce the
new definitions on neighborhood entropy and neighborhood mu-
tual information. The properties of these measures are discussed.
We show that the neighborhood entropy is a natural generalization
of Shannon’s entropy. Neighborhood entropy converts to the
Shannon’s one if a discrete distance is used.

Second, we discuss the problem how to use the proposed mea-
sures in feature selection. We give an axiomatic approach to fea-
ture subset selection and discuss the difference between the
proposed one and other two approaches. In addition, we consider
the ideas of maximal dependency, maximal relevance and minimal
redundancy in the context of neighborhood entropy, and discuss
their computational complexities. Finally, three strategies are pro-
posed for selecting features based on neighborhood mutual infor-
mation: maximal dependency (MD), minimal redundancy and
maximal relevance (mRMR), minimal redundancy and maximal
dependency (mRMD).

Finally, with comprehensive experiments, we exhibit the prop-
erties of neighborhood entropy and compare MD, mRMR and
mRMD with some existing algorithms, such as CFS, consistency
based feature selection, FCBF and neighborhood rough set based
algorithm. The experimental results show the proposed measures
are effective when being integrated with mRMR and mRMD.

The rest of the paper is organized as follows. Section 2 presents
the preliminaries on Shannon’s entropy and neighborhood rough
sets. Section 3 introduces the definitions of neighborhood entropy
and neighborhood mutual information and discusses their proper-
ties and interpretation. Section 4 integrates neighborhood mutual
information with feature selection, where the relationships between
MD, mRMR and mRMD are studied. Experimental analysis is de-
scribed in Section 5. Finally, conclusion and future work are given
in Section 6.

2. Preliminaries

2.1. Entropy and mutual information

Shannon’s entropy, first introduced in 1948 (Shannon, 1948), is
a measure of uncertainty of random variables. Let A = {a1,a2, . . . ,an}
be a random variable. If p(ai) is the probability of ai, the entropy of
A is defined as

HðAÞ ¼ �
Xn

i¼1

pðaiÞ log pðaiÞ:

If A and B = {b1,b2, . . . ,bm} are two random variables, the joint prob-
ability is p(ai,bj), where i = 1, . . . ,n, j = 1, . . . ,m. The joint entropy of A
and B is

HðA;BÞ ¼ �
Xn

i¼1

Xm

j¼1

pðai; bjÞ log pðai; bjÞ:

Assuming that the variable B is known, the uncertainty of A, named
conditional entropy, is computed by

HðAjBÞ ¼ HðA;BÞ � HðBÞ ¼ �
Xn

i¼1

Xm

j¼1

pðai; bjÞ log pðai; jbjÞ:
crete and continuous features based on neighborhood mutual information.
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Correspondingly, the reduction of uncertainty of A resulting from
the knowledge of B, called mutual information between A and B,
is defined as

MIðA; BÞ ¼
Xn

i¼1

Xm

j¼1

pðai; bjÞ log
pðaijbjÞ

pðaiÞ
:

As

pðaijbjÞ
pðaiÞ

¼ pðbjjaiÞ
pðbjÞ

¼ pðai; biÞ
pðaiÞpðbjÞ

;

so we have

MIðA; BÞ ¼ MIðB; AÞ ¼ HðAÞ � HðAjBÞ ¼ HðBÞ �HðBjAÞ
¼ HðAÞ þ HðBÞ � HðA;BÞ:

As to continuous random variables, the entropy is computed as

HðAÞ ¼ �
Z

pðaÞ log pðaÞda;

where p(a) is the probability density function.
In data-driven learning, the probability distributions of vari-

ables are usually unknown a priori. We have to estimate them
making use of available samples.

2.2. Neighborhood rough sets

Given discrete data, the samples with the same feature value
are pooled into a set, called equivalence class. These samples are
expected to belong to the same class; otherwise, they are inconsis-
tent. It is easy to verify whether the decisions are consistent or not
by analyzing their decisions (Pawlak, 1991). However, it is unfeasi-
ble to compute equivalence classes with continuous features be-
cause the probability of samples with the same numerical value
is very small. Intuitively speaking, the samples with the similar
feature values should be classified into a single class in this case;
otherwise, the decision is not consistent. Based on this observation,
the model of neighborhood rough sets was proposed (Huang et al.,
2008).

Given a set of samples U = {x1,x2, . . . ,xn}, xi 2 RN , D is a distance
function on U, which satisfies D(xi,xj) P 0; 2-norm distance (also

called Euclidean distance):
PN

k¼1jxik � xjkj2
� �1=2

is usually used in

applications. Given d P 0, by d(x) = {xijD(x,xi) 6 d}, we denote the
neighborhood of sample xi. Given two feature spaces R and S,
dR(x) and dS(x) are the neighborhoods of X computed in these fea-
ture spaces with infinite norm based distance, respectively. We
have the following property: dR[S(x) = dR(x) \ dS(x). In addition to
the distance function given above, there are a number of distances
for heterogeneous features and missing data (Wang, 2006).

Regarding a classification task, a decision attribute is given to
assign a class label to each sample, and the samples are divided
into c1,c2, . . . ,ck, where c1 [ c2� � � [ ck = U, and ci \ cj = ; if i – j.

We say the decision of sample x is d-neighborhood consistent if
d(x) # cx, where cx is the subset of samples having the same class
label as X. The consistent samples with class cx is the lower approx-
imation of cx. Formally, the lower and upper approximations of
decision class ci are defined as

Nci ¼ fxjdðxÞ# cig; Nci ¼ fxjdðxÞ \ ci – ;g;

respectively, where N denotes a neighborhood relation over U. Cor-
respondingly, the total lower and upper approximations of classifi-
cation C are written as

NC ¼ [
k

i¼1
Nci; NC ¼ [

k

i¼1
NCi;

respectively.
Please cite this article in press as: Hu, Q., et al. Measuring relevance between dis
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Usually, Nci # Nci, and we call BNðciÞ ¼ Nci �Nci the boundary
region of ci. We say ci is d-neighborhood consistent if BN(ci) = ;.
In this case, all the samples in ci are certainly classified into ci;
otherwise, ci is not consistent.

It is easy to show that NC ¼ [
k

i¼1
NCi ¼ U, and NC # U. We say the

decisions of samples are d -neighborhood consistent if NC = U. In
this case all the samples are delta-neighborhood consistent. How-
ever, a portion of samples are inconsistent in real-world applica-
tions; the ratio of consistent samples, computed with kNCk/kUk,
is defined as the dependency of decision C to features S, denoted
by cS(C), where kAk is the cardinality of set A.

The size of neighborhood, controlled by the values of d, is a
parameter to control the granularity when handling classification
problems. The coarser the granularity is, the greater the decision
boundary region would be. Therefore the classification is more
inconsistent in this case. For detailed information, one can refer
to literature (Hu et al., 2008).

3. Neighborhood mutual information in metric spaces

Shannon’s entropy and mutual information cannot be used to
compute relevance between numerical features due to the diffi-
culty in estimating probability density. In this section, we intro-
duce the concept of neighborhood into information theory, and
generalize Shannon’s entropy for the numerical information.

Definition 1. Given a set of samples U = {x1,x2, . . . ,xn} described by
numerical or discrete features F, S # F is a subset of attributes. The
neighborhood of sample xi in S is denoted by dS(xi). Then the
neighborhood uncertainty of the sample is defined as

NHxi
d ðSÞ ¼ � log

kdSðxiÞk
n

;

and the average uncertainty of the set of samples is computed as

NHdðSÞ ¼ �
1
n

Xn

i¼1

log
kdSðxiÞk

n
:

Since "xi, dS(xi) # U, kdS(xi )k/n 6 1, so we have
logn P NHd(S) P 0. NHd(S) = logn if and only if for "xi, kd
S(xi)k = 1. NHd(S) = 0 if and only if for "xi, kdS(xi)k = n.
Theorem 1. If d 6 d0, NHdðSÞP NHd0 ðSÞ.
Proof. "xi 2 U, we have d(xi) # d0(xi), then kd(xi)k 6 kd0(xi)k, we
have NHdðSÞP NHd0 ðSÞ. h
Theorem 2. If d = 0, then NHd(S) = H(S), where H(S) is Shannon’s
entropy.
Proof. If d = 0, the samples are divided into disjoint X1,X2, . . . ,Xm,
where D(xi,xj) = 0 if xi, xj 2 Xk. Assumed there are mi samples in
Xi, then HðSÞ ¼ �

Pm
i¼1

mi
n log mi

n . dS (x) = Xk if x 2 Xk and d = 0. If i – j,
Xi \ Xj = ;, we have

NHdðSÞ ¼ �
1
n

log
kdSðxiÞk

n

¼
X
x2X1

�1
n

log
kdSðxÞk

n
þ � � � þ

X
x2Xm

�1
n

log
kdSðxÞk

n
:

This leads us to the conclusion that NHd(S) = H(S) if d = 0. h

Neighborhood entropy is a natural generalization of the Shan-
non’s entropy if features are continuous. As to discrete features,
we can define a discrete distance such that D(x,y) = 0 if x = y;
otherwise D(x,y) = 1. If d < 1, the subset dS(xi) of samples forms
crete and continuous features based on neighborhood mutual information.
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the equivalence class [xi], where [xi] is the set of samples taking the
same feature values with xi. In this case, the neighborhood entropy
equals Shannon entropy.

Definition 2. R, S # F are two subsets of attributes. The neigh-
borhood of sample xi in feature subspace S [ R is denoted by
d R[S(xi), then the joint neighborhood entropy is computed as

NHdðR; SÞ ¼ �
1
n

Xn

i¼1

log
kdS[RðxiÞk

n
:

Especially if R is a set of input variables and C is the classification
attributes, we define dR[CðxiÞ ¼ dRðxiÞ \ cxi

. Then

NHdðR;CÞ ¼ �
1
n

Xn

i¼1

log
kdRðxiÞ \ cxi

k
n

:

Theorem 3. NHd(R,S) P NHd(R), NHd(R,S) P NHd(S).
Proof. "xi 2 U, we have dS[R(xi) # dS(xi) and dS[R(xi) # dR (xi). Then
kdS[R(xi)k 6 kdS(xi)k and kdS[R(xi)k 6 kdR(xi)k, therefore NHd(R,S) P
NHd(R), NHd(R,S) P NHd(S). h
Definition 3. R, S # F are two subsets of attributes. The condi-
tional neighborhood entropy of R to S is defined as

NHdðRjSÞ ¼ �
1
n

Xn

i¼1

log
kdS[RðxiÞk
kdSðxiÞk

:

Theorem 4. NHd(RjS) = NHd(R,S) � NHd(S)
Proof. NHd(R,S) � NHd(S)

¼ �1
n

Xn

i¼1

log
kdS[RðxiÞk

n
� �1

n

Xn

i¼1

log
kdSðxiÞk

n

 !

¼ �1
n

Xn

i¼1

log
kdS[RðxiÞk

n
� log

kdSðxiÞk
n

� �

¼ �1
n

Xn

i¼1

log
kdS[RðxiÞk
kdSðxiÞk

�

Definition 4. R, S # F are two subsets of attributes. The neighbor-
hood mutual information of R and S is defined as

NMIdðR; SÞ ¼ �1
n

Xn

i¼1

log
kdRðxiÞk � kdSðxiÞk

nkdS[RðxiÞk
:

Theorem 5. Given two subsets of attributes R and S, NMId (R;S) is the
mutual information of these subsets, then the following equations
hold:

(1) NMId(R;S) = NMId(S;R);
(2) NMId(R;S) = NHd(R) + NHd(S) � NHd(R,S);
(3) NMId(R;S) = NHd(R) � NHd(RjS) = NHd(S) � NHd(SjR).
Proof. The conclusions of (1) and (3) are straightforward; here we
give the proof of property (2).

(2) NHd(R) + NHd(S) � NHd(R,S)
Please cite this article in press as: Hu, Q., et al. Measuring relevance between dis
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¼�1
n

Xn

i¼1

log
kdRðxiÞk

n
� 1

n

Xn

i¼1

log
kdSðxiÞk

n
� �1

n

Xn

i¼1

log
kdR[SðxiÞk

n

 !

¼�1
n

Xn

i¼1

log
kdRðxiÞk

n
þ log

kdSðxiÞk
n

� log
kdR[SðxiÞk

n

� �

¼�1
n

Xn

i¼1

log
kdRðxiÞk

n
kdSðxiÞk

n
n

kdR[SðxiÞk

� �

¼�1
n

Xn

i¼1

log
kdRðxiÞk � kdSðxiÞk

nkdR[SðxiÞk

� �
: �
Lemma 1. Given a set U of samples described by attribute set F, R # F
and C is the decision attribute. NMIx

dðR; CÞ ¼ HxðCÞ if the decision of
sample x 2 U is d-neighborhood consistent, where NMIx

dðR; CÞ ¼
� log kdRðxÞk�kcxk

nkdR[C ðxÞk
, HxðCÞ ¼ � log kcxk

n .
Proof. dR[C(x) = dR(x) \ cx, and we have that dR(x) # cx if x is con-
sistent. In this case d R[C(x) = dR(x). Then

� log
kdRðxÞk � kcxk

nkdR[CðxÞk
¼ � log

kdRðxÞk � kcxk
nkdRðxÞk

¼ � log
kcxk

n
: �
Theorem 6. Given a set of samples U described by the attribute set F,
R # S and C is the decision attribute. NMId (R;C) = H(C) if the deci-
sions of samples in feature subspace R are d-neighborhood consistent.
Proof. As the decisions of samples in feature subspace are consis-
tent, the decision of each sample is consistent. For "xi 2 U,
NMIxi

d ðR; CÞ ¼ Hxi ðCÞ. So
Pn

i¼1NMIxi
d ðR; CÞ ¼

Pn
i¼1Hxi ðCÞ.Xn

i¼1

NMIxi
d ðR; CÞ ¼ NMIdðR; CÞ;

Xn

i¼1

Hxi ðCÞ ¼ HðCÞ:

We get the conclusion NMId(R;C) = H(C). h

Theorem 6 shows that the mutual information between features
R and decision C equals to the uncertainty quantity of decision if the
classification is consistent with respect to the knowledge of R. There
is not any uncertainty in classification if attributes R is known.
Moreover, we also know by Lemma 1 that the mutual information
between R and C with respect to sample x is the uncertainty of x in
classification if its decision is consistent. With Lemma 1 and Theo-
rem 6, we not only distinguish whether all samples in classification
learning are consistent, but also know which samples are consistent
although the decision is not consistent as a whole. In practice it is of-
ten that just part of consistent samples is consistent. It is useful to
find these consistent patterns for understanding the task at hand.

4. Strategies for selecting features

4.1. Axiomatization of feature selection

Neighborhood mutual information measures the relevance be-
tween numerical or nominal variables. It is also shown that the
neighborhood entropy will degenerate to the Shannon’s entropy
if the features are nominal, thus neighborhood mutual information
will reduce to the classical mutual information. Mutual informa-
tion is widely used in selecting nominal features. We extend these
algorithms to select numerical and nominal features by computing
relevance with neighborhood mutual information.

As discussed in the theory of rough sets, a ‘‘sound’’ subset of fea-
tures should be sufficient and necessary. Sufficiency requires the
selected features have the same capability in describing the deci-
sion as the whole set of features; necessary shows no superfluous
features in the selected subset (Yao & Zhao, 2008).
crete and continuous features based on neighborhood mutual information.
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Axiom 1.1 (Sufficiency condition). Given a dataset described by
feature set F and decision variable C, a feature subset S # F is said
to be a sufficient feature subset if rF(C) = rS(C), where rS(C) is the
dependency of classification C on features S.
Axiom 1.2 (Indispensability condition). Given a dataset described
by feature set F and decision C, S is a feature subset. f 2 S is said
to be indispensable if rF(C) > rS�f(C).

These axioms offer an axiomatic approach to feature subset
selection. In rough sets, the subset of features satisfying the suffi-
ciency and indispensability conditions is called a relative reduct
in rough set theory. Given a training dataset, there are a lot of rel-
ative reducts in some applications (Hu, Yu, Xie, & Li, 2007). The one
with the minimal features is favored according to the principle of
Occam’s razor. It is obvious that a minimal subset of features does
not necessarily generate a minimal description of the classification
data. The size of the description is related with the number of fea-
ture values. The above axioms fail to reflect this fact.

Based on information theory, Wang, Bell and Murtagh intro-
duced the second axiomatic approach to feature subset selection
(Bell & Wang, 2000; Wang et al., 1999).

Axiom 2.1 (Preservation of learning information). For a given
dataset described by features F and decision variable C, the
expected feature subset, S, is a sufficient feature subset if
MI(F;C) = MI(S;C).
Axiom 2.2 (Minimum encoding length). Given a dataset by features
F and decision C;S is a set of sufficient feature subsets. The one,
S 2 S, which minimizes the joint entropy H(S,C) should be favored
with respect to its predictive capability.

Axioms 2.1 and 2.2 give an axiomatic description of a good sub-
set of features based on information theory and the principle of Oc-
cam’s razor. In fact, as to a consistent classification problem, we
can easily get the following property (Hu, Yu, & Xie, 2006): If
rF(C) = rS(C), we have MI(F;C) = MI(S;C).

We consider both dependency and mutual information are
measures of relevance between features, then the above two axi-
omatic approaches require that the relevance between the reduced
subsets of features does not decrease.

The difference comes from the second term of two approaches.
In the framework of rough sets, the reduct with minimal features is
preferred, while the features minimizing the joint entropy are pre-
ferred according to information theory. Entropy was viewed as a
measure of granularity of partitioning objects based on the values
of features (Qian, Liang, & Dang, 2009; Yu, Hu, & Wu, 2007). Min-
imizing the joint entropy leads to select a subset of features which
maximizes the granularity of partition derived jointly with the fea-
tures and the decision variable.

It is difficult to apply this description to the problem of numerical
feature selection. Now we present the third axiomatic system that is
suitable for both nominal and numerical feature subset selection.

Axiom 3.1 (Preservation of learning information under granularity
d). Given a dataset described by features F and decision variable C,
the expected feature subset, S, is sufficient if NMId (S;C) = NMId(F;C)
with respect to granularity d.
Axiom 3.2 (Minimum encoding length under granularity d). Given a
dataset by features F and decision C; S is a set of sufficient feature
subsets. The one, S 2 S, which minimizes the joint entropy
NHd(S,C) should be favored with respect to its predictive capability
under granularity d.
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It is notable that Axiom 3 gives a multi-granular way to describe
the classification power of a set of numerical features because d
can be considered as a variable. Multi-granular analysis can be con-
ducted in discussing a classification problem. We have the follow-
ing properties of monotonicity.

Theorem 7. (Type-1 Monotonicity). Given a consistent classification
problem described by features F and decision C, S # F is a sufficient
feature subset with respect to granularity d. If S # R # F, R is also a
sufficient feature subset.
Proof. As we know NMId(F;C) = H(C) if the classification problem is
consistent, and NMId(S;C) = NMId(F;C), then NMId(S;C) = H(C).

S # R; so NMIdðR; CÞP NMIdðS; CÞ:

H(C) P NMId(R;C). Finally NMId(R;C) = H(C), R is a sufficient feature
subset. h
Theorem 8. (Type-2 Monotonicity). Given a consistent classification
problem described by features F and decision C, S # F. 0 6 d1 6 d2, S is
a sufficient feature subset under granularity d1 if S is a sufficient fea-
ture subset under granularity d2.
Proof. S is a sufficient feature subset, so we have
NMId2 ðS; CÞ ¼ NMId2 ðF; CÞ ¼ HðCÞ. This reflects the classification
problem in feature space S is consistent under granularity d2. As
0 6 d1 6 d2, the classifications in S and F under granularity d1 are
consistent if the classification in feature space S under granularity
d2 is consistent. So NMId1 ðS; CÞ ¼ HðCÞ and NMId1 ðF; CÞ ¼ HðCÞ. We
have NMId1 ðS; CÞ ¼ NMId1 ðF; CÞ. h
4.2. Feature selection algorithms

The axiomatic approaches set a goal for feature subset selection.
That is, the expected subset S of features should be sufficient and
with the minimal joint entropy NHd(S,C). A straightforward way
is to exhaustively check the subsets of features to find an expected
subset. However, this is not feasible even given a moderate size of
candidate features due to the exponential complexity.

Some efficient algorithms were developed to overcome this
problem. Battiti in Battiti (1994) and Peng et al. (2005) discussed
two criteria, named Max-Relevance (MR), Minimal-Redundancy
and Max-Relevance (mRMR), respectively. We here will introduce
two new criteria named Maximal-Dependency (MD) and Mini-
mal-redundancy and Maximal-Dependency (mRMD). Furthermore,
we will offer a new interpretation in terms of neighborhood mu-
tual information.

Intuitively, features of greater relevance with decision should
provide more information for classification. Therefore, the best fea-
ture should be the one of the greatest mutual information. This
strategy is called maximal relevance criterion (Max-Relevance,
MR). Formally, Max-Relevance criterion can be written as the fol-
lowing formulation:

max DðS;CÞ; D ¼ 1
kSk

X
fi2S

NMIdðfi; CÞ:

In essence the MR criterion is a feature selection algorithm based on
ranking. We rank the features in the descending order according to
the mutual information between single features and decision, and
then select the first k features, where k has been specified in
advance.

It is well known that ranking based algorithm cannot remove
redundancy between features because this algorithm neglects the
crete and continuous features based on neighborhood mutual information.

http://dx.doi.org/10.1016/j.eswa.2011.01.023
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relevance between input variables. Sometimes, the redundancy be-
tween features is so great that deleting some of them would not re-
duce the classification information of the original data. In this case,
we should select a subset of features with the minimal redundancy
condition. That is

minðRÞ; R ¼ 1

kSk2

X
fi ;fj2S

NMIdðfi; fjÞ:

Then we get a new criterion, called minimal-Redundancy-Maximal-
Relevance (mRMR), by combining the above two constraints

max UðD;RÞ; U ¼ D � b R;

where the parameter b is used to regulate the relative importance of
the mutual information between the features and the decision.

mRMR computes the significance of each feature one by one,
and ranks the features according their significances in the descend-
ing order. Then some classification algorithm is introduced to
check the best k features with respect to the classification perfor-
mance, where k = 1, . . . ,N, N is the number of all candidate features.

Another alternative of selection criterion is to maximize the
joint relevance between features and decision with a greedy algo-
rithm; as a by-product, the redundancy among features might be
reduced. This criterion is called Maximal-Dependency (MD). In
each round, we select a feature which produces the maximal in-
crease of joint mutual information, formally written as

max
f2F�S

Wðf ; S;CÞ; Wðf ; S;CÞ ¼ NMIdðS [ ffg; CÞ � NMIdðS; CÞ:

It is known that

NMIdðS; CÞ ¼ �1
n

Xn

i¼1

log
kdSðxiÞkkdCðxiÞk

nkdSðxiÞ \ dCðxiÞk
; then

NMIdðS [ ffg; CÞ � NMIdðS; CÞ ¼ �1
n

Xn

i¼1

log
kdSðxiÞkkdCðxiÞk

nkdSðxiÞ \ dCðxiÞk
þ 1

n

�
Xn

i¼1

log
kdS[ffgðxiÞkkdCðxiÞk

nkdS[ffgðxiÞ \ dCðxiÞk

¼ �1
n

Xn

i¼1

� log
kdS[ffgðxiÞkkdSðxiÞ \ dCðxiÞk
kdS[ffgðxiÞ \ dCðxiÞkkdSðxiÞk

If we compute the neighborhood with infinite norm based distance,
dS[{f}(xi) = dS(xi) \ df(xi). In this case,

NMIdðS [ ffg; CÞ � NMIdðS; CÞ ¼ �1
n

Xn

i¼1

� log
kdSðxiÞ \ df ðxiÞkkdSðxiÞ \ dCðxiÞk
kdSðxiÞ \ df ðxiÞ \ dCðxiÞkkdSðxiÞk

We set

pxi ðCjSÞ ¼ kdSðxiÞ \ dCðxiÞk
kdSðxiÞk

and

pxi ðCjS [ ffgÞ ¼ kdSðxiÞ \ df ðxiÞ \ dCðxiÞk
kdSðxiÞ \ df ðxiÞk

;

then

NMIdðS [ ffg; CÞ � NMIdðS; CÞ ¼ �1
n

Xn

i¼1

log
pxi ðCjSÞ

pxi ðCjS [ ffgÞ :

This conclusion shows that maximizing the function W(f,S,C) trans-
lates into adding feature f which leads to the maximal increase of
classification probability. This feature is obviously expected for clas-
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sification. Here we implicitly estimate the probability and class
probability with the samples in neighborhoods in evaluating fea-
tures with neighborhood mutual information. Imprecise estimation
would not have great influence on the finally result as we just ob-
tain the best feature in each round.

Fig. 1 shows the neighborhoods of sample xi in different feature
subspaces. dC(xi), dS(xi) and df(xi) are the neighborhoods of sample xi

in terms of decision variable, the currently subset S of selected fea-
tures and a new candidate feature f. In Fig. 1 (1), dS(xi) å dC(xi).
After adding f into S, dS[{f}(xi) = dS(xi) \ df(xi) is not contained by
dC(xi) yet. This shows sample xi is not consistent in subspace S
and S [ {f}. However, we see in Fig. 1 (2) that although xi is not con-
sistent in subspace S, it is consistent in S [ {f}. In this case,

NMIxi
d ðS [ ffg; CÞ ¼ Hxi ðCÞ > NMIxi

d ðS; CÞ:

MD is a locally optimal algorithm which selects the best feature in
current rounds. However, the selected feature might be not globally
optimal. Moreover, this algorithm overlooks the redundancy be-
tween features; we thus give a minimal-Redundancy-Maximal-
Dependency algorithm (mRMD):

max HðS;CÞ; H ¼ NMIdðS; CÞ � b

kSk2

X
fi ;fj2S

NMIdðfi; fjÞ:

It is worth noting that the ideal features should be globally maximal
relevant, namely maximizing NMId(S;C). However, searching the
globally optimal features is NP-hard. All the above four criteria con-
tribute to approximate solutions.

Now we discuss the complexity of these algorithms. Given N
candidate features, we need compute the relevance between N
features and decision variable. So the time complexity is O(N). As
to the mRMR criterion, assumed k features have been selected, then
we should compute the relevance between the N � k remaining
crete and continuous features based on neighborhood mutual information.
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features and decision. Besides, we also require computing the
relevance between the N � k remaining features and the k selected
features. The computational complexity in this round is
N � k + (N � k) � k. The total complexity is

PN
k¼1N� kþ ðN� kÞ � k.

Therefore, the time complexity of mRMR is O(N3). As to MD, assumed
k features, denoted by Sk, have been selected in the kth current round,
then we should compute the joint mutual information of Sk and the
remaining N � k features. The complexity here is O(N � k). The total
complexity is O

PN
k¼1N� k

� �
¼ O N2

� �
in the worst case. The com-

plexity of mRMD is the same as mRMR. In summary, computational
complexity of MR is linear, MD is quadratic, whereas mRMR and
mRMD are cubic.
Table 1
NMI of each feature-pair.

SL SW PL PW

SL 0.7207 1.0463 1.3227 1.4048
SW 1.0463 0.3743 1.3314 1.4149
PL 1.3227 1.3314 1.3543 1.4549
5. Experimental analysis

In this section, we will first show the properties of neighbor-
hood mutual information. Then we compare the neighborhood
mutual information based MD feature selection algorithm with
neighborhood rough sets based algorithm (NRS) (Hu et al., 2008),
correlation based feature selection (CFS) (Hall, 2000), consistency
based algorithm (Dash & Liu, 2003) and FCBF (Yu & Liu, 2004). Fi-
nally, the effectiveness of mRMR, MD and mRMD is discussed.
PW 1.4048 1.4149 1.4549 1.4125

Table 2
10-CV accuracy with CART.

SL SW PL PW

SL 0.7200 0.7000 0.9467 0.9534
SW 0.6867 0.4800 0.9467 0.9400
PL 0.9533 0.9467 0.9467 0.9667
PW 0.9533 0.9400 0.9667 0.9534
5.1. Properties of neighborhood mutual information

First we use data Iris to reveal the effectiveness of neighborhood
mutual information. The data set contains 3 classes (Setosa, Versi-
colour, Virginica) of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the two oth-
ers; the latter are not linearly separable from the others. Each sam-
ple is described by four numerical features: sepal length (SL), sepal
width (SW), petal length (PL), and petal width (PW). The scatter
plots of samples in feature-pair subspaces are shown in Fig. 2.
Fig. 2. Scatter plots of samples
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It is easy to find that two classes of samples in subspace SL-SW
are nearly overlapped; however, there are just a few inconsistent
samples in PL-PW. Intuitively, classification accuracy in PL-PW
would be better than SL-SW. Therefore it is expect that the mutual
information between PL-PW and classification should be greater
than that between SL-SW and classification.

We normalize each feature into the unit interval [0,1], and set
d = 0.1. The neighborhood mutual information of each feature-pair
is given in Table 1. Moreover, we also give the 10-fold cross valida-
tion classification accuracy based on CART learning algorithm in
Table 2.

From Table 1, we learn that the subset of features PW and PL
gets the greatest NMI. Correspondingly, these two features also
produce the highest classification accuracy. We compute the corre-
lation coefficient between matrices of NMI and classification accu-
in feature-pair subspaces.

crete and continuous features based on neighborhood mutual information.
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Fig. 4. Classification accuracy of features selected with different d.
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racies. The value of coefficient is equal to 0.95. It shows that NMI is
effective for estimating classification performance.

In computing NMI, we had to specify a value of parameter d.
Now we discuss its influence on NMI. According to Theorem 1, we
know if d1 6 d2, NHd1 ðSÞP NHd2 ðSÞ. However, we do not get a simi-
lar conclusion that NMId1 ðS; CÞP NMId2 ðS; CÞ if d1 6 d2. We compute
NMI of single features when d = 0.1,0.13,0.16, . . . ,0.4 and the fea-
tures were normalized into [0,1]. This experiment is conducted
on data heart and wine. There are 7 nominal features and 6 contin-
uous variables in heart. As to the nominal features, their values are
recoded with a set of integer numbers, whereas the continuous fea-
tures take values in [0,1]. In this case, NMI will not change when d
varies in interval [0,1). Moreover, NMI is equivalent to mutual
information in the classical information theory. The samples in data
wine are described with 13 continuous features. Fig. 3 presents the
NMI computed with different d of each feature. The curves from the
top down are computed with d from 0.1 to 0.4, respectively.

From Fig. 3, we observe that NMI of features varies with param-
eter d. In a fine granularity, namely, d is small, the classification
information provided by a numeric feature is more than that in a
coarse granularity because the classification boundary is small if
the problem is analyzed at a fine granularity. As a result, given a
certain feature, NMI becomes smaller when the values of d in-
crease. Moreover, it is worth noting that the order of feature signif-
icances can not be retained when granularity changes. Then the
sets of selected features would be different. For example, NMI of
feature 12 is greater than that of feature 13 if d = 0.4. However, fea-
ture 13 outperforms feature 12 if d = 0.19.

Fig. 4 presents the classification accuracy of the selected fea-
tures with respect to the size of neighborhood (heart and wine data
sets). We can see that the accuracies do not change much in terms
of the results produced by CART, LSVM, RBFSVM and KNN when d
assumes value from 0.02 to 0.4 with step 0.02. According to obser-
vations made in Hu et al. (2008), d should take value in [0.1,0.2]. In
the following, if not specified, d = 0.15.
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Fig. 3. Neighborhood mutual information between each feature and decision.
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Moreover, we can also illuminate the effectiveness by compar-
ing neighborhood mutual information and mutual information. In
order to compute the mutual information of continuous features,
we introduce a discretizing algorithm to transform these features
into discrete ones (Fayyad and Irani, 1993). We introduce a 10-
CV like technique to compute the NMI and MI. That is, the samples
are divided into 10 subsets; nine of them are combined to compute
the mutual information between single features and decision. After
ten rounds, we can get 10 estimates of features. By this way, we
can study the stability of the estimation (Kalousis, Prados, and Hil-
ario, 2007).

Three data sets (Heart, WDBC, Wine) are tested. Data Wisconsin
Diagnostic Breast Cancer (WDBC) is a widely used one in machine
learning research. WDBC is a binary classification problem, where
569 samples are characterized with 30 numerical features.

NMI and MI of each feature are given in Fig. 5. Surprisingly, we
see that NMI and MI computed with continuous features and their
discrete ones are very similar. There are just some little different
points between NMI and MI. However, we can also find some infor-
mation is changed in discretization. As to data wine shown in Fig. 5
(1), we see the mutual information quantities of features 4, 5 and 6
are different before discretization. However, they are the same if
the numerical features are discretized. It shows that the difference
of features is lost in discretization. As to WDBC, MI quantities of
features 13, 14 and 17 change much. Before discretization, feature
18 is better than feature 17. However, feature 17 outperforms fea-
ture 18 after discretization.

Moreover, NMI and MI are stable. Although we alter samples in
computing NMI and MI, the information quantities do not vary
much in each computation. This property of NMI and MI is very
important as one usually expects that the same features should
be obtained even though sampling is different. For a given classifi-
cation task, if multiple learning data sets are gathered, we naturally
expect we will get the same features from these sets of samples for
a feature selection algorithm.
crete and continuous features based on neighborhood mutual information.
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The above experiments show that NMI is an effective substitute
of mutual information for computing relevance between numerical
features without discretization.

5.2. Comparison of NMI with related algorithms

In order to compare NMI based feature selection algorithms
with some classical techniques, 15 databases are downloaded from
Please cite this article in press as: Hu, Q., et al. Measuring relevance between dis
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UCI Repository of machine learning databases (Blake and Merz,
1998). The description of data is presented in Table 3. The sizes
of databases vary from 155 to 20000, and the numbers of candidate
features vary from 13 to 649. Moreover, we gathered a data set,
named vibration, which describes a problem of vibration diagnosis
for gas engine. We acquired the wave data samples with different
faults, and then introduced wavelet techniques to extract 72 fea-
tures from these waves. The number of candidate features is given
crete and continuous features based on neighborhood mutual information.
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Table 3
Experimental data description and the numbers of selected with different algorithms.

ID Data Samples Classes Features NMI CFS Consistency FCBF NRS

1 german 1000 2 3/17 12 5 11 5 11
2 heart 270 2 5/ 8 8 7 10 6 9
3 hepatitis 155 2 6/13 6 7 4 7 7
4 horse 368 2 7/15 7 8 4 8 8
5 iono 351 2 32/0 8 14 7 4 9
6 letter 20000 26 0/16 9 11 11 11 16
7 m-feature 2000 10 649/0 7 8 11 4 9
8 mushroom 8124 2 0/22 3 5 5 5 5
9 sick 2800 2 5/24 14 4 8 6 23
10 segmentation 2310 7 16/2 8 7 10 5 14
11 sonar 208 2 60/0 6 19 14 10 7
12 spam 4601 2 57/0 24 15 25 14 16
13 vibration 414 5 72/0 10 18 7 10 11
14 wdbc 569 2 30/0 6 11 8 7 12
15 wine 178 3 13/0 5 11 5 10 6
16 wpbc 198 2 33/0 6 2 2 2 7
Average – – 69.3 8.7 9.5 8.9 7.1 10.6
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as continuous/discrete ones. Among 16 data sets, two are com-
pletely discrete, eight are completely continuous and the rest 6
are heterogeneous. All the continuous features are transformed
to interval [0,1] in preprocessing, while the discrete features are
coded with a sequence of integers. As CFS, consistency and FCBF
cannot deal with numerical features directly. We employ a discret-
Table 4
Classification accuracies (%) of features selected with different algorithms based on CART.

Data Raw NMI NRS

german 69.9 ± 3.5 71.4 ± 3.6 70.6 ± 5
heart 74.1 ± 6.3 78.1 ± 8.1 75.9 ± 7
hepatitis 91.0 ± 5.5 86.8 ± 6.5 90.3 ± 4
horse 95.9 ± 2.3 89.4 ± 4.8 88.9 ± 5
iono 87.6 ± 6.9 93.2 ± 3.7 88.4 ± 6
letter 82.3 ± 1.2 86.2 ± 0.9 86.9 ± 1
m-feature 93.3 ± 1.7 92.4 ± 2.0 91.4 ± 1
mushroom 96.4 ± 9.9 96.0 ± 9.8 96.4 ± 9
sick 98.5 ± 1.2 98.5 ± 1.2 98.5 ± 1
segmentation 95.6 ± 2.8 94.8 ± 3.7 95.0 ± 3
sonar 72.1 ± 13.9 77.4 ± 4.1 69.7 ± 1
spam 90.6 ± 3.3 89.3 ± 4.2 85.0 ± 6
Vibration 86.5 ± 6.7 87.1 ± 4.7 79.0 ± 6
wdbc 90.5 ± 4.6 91.8 ± 3.4 94.0 ± 4
wine 89.9 ± 6.4 91.0 ± 6.0 91.5 ± 6
wpbc 70.6 ± 7.5 66.6 ± 10.6 70.7 ± 8
Average 86.6 86.9 85.8

Table 5
Classification accuracies (%) of features selected with different algorithms based on KNN.

Data Raw NMI NRS

german 69.4 ± 2.2 73.6 ± 6.0 70.5 ± 3
heart 81.9 ± 6.1 83.3 ± 6.1 83.0 ± 7
hepatitis 87.2 ± 5.9 84.5 ± 4.4 90.2 ± 8
horse 89.9 ± 4.2 88.6 ± 4.3 89.9 ± 3
iono 84.1 ± 5.8 82.7 ± 6.2 88.0 ± 2
letter 95.5 ± 0.5 94.3 ± 1.3 93.4 ± 0
m-feature 97.7 ± 1.1 96.3 ± 1.4 95.2 ± 1
mushroom 94.6 ± 11.2 93.2 ± 14 95.6 ± 1
sick 95.8 ± 0.9 95.9 ± 1.0 95.9 ± 1
segmentation 94.5 ± 3.5 95.3 ± 3.3 94.5 ± 3
sonar 81.3 ± 6.1 81.3 ± 6.5 77.4 ± 9
spam 88.2 ± 3.5 87.1 ± 2.7 80.2 ± 4
Vibration 94.5 ± 3.0 90.6 ± 5.2 90.0 ± 5
wdbc 96.8 ± 2.3 96.1 ± 2.3 95.1 ± 2
wine 95.4 ± 4.6 98.3 ± 2.7 97.6 ± 4
wpbc 75.7 ± 9.1 73.7 ± 6.4 75.8 ± 5
Average 88.9 88.4 88.3
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ization algorithm to transform the numerical features into discrete
one (Fayyad and Irani, 1993).

We compare NMI based MD feature selection algorithm with
neighborhood rough sets based algorithm (NRS) (Hu et al., 2008),
correlation based feature selection (CFS) (Hall, 2000), consistency
based algorithm (Dash and Liu, 2003) and FCBF (Yu and Liu,
CFS Consistency FCBF

.2 69.7 ± 5.0 68.6 ± 4.6 69.8 ± 4.9

.7 77.0 ± 6.9 76.3 ± 6.3 77.4 ± 7.1

.6 93.0 ± 7.1 89.8 ± 8.6 93.0 ± 7.1

.6 95.9 ± 1.9 95.4 ± 4.3 95.9 ± 1.9

.6 88.7 ± 7.1 88.4 ± 6.6 87.8 ± 7.0

.0 86.6 ± 1.0 86.7 ± 1.0 86.7 ± 1.1

.9 45.5 ± 2.6 43.7 ± 3.2 41.9 ± 3.7

.9 95.6 ± 9.7 96.7 ± 9.9 95.6 ± 9.7

.1 95.1 ± 1.4 98.1 ± 1.0 95.2 ± 1.3

.6 96.1 ± 2.1 95.9 ± 2.7 95.1 ± 2.2
3.2 70.7 ± 14.1 75.5 ± 10.5 70.6 ± 12.1
.8 90.5 ± 3.4 88.9 ± 3.4 90.9 ± 3.2
.6 88.4 ± 7.1 91.6 ± 5.4 91.9 ± 4.4
.2 92.8 ± 4.8 93.2 ± 4.1 94.0 ± 4.6
.1 89.9 ± 6.3 94.4 ± 3.7 90.4 ± 6.5
.4 72.7 ± 10.6 72.7 ± 10.6 72.7 ± 10.6

84.3 84.7 84.3

CFS Consistency FCBF

.4 70.2 ± 4.4 71.6 ± 4.6 70.2 ± 4.4

.0 83.0 ± 4.7 84.1 ± 7.6 83.3 ± 5.9

.6 87.5 ± 7.5 89.8 ± 7.3 87.5 ± 7.5

.4 91.6 ± 4.9 88.3 ± 4.6 91.6 ± 4.9

.2 86.1 ± 7.6 88.0 ± 2.2 88.7 ± 4.9

.9 95.0 ± 0.5 95.0 ± 0.5 95.0 ± 0.4

.6 38.6 ± 4.3 35.3 ± 3.9 31.0 ± 2.1
0.3 95.7 ± 9.7 95.7 ± 10.1 95.7 ± 9.7
.0 95.4 ± 0.7 96.9 ± 0.9 95.4 ± 0.7
.5 94.8 ± 3.7 94.2 ± 3.8 95.1 ± 3.1
.8 81.7 ± 5.4 86.6 ± 6.8 81.2 ± 7.6
.9 91.3 ± 3.9 87.8 ± 4.0 91.0 ± 3.6
.0 92.2 ± 3.1 90.3 ± 3.1 93.2 ± 2.4
.3 96.8 ± 2.3 95.1 ± 3.0 95.8 ± 2.0
.2 97.2 ± 3.0 96.0 ± 4.6 96.6 ± 2.9
.6 73.1 ± 2.4 73.0 ± 2.4 73.0 ± 12.4

85.6 85.5 85.3

crete and continuous features based on neighborhood mutual information.
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Fig. 6. Variation of classification accuracies with number of selected features.
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2004). NRS evaluates the features with a function called depen-
dency, which is the ratio of consistent samples over the whole
learning samples; CFS first discretizes continuous features and
then uses symmetric uncertainty to estimate the relevance be-
tween discrete features. The significance of a set S of features is
computed as

SIGS ¼
krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ kðk� 1Þrff

p ;

where rcf is the average of relevance between decision and features,
rff is the average of relevance between features, k is number of fea-
tures in the subset.

Consistency based algorithm was introduced by Dash and Liu
(2003), where consistency is the ratio of samples correctly recog-
nized according to the majority voting technique. Among the sam-
ples with the same feature values, some of them come from the
majority class, while others belong to the minority classes. Accord-
ing to the majority voting technique, only the samples with the
minority classes will not be correctly classified. Dash and Liu com-
puted the ratio of samples correctly classified as consistency.

FCBF also employed symmetrical uncertainty to evaluate fea-
tures. However, this algorithm introduced a new search technique,
called Fast Correlation-Based Filter (FCBF). The algorithm selects
predominant features and deletes those highly correlating with
predominant features. If there are many redundant features, the
algorithm would be very fast.

The selected features are validated with 10-fold-cross-valida-
tion based on two popular classification algorithms: CART and
KNN (K = 5).

The numbers of selected features obtained when running differ-
ent algorithms are presented in Table 3. From the experimental re-
sults, we can observe that most of features are removed. FCBF
averagely selects the least features; moreover it also gets the
smallest subsets of features for 7 data sets among 5 algorithms,
while NMI produces 4 smallest features. As a whole, NMI averagely
gets 8.7 features for 16 databases. CFS, consistency and NRS select
more features than NMI. NRS gets 10.6 features. Roughly speaking,
two more features are selected by NRS.

Now we analyze the performance of these selected features.
Average accuracies and standard deviations are shown in Tables
4 and 5, respectively.

First, we can conclude that although most of the candidate fea-
tures are removed from the raw data, the classification accuracies
do not decrease too much. t-test shows at the 5% significance level,
the average accuracies derived from the raw datasets are the same
as the ones produced with NMI reduced datasets with respect to
CART and KNN. It shows that NMI is an effective measure for fea-
ture selection. With respect to CART learning algorithm, the aver-
age accuracy is 86.9% for NMI, while 85.8% for NRS. The average
classification accuracy reduced 1.1%. However, NMI is a little worse
than CFS, consistency and FCBF in terms of CART and KNN. This is
caused by different search strategies. Tables 5 and 6 will show the
effective of NMI if it is combined with mRMR.

There is a question in feature selection. Specifically, are all the
selected features useful for classification learning? As the filter
based algorithms evaluate the quality of features with classifier
independent measures, the applicability of these features should
be validated with the final classification algorithms. One technique
to check applicability of selected features is to add features for
learning one by one in the order that the features are selected. Then
we get a set of nested subsets of features. We compute the classifi-
cation performances of these subsets. The variation of classification
accuracies of the features selected with NMI are given in Fig. 6.

For sick dataset, the greatest classification accuracies do not oc-
cur to the final subset of features, CART arrives at the peak accu-
racy when 11 feature are selected; KNN reach the peak when 6
Please cite this article in press as: Hu, Q., et al. Measuring relevance between dis
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features are selected, whereas the accuracies produced by LSVM
and RSVM do not vary from the beginning. For vibration, the accu-
racies increase when the selected features get more and more. It
shows all the selected features are useful for classification learning.
There is also a peak for data wdbc; 3 features are enough for LSVM,
RSVM and KNN. However, 11 features are selected. This fact of
overfitting (too many selected features lead to reduction of perfor-
mance) was once reported in Raudys and Jain (1991). In Peng et al.
(2005), Peng et al. introduced a two-stage feature selection algo-
rithm. In the first stage, they employed mRMR to rank the candi-
date features, and then used a specific classifier to compute
accuracy of each subset in the second stage. The subset of features
producing the highest accuracy is finally selected.

5.3. Performance comparison of MD, mRMR, mRMD and others

Given a measure of attribute quality, there are a lot of tech-
niques to search the best features with respect to this measure.
crete and continuous features based on neighborhood mutual information.
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We show four related methods in Section 4. We know the compu-
tational complexities for these algorithms are different. And we
have compared NMI and MD based algorithm with NRS, CFS, FCBF
and consistency. In the following, we discuss the performance of
NMI integrated with MD, mRMR and mRMR.

Tables 6–9 give the number of selected features and classifica-
tion performance of NMI integrated with MD, mRMR and mRMR,
Table 6
Number and accuracy (%) of features selected with different algorithms (CART).

Data set NMI_mRMR NMI _MD NMI_mRMD

n Accuracy n Accuracy n Accuracy

Heart 3 85.2 ± 6.3 3 85.2 ± 6.3 3 85.2 ± 6.3
Hepatitis 9 93.0 ± 7.1 2 90.8 ± 4.8 2 90.8 ± 4.8
Horse 22 95.9 ± 2.3 2 91.8 ± 3.9 9 96.5 ± 1.8
Iono 19 91.7 ± 5.1 11 89.3 ± 6.6 9 90.6 ± 7.2
Sonar 7 77.9 ± 5.7 3 76.4 ± 7.0 3 76.4 ± 7.0
Wdbc 5 94.0 ± 3.4 2 93.0 ± 2.6 5 93.5 ± 3.2
Wine 5 91.5 ± 4.8 3 91.5 ± 4.8 5 92.0 ± 6.3
Zoo 10 91.8 ± 9.6 4 92.8 ± 9.9 4 92.8 ± 9.7
Average 10 90.1 4 88.9 5 89.7

Table 7
Number and accuracy (%) of features selected with different algorithms (LSVM).

Data set NMI_mRMR NMI_MD NMI_mRMD

n Accuracy n Accuracy n Accurac

Heart 6 84.8 ± 6.4 4 83.3 ± 6.4 4 82.2 ± 7
Hepatitis 5 88.0 ± 6.1 5 84.5 ± 4.4 5 88.2 ± 5
Horse 21 93.0 ± 4.4 2 90.2 ± 4.1 2 90.2 ± 4
Iono 29 88.5 ± 6.5 11 85.6 ± 6.6 15 89.8 ± 4
Sonar 8 80.3 ± 7.7 7 72.6 ± 7.0 56 80.3 ± 8
Wdbc 17 98.3 ± 1.8 19 97.0 ± 1.4 4 96.7 ± 1
Wine 13 98.9 ± 2.3 5 98.3 ± 2.7 8 97.7 ± 3
Zoo 12 95.4 ± 8.4 4 88.5 ± 12.2 6 93.4 ± 9
Average 14 90.9 7 87.5 13 89.8

Table 8
Number and accuracy (%) of features selected with different algorithms (RBFSVM).

Data set NMI_mRMR NMI _MD NMI_mRMD

n Accuracy n Accuracy n Accurac

Heart 4 85.9 ± 6.2 3 85.6 ± 6.2 4 85.9 ± 6
Hepatitis 5 88.8 ± 5.7 4 89.0 ± 7.0 5 92.2 ± 6
Horse 3 92.1 ± 4.8 2 91.8 ± 3.9 2 91.8 ± 3
Iono 17 95.2 ± 4.3 11 95.2 ± 4.3 15 94.9 ± 3
Sonar 57 88.0 ± 6.8 5 79.8 ± 6.3 42 87.0 ± 7
Wdbc 17 98.1 ± 2.3 19 97.9 ± 2.2 4 96.8 ± 2
Wine 10 98.9 ± 2.3 5 97.2 ± 3.0 6 98.3 ± 2
Zoo 4 94.5 ± 8.3 4 92.4 ± 9.2 4 92.4 ± 9
Average 15 92.7 7 91.1 10 92.4

Table 9
Number and accuracy (%) of features selected with different algorithms (KNN).

Data set NMI_mRMR NMI _MD NMI_mRMD

n Accuracy n Accuracy n Accurac

Heart 9 83.3 ± 8.2 7 83.3 ± 9.4 6 85.6 ± 8
Hepatitis 1 90.2 ± 7.3 2 92.5 ± 6.8 2 92.5 ± 6
Horse 10 93.2 ± 3.4 2 90.2 ± 6.1 2 90.2 ± 6
Iono 4 92.1 ± 4.9 2 91.2 ± 5.0 2 91.2 ± 5
Sonar 29 86.1 ± 9.4 7 81.7 ± 5.9 6 83.1 ± 7
Wdbc 23 97.2 ± 1.9 19 96.8 ± 2.0 3 96.7 ± 2
Wine 6 97.7 ± 3.0 5 98.3 ± 2.7 5 98.2 ± 4
Zoo 3 88.4 ± 9.4 5 86.0 ± 7.3 6 88.3 ± 6
Average 11 91.0 6 90.0 4 90.7

Please cite this article in press as: Hu, Q., et al. Measuring relevance between dis
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CFS, FCBF and mRMR. 8 data sets are chosen for these experiments.
As computational complexities of NMI_mRMR, NMI_mRMD and
MI_mRMR are very high; the databases with small sizes are used
here.

Considering classification accuracy, NMI_mRMR and MI_mRMR
are better than other algorithms with respect to the four classifica-
tion algorithms. It shows the strategy of minimal redundancy and
CFS FCBF MI_mRMR

n Accuracy n Accuracy n Accuracy

6 77.4 ± 7.1 7 77.0 ± 6.9 3 85.2 ± 6.3
7 93.0 ± 7.1 7 93.0 ± 7.1 7 92.3 ± 6.7
8 95.9 ± 1.9 8 95.9 ± 1.9 3 96.5 ± 1.3
4 87.8 ± 7.0 14 88.7 ± 7.1 7 91.2 ± 2.6
10 70.6 ± 12.1 19 70.7 ± 14.1 8 77.9 ± 7.5
7 94.0 ± 4.6 11 92.8 ± 4.8 8 94.7 ± 4.3
10 90.4 ± 6.5 11 89.9 ± 6.3 4 91.5 ± 4.8
6 87.8 ± 10.6 9 93.8 ± 10.1 4 90.8 ± 9.1
7 87.1 11 87.7 6 90.0

CFS FCBF MI_mRMR

y n Accuracy n Accuracy n Accuracy

.8 7 84.8 ± 5.9 6 82.2 ± 5.5 6 84.4 ± 6.7

.5 7 90.2 ± 6.6 7 90.2 ± 6.6 7 91.7 ± 8.2

.1 8 91.0 ± 5.0 8 91.0 ± 5.0 4 93.8 ± 4.7

.7 14 86.4 ± 5.3 4 83.2 ± 6.4 14 89.8 ± 5.2

.7 19 78.4 ± 5.6 10 77.9 ± 7.1 20 87.9 ± 10.5

.9 11 96.3 ± 1.9 7 95.8 ± 2.8 13 97.7 ± 2.2

.0 11 98.9 ± 2.3 10 98.9 ± 2.3 9 99.4 ± 1.8

.5 9 93.4 ± 8.2 6 93.4 ± 8.3 5 93.4 ± 8.2
11 89.9 7 89.1 10 92.3

CFS FCBF MI_mRMR

y n Accuracy n Accuracy n Accuracy

.2 7 80.7 ± 6.7 6 80.7 ± 5.5 3 85.6 ± 6.2

.9 7 89.7 ± 5.5 7 89.7 ± 5.5 6 88.8 ± 6.5

.9 8 91.6 ± 5.1 8 91.6 ± 5.1 5 92.1 ± 4.8

.9 14 95.2 ± 4.4 4 89.5 ± 3.9 23 96.0 ± 3.4

.8 19 79.8 ± 6.0 10 80.3 ± 8.4 48 88.9 ± 5.7

.0 11 96.8 ± 1.8 7 96.5 ± 2.7 15 97.9 ± 2.5

.8 11 98.9 ± 2.3 10 98.9 ± 2.3 10 98.9 ± 2.3

.2 9 95.5 ± 8.3 6 94.5 ± 8.3 4 94.5 ± 8.3
11 91.0 7 90.2 14 92.8

CFS FCBF MI_mRMR

y n Accuracy n Accuracy n Accuracy

.3 7 83.0 ± 4.7 6 83.3 ± 5.9 10 84.1 ± 7.6

.8 7 87.5 ± 7.5 7 87.5 ± 7.5 1 90.2 ± 7.3

.1 8 91.6 ± 4.9 8 91.6 ± 4.9 1 96.2 ± 3.3

.0 14 86.1 ± 7.6 4 88.7 ± 4.9 3 90.6 ± 4.8

.6 19 81.7 ± 5.4 10 81.2 ± 7.6 16 83.1 ± 5.3

.2 11 96.8 ± 2.3 7 95.8 ± 2.0 4 96.8 ± 2.7

.1 11 97.2 ± 3.0 10 96.6 ± 2.9 6 97.7 ± 3.0

.2 9 89.3 ± 7.6 6 88.3 ± 8.2 3 88.4 ± 9.4
11 89.2 7 89.1 6 90.9

crete and continuous features based on neighborhood mutual information.
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maximal relevance is effective for feature subset selection except
the high computational complexity. If there is limit in time com-
plexity, NMI_mRMR is preferred.

However, in most cases, computational complexity is very
important in machine learning and data mining. NMI_MD can be-
come a substitute for NMI_mRMR as the performance does not re-
duce too much, but time complexity reduce from O(N3) to O(N2).
We should also note that the number of the features selected by
mRMR is much more than MD. NMI_MD just selects 4 features,
while NMI_mRMR selects 10 features for CART algorithm.

Neighborhood mutual information based algorithms are better
than CFS anf FCBF. Among 8 data sets, NMI_mRMR get 5 better re-
sults than CFS in terms of CART, and the performance of these two
algorithms are of difference on other 3 data sets. The similar cases
occur to FCBF. In addition, we also perform t-test on the experi-
mental results. t-test shows that at the 0.1 significance level, the
average accuracies derived from NMI mRMR are better than the
ones produced with CFS and FCBF in terms of CART and KNN,
and no significant difference is observed from the accuracies de-
rived from NMI mRMR and MI mRMR.

In summary, the features selected by NMI_mRMR and
MI_mRMR produce the same classification performance, which
shows neighborhood mutual information has the same power of
feature evaluation as mutual information. mRMR strategy if very
useful for feature selection except its high computational complex-
ity. Considering the complexity, maximal dependency can also be-
come a substitute of mRMR.

In gene expression based cancer recognition, datasets usually
contain thousands of features and tens of samples. High dimen-
sionality is considered as the main challenge in this domain. We
collect several cancer recognition tasks, including DLBCL (a dataset
recording 88 measurements of diffuse large B-cell lymphoma de-
scribed with 4026 array elements), Leukemial1 (a collection of 72
expression measurements with 7129 probes) and SRBCT (the small
round blue cell tumors with 88 samples and 2308 attributes).
Based on KNN, the recognition rates of these tasks are 94.0%,
77.4% and 58.5%, respectively. Then we perform feature selection
on these tasks. For DLBCL, NMI mRMR, CFS and FCBF select 10,
357 and 242 features, respectively. The corresponding recognition
rates are 99.0%, 99.0% and 98.3% if KNN is used as the classifier. For
Leukemial1, NMI mRMR, CFS and FCBF select 16, 102 and 53 fea-
tures, and the derived accuracies are 98.6%, 97.5% and 96.1%. Final-
ly, for SRBCT, these algorithms return 14, 70 and 50 features and
accuracies are 82.2%, 80.5% and 75.3%, respectively. Comparing
the three algorithms, we can get that NMI mRMR selects much less
features and yield better recognition rates than CFS and FCBF. The
recognition performance after dimensionality reduction is signifi-
cantly improved. The experimental results show NMI mRMR is
effective in dealing with gene recognition tasks.
6. Conclusion and future work

Measures for computing the relevance between features play an
important role in discretization, feature selection, decision tree
construction. A number of measures were developed. Given its
effectiveness, mutual information is widely used and discussed
for effectiveness. However, it is difficult to compute relevance be-
tween numerical features based on mutual information. In this
work, we generalize Shannon’s information entropy to neighbor-
hood information entropy and propose the concept of neighbor-
hood mutual information (NMI), which can be directly used to
compute relevance between numerical features. We show that
the new measure is a natural extension of classical mutual infor-
mation, thus the new measure can also compute the relevance be-
tween discrete variables.
Please cite this article in press as: Hu, Q., et al. Measuring relevance between dis
Expert Systems with Applications (2011), doi:10.1016/j.eswa.2011.01.023
We combine the proposed measure with four classes of strate-
gies for feature subset selection. The computational complexities
of these algorithms are also presented. Through extensive experi-
ments, it is shown that the neighborhood mutual information pro-
duces the nearly same results as those obtained when applying the
classical mutual information. This result shows the significance of
numerical variables estimated by discretization and mutual infor-
mation can also be computed with neighborhood mutual informa-
tion without discretization. The experimental results exhibit the
stability of neighborhood mutual information. Thus neighborhood
mutual information is an effective and stable measure for comput-
ing relevance between continuous or discrete features. Moreover,
we also tested the proposed feature selection algorithms based
on NMI. The results show that the features selected with NMI
based algorithms are better than those selected with CFS, consis-
tency and FCBF in terms of classification accuracies.

NMI is able to compute the relevance between continuous fea-
tures and discrete features. Thus it can also be used to compute the
significance of features and select features for regression analysis.
This forms an interesting topic for further studies.
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